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Abstract8

Today, leaf trait estimation remains a labor-intensive process. The effort to obtain ground9

truth measurements limits how accurately this task can be performed automatically. Tradi-10

tionally, plant scientists manually measure the traits of harvested leaves and associate them11

with sensor data, which is key for training machine learning approaches and to automate the12

processes. In this paper, we propose a neural network-based method to generate synthetic 3D13

point clouds of leaves with their associated traits to support approaches for phenotyping. We14

use real-world leaf point clouds to learn how to generate realistic leaves from a leaf skeleton,15

which is automatically extracted. We use the generated leaves to fine-tune different leaf trait16

estimation methods. We evaluate our generated data using different trait estimation methods17

and compare the results to using real-world data or other synthetic datasets from agricultural18

simulation software. Experiments show that our approach generates leaf point clouds with high19

similarity to real-world leaves. Tuning trait estimation methods on our generated data improves20

their performance in the estimation of real-world leaves’ traits, making our data crucial for de-21

veloping and testing data-driven trait estimation methods. Accurate trait estimation is key22

to understanding crop growth, productivity, and pest resistance, as leaf size directly influences23

photosynthesis, yield potential, and vulnerability to insects and fungal growth.24

1 Introduction25

The global demand for food, fuel, and fiber constantly increases due to the growing world population.26

Agricultural systems must meet this growing demand while producing resources more sustainably.27

The common practice of expanding farmland has reached its limit due to desertification, salinization,28

and soil erosion. The problem of increasing crop production is tackled by developing new crop29

varieties, with higher crop yield and toward resistance to stress and diseases [1–3]. Prior works [4–6]30

have linked crop productivity to different traits of the leaf morphology, such as the leaf width and31

length or its shape.32
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Phenotyping is the process of measuring traits of plants. Today, this task is still mainly performed33

by workers measuring observable traits manually, making it an expensive, time-consuming, and34

difficult-to-scale task [7]. This limitation is evident in agricultural datasets, which often provide35

only the average traits computed over a few manually selected leaves, reducing the granularity and36

accuracy of successive analyses. However, this is often not enough to evaluate approaches that aim37

to estimate per-plant traits and is even more problematic for training deep learning approaches,38

which usually require large amounts of labeled data for supervised training [8]. Obtaining such data39

is time-consuming, costly, and often a bottleneck for algorithm development.40

In this paper, we tackle the problem of the lack of training data by developing a generative41

approach to produce leaf point clouds with a given length and width that we use to optimize42

approaches for the estimation of these leaf traits. Prior works [9–11] on trait estimation focused43

on leaf instance segmentation on images treating the number of leaves as the main trait. However,44

images provide a limited understanding of angles and curvatures, which are needed to estimate the45

length and width of bending leaves. 3D point clouds can better capture the geometry of the leaves,46

allowing for more accurate estimation of geometric leaf traits, such as the leaf width and length.47

Most of the approaches for 3D data are rule-based [12–15] instead of data-driven [16, 17] since the48

lack of data with reference traits does not allow for training of learning-based methods to estimate49

traits different from the number of leaves. However, such approaches still need fine-tuning to achieve50

satisfactory performance.51

The main contribution of this paper is a novel approach for generating leaf point clouds with their52

associated leaf traits. Our work opens the road to the development, benchmarking, and comparison53

of next-generation trait estimation techniques previously limited by the lack of data. Unlike the54

traditional template leaf model – a mechanistic representation developed by expert plant scientists55

to capture the leaf morphology, we use a generative network trained on real-world data. As input,56

our network receives a point cloud representing a leaf skeleton with its traits as high-level descriptors.57

The network generates realistic point clouds of leaves as output. Training on real-world data allows58

us to generate leaves with distributions similar to real ones, without the need for additional expert59

knowledge for each different plant species. We generate new leaves by providing a skeleton of the60

desired length and width. In this article, we decompose the problem of trait estimation into two parts:61

firstly, a generative method produces leaf point clouds with their respective leaf width and length,62

and secondly, we use the generated data to optimize the parameters of a trait estimation approach.63

Further details on the problem decomposition can be found in the supplementary material. We64

compare our approach against other geometric and learning-based leaf generation methods, showing65

that our generated leaf point clouds are similar to the real-world leaf distribution. Then, since our66

approach tackles the problem of the lack of data for trait estimation methods, we show that tuning67

different off-the-shelf trait estimation approaches on our generated data significantly improves the68

accuracy and precision of real-world leaf trait estimation. We evaluate our approach on multiple69

datasets of different crop species. In sum, we make two key claims: (i) using our generated leaves70

to tune trait estimation approaches performs better than using other generated or real-world leaf71

point clouds; and (ii) all generated leaf point clouds respect the leaf traits we condition on and have72

a high probability of being sampled from the real-world leaf distribution. We plan to make our code73

2



publicly available to enable further development of trait estimation methods.74

2 Related Work75

The problem of trait estimation in agriculture is still largely tackled by manual measurements76

performed by domain experts. This process is expensive, labor-intensive, and prone to introduce77

biases in the collected data. For example, bigger leaves are easier to identify and remove, leading to78

them being over-represented and resulting in a biased estimate of the trait distributions. As with79

many other agricultural tasks, trait estimation can be automatized using robotic platforms equipped80

with perception systems [18–20]. These systems capture the leaf data and analyze it without human81

intervention at a fine-grained scale and in a non-destructive fashion, i.e., without the need to remove82

the leaf from the plant.83

2D Trait Estimation: Lately, several computer vision approaches have been developed to esti-84

mate phenotypic and functional traits from 2D images. Most of them focused on leaf segmentation85

and counting, initially using heuristic approaches and later based on neural networks. Multiple86

geometric segmentation techniques have been employed to segment single leaves, such as the region87

growing algorithm in the work by Pape et al. [21], adaptive thresholding in the work by Bai et al. [22],88

and the Sobel operator used by Wang et al. [23]. Heuristic approaches often rely on tuning several89

hyperparameters to obtain satisfactory performance. Deep learning methods typically require fewer90

manually tuned parameters, as their weights are optimized during training with labeled data. Deep91

learning approaches using convolutional neural networks have been shown to outperform heuristic92

methods for leaf segmentation, especially when they exploit knowledge about the plant structure [10,93

24]. However, these approaches only count the number of leaves or estimate the leaf area [25]. Be-94

cause of the projective view of the images, it is challenging for any image-based approach to estimate95

per-leaf traits, such as the leaf length and width, which provide more information about crop growth96

and pest resistance.97

3D Trait Estimation: Using 3D data, i.e., point clouds or meshes, allows for estimating more98

complex leaf traits, such as widths and lengths of the leaves, which are hard to determine using99

images only. The potential of 3D data for plant trait estimation has already been shown by several100

approaches developed in the context of horticulture [26, 27], where automatic estimation of the size101

and color of single fruits is crucial for automatic harvesting and yield estimation. In the context of102

leaf trait estimation, many works still focus on controlled environments [12, 13], assuming perfect103

3D data, with only one plant in the scene, and thus, with little to no occlusion. The problem of104

handling data that is not fully visible because of occlusions or missing viewpoints severely impacts105

the ability to segment the leaves and estimate their widths and lengths. This limits the application106

of such methods in complex real-world scenes.107

Marks et al. [15] tackle this limitation by means of template reconstructions. They propose108

using a deformable template mesh to reconstruct the leaves, even in the case of missing parts due to109

self-occlusions or occlusions from other plants. Once the leaf is reconstructed in 3D without missing110

parts, they estimate the position of the leaf center, tip, and right and left corners. The majority of111

the approaches use the geometric structure of the data and the knowledge about the appearance of112
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the plants to segment the leaves and estimate the relevant traits. The lack of ground truth traits per113

single leaf limits the deployment of deep-learning approaches. Recent generative approaches could114

solve this problem by producing synthetic annotated data for supervised learning.115

Generated Data for the Agricultural Domain: In recent years, several works have proposed116

to use artificially generated data in the agricultural domain. Most of these approaches generate117

images to train networks for crop-weed segmentation [28, 29]. In the context of 3D data generation,118

Helmrich et al. [30] propose a pipeline requiring user-defined parameters for the plant, the root119

system, and the functional model of the plants. This makes the approach suitable for different120

functional and structural analyses but requires expert knowledge for modeling the plant and setting121

parameters. Additionally, they generate the 3D agricultural scene only to export images of the scene.122

The work by Bailey [31] generates synthetic fields of different crop species. Their simulation software123

focuses on functional traits, i.e., radiation, photosynthesis, and water conduction. Similarly, expert124

knowledge is required to build the plant and set the parameters for each crop species. None of the125

works can exploit real-world data collected automatically, for example, by a robot or mobile sensing126

system. Instead, they require access to manually measured traits to set the parameters.127

Our work falls into the category of methods that generate data for the agricultural domain. We128

propose an approach to automatically generate point clouds of leaves with known widths and lengths.129

In line with this methodological approach, Choi et al. [32] use the 3D Plant simulator Helios [31]130

to simulate a 3D agricultural scene from which they create a synthetic image dataset for training131

networks. As Helmrich et al. [30], they build 3D scenes only to export images of the scene as a132

dataset for training deep-learning methods. Our main contribution is the generation of leaf point133

clouds annotated for leaf trait estimation without the requirement for labeled data or expertise that134

can be learned from real-world data in an unsupervised fashion. We also show how directly using135

our generated point clouds enables more accurate leaf trait estimation for real-world leaves.136

3 Problem Formulation137

We formally define the problem before explaining our proposed method for generating point clouds138

of leaves. Leaf trait estimation is performed by a method that we express as a function139

f(Pi,θ) = t̂i, (1)

where Pi is the input leaf point cloud, θ are the approach’s parameters, t̂i ∈ R
T is the vector of T140

estimated traits for the input leaf Pi, each one a scalar. We can find the optimal parameters of the141

approach given a dataset of D leaf point clouds with traits D = {(Pi, ti)}
D
i=1 as142

θ∗
D = arg min

θ∈Θ

∑

(Pi,ti)∈D

e (f(Pi,θ), ti) = arg min
θ∈Θ

∑

ti∈D

e
(

t̂i, ti
)

, (2)

where Θ is the set of possible parameters θ, and e
(

t̂i, ti
)

is a function computing the error between143

the estimated traits t̂i and the ground truth traits ti in D. The error function e used may depend144

on the estimated traits, e.g., the cosine similarity is appropriate for the angle between the leaf and145
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Figure 1: Overview of our approach. We show the input point cloud P made up from the skeleton
points in and in white the points sampled from the GMM. Our network predicts per-point offsets
depicted as arrows. Adding the offsets to the points’ positions we obtain P. We supervise the
network using real leaf point clouds Preal.

the plant stem but not for the length of the leaf blade. As for any optimization procedure, the final146

performance of the trait estimation approach f depends on the dataset’s completeness and reliability.147

As already mentioned in Sec. 1, the real-world agricultural datasets Dreal associates multiple leaf148

point clouds Preal
i with the same average traits computed over a few manually selected leaves. We149

want to tackle the problem of generating a dataset with known traits for each leaf point cloud. We150

introduce the generative problem as defining a function151

g(ti) = P̂i, (3)

that generates leaf point cloud P̂i for given traits ti. In this way, we can generate a new dataset152

Dg = {(g(ti), ti)}
D
i=1 . (4)

This new dataset Dg, with per-leaf ground truth traits ti is used to find the best parameters θ∗
Dg

153

for any given trait estimation method f . The generative function g(t) must generate realistic data154

to obtain a valuable dataset and, thus, parameters θ∗
Dg

that perform well on real-world point clouds.155

4 Materials and Methods156

We propose a novel approach that generates synthetic leaf point clouds P̂ with known traits. Instead157

of relying on a mechanistic model, we train a 3D convolutional neural network to generate synthetic158

leaf point clouds of desired traits t. This is the g function of our problem formulation in Eq. (3).159

An overview of our approach is shown for an exemplary tomato leaf in Fig. 1.160

In our work, we consider the leaf blade length and width as traits. Such traits are intrinsic in161

the leaf skeleton point cloud extracted from real-world leaves. We do not need their actual values162

to train our network. In Sec. 4.1, we illustrate how to obtain the skeleton point clouds S from the163

point clouds of real leaves Preal. We do not pose constraints on how to acquire the real-world point164
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(a) (b)

(c) (d) (e)

Figure 2: We show the extracted skeleton using the approach by Marks et al. [15] (top) for a sugar
beet leaf, and the approach by Magistri et al. [34] (bottom) with our adaptation for a maize leaf.
The skeleton S is always shown in black circles. We show the view from the side (a) and the top
(b). For the maize leaf in (c), we show the skeleton extracted along the main axis and the points of
the leaf slice cut around m in (d). In (e), the final skeleton with main and lateral axes.

clouds. The datasets we use have either been created by means of a laser scanning system with165

sub-millimeter accuracy or using photogrammetric reconstruction including bundle adjustment [33]166

on a set of images of the field. Then, in Sec. 4.2, we describe how we add more points to the skeleton167

point cloud S to capture the shape of the whole leaf and obtain the input P for our network. We168

then explain the network’s architecture. In Sec. 4.3, we explain the loss we minimize during our169

training. Sec. 4.4 describes how we build skeletons and compute accurate traits since we know the170

functions and limits that define the skeleton. Our network uses these skeletons to generate new leaf171

point clouds of known leaf blade length and width.172

4.1 Extraction of Leaves Skeletons173

The first step of our approach extracts skeleton point clouds S of real-world leaves Preal. We use174

two existing approaches by Marks et al. [15] and by Magistri et al. [34] to show that our approach175

can work with different skeleton extraction methods. The skeleton serves as a structural backbone176
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of the leaf, capturing the petiole, the main axis along the leaf length, and the lateral axis along177

the leaf width. In the literature, there is no universal definition of leaf width. For the approach by178

Marks et al. they define it on their template, while for the approach by Magistri et al., we define it179

as the width at the midsection of the leaf.180

Marks et al. [15] manually define all the points and faces for a template mesh of a leaf that181

they deform to fit it to real leaf point clouds Preal. They also define which points in the template182

represent the center, tip, right and left corners of the leaf, and which subsets of points represent183

the main axis, the lateral axis, and the petiole. The template targets sugar beet plants and new184

template meshes are needed for each new crop species. Since they define the points in the template185

belonging to the main and lateral axis, after fitting the template mesh to the leaf point cloud Preal,186

we use the positions of such points as points for our skeleton point cloud S. The top row of Fig. 2187

shows the extracted skeleton for one exemplary sugar beet leaf.188

We use the approach by Magistri et al. [34] to extract the skeleton point clouds S of leaves of189

tomato and maize plants. The main limitation of their approach is that it only provides the points190

of the skeleton along the main axis of the leaf, which usually represents the leaf length. Thus, their191

approach does not detect the points of the lateral axis, i.e., along the width direction of the leaf.192

Magistri et al. [34] generate a chain of n 3D points and fit it to the leaf point cloud. In the bottom193

row of Fig. 2, we show how to use their approach to also compute the points of the skeleton along194

the width direction of the leaf. After computing the n points of S along the main axis, we compute195

the median point m ∈ R
3, and the direction n of the lateral axis of the leaf as the second principal196

component extracted using principal component analysis on Preal. We then cut a slice of the leaf197

around m, preserving all points in the direction of n and removing points whose distance from the198

line l = m + cn, where c ∈ R, is larger than τ . This slice represents the central section of the leaf,199

from which we want to extract the points representing its width. In Fig. 2 (d), we show the skeleton200

along the main axis over the points that we keep at the end of this step. We then apply the approach201

only on the points in the area of interest to detect the skeleton points in the direction of the leaf202

width. The final result, which we obtain by combining the points from this two-step approach, is203

shown in Fig. 2 (e).204

4.2 From Skeletons to Network Outputs205

We generate the leaves using a neural network, specifically a 3D U-Net [35] based on KPConv [36]. At206

the end of the previous section, we obtained the skeleton point cloud S with Ñ pointsPskeleton ∈ R
Ñ×3

207

representing the leaf skeleton. To reconstruct a complete leaf Y, we add extra points beyond those of208

the skeleton to have enough points to ensure a realistic shape. We call N the total number of points209

in the point cloud P that we use as input for the network. We set N = Ñ + δÑ , where δ ∈ Z
+ is a210

parameter that scales the number of total points according to the number of points in the skeleton S.211

We sample the extra points Psampled ∈ R
δÑ×3 from a Gaussian mixture model (GMM) [37] fitted212

to the original skeleton points Pskeleton. A GMM is a probability distribution of density213
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(a) (b)

Figure 3: We show the point cloud P, i.e., the input of our generative function g. The skeleton
points are shown in black circles. The other points are sampled from the Gaussian Mixture Model
fitted on the skeleton. We show the view from the side (a) and the top (b).

p(psampled,u) =

J
∑

j=1

πj N
(

psampled,u;µj ,Σj

)

, (5)

where psampled,u ∈ R
3 is the position of the u−th sampled 3D point, J is the number of distributions214

in the mixture, πj is the probability of selecting the j − th distribution, µj ∈ R
3 is the mean215

andΣj ∈ R
3×3 is the covariance of the j−th distribution. When collecting the real point clouds Preal

216

we must know if they also include the petiole, when the petiole is present we set J = 2, otherwise217

we set J = 1. We need two modes when the petiole is present because we expect one Gaussian to218

capture the petiole and one to capture the leaf surface. We now call P the point cloud obtained by219

adding the points Psampled to those present in the skeleton point cloud S. We show the resulting220

point cloud P in Fig. 3 for a sugar beet leaf, where one Gaussian is fitted to the petiole and one to221

the leaf blade.222

The output of our 3D U-Net is an offset vector o ∈ R
3 for each point in the input point cloud P.223

We compute the positions of each u− th point p̂u in the output point cloud P̂ as p̂u = pu + ou.224

4.3 Loss Functions225

The objective of our generative function g in Eq. (3), is to generate leaf point clouds P̂ respecting226

the traits t defined by the skeletons S, and whose points distribution is close to the real-world one.227

To achieve this, we combine different loss functions in the training procedure. We divide the loss228

functions into two main groups. The first group consists of reconstruction loss functions defined on229

the real-world point cloud Preal
i from which we extract the skeleton Si and the output point cloud P̂i.230

The second group consists of loss functions based on the points distribution for all Preal
i ∈ Dreal.231

The first group of loss functions aims to produce a leaf point cloud P̂, which respects its skeleton S,232

looks like the original point cloud Preal from which S was extracted, and has a smooth surface. The233

8



second group of loss functions forces the output point cloud P̂ to have a similar point distribution234

with respect to the point distribution in the real leaf point clouds Preal. Our approach minimizes235

the total loss236

L = λ1Lskeleton + λ2Lchamfer + λ3Ledges + λ4Lsmooth + λ5 (LCMMD + LFID + LPR) , (6)

where we weight the different loss functions using λa, a ∈ {1, 2, 3, 4, 5}. The reconstruction loss237

functions are Lskeleton, Lchamfer, Ledges, and Lsmooth, while LCMMD, LFID, and LPR are distribution238

loss functions.239

Reconstruction Loss Functions. The reconstruction loss functions use the generated leaf240

point cloud P̂ and the real leaf point cloud Preal from which we extracted the skeleton S. Their241

main purpose is to let the network learn how to generate a leaf respecting the traits t defined by S.242

The first term Lskeleton forces the network to keep the skeleton points Pskeleton in their original243

positions, thus preserving the desired traits t. To keep the skeleton points fixed, we enforce that the244

offsets predicted for those points have all components equal to zero, resulting in the loss term245

Lskeleton =

Ñ
∑

i

| oi | 1[pi ∈ S], (7)

where 1[pi ∈ S] is an indicator function evaluating to 1 when the points pi belongs to S.246

The second term Lchamfer is the Chamfer distance. In the literature, this distance is used to247

evaluate the distance between two sets of points [26, 38]. We include it in our loss to enforce that248

the points of the generated point cloud P̂ are as close as possible to the points of the real-world249

point cloud Preal:250

Lchamfer =
∑

preal∈Preal

min
p̂∈P̂

∣

∣

∣

∣preal − p̂
∣

∣

∣

∣

2
+

∑

p̂∈P̂

min
p̂∈P̂

∣

∣

∣

∣preal − p̂
∣

∣

∣

∣

2
, (8)

where preal ∈ R
3 is a point belonging to the real-world leaf point cloud Preal. We compute the251

Chamfer loss in both directions, i.e., we compute the closest point in P̂ for each preal and the closest252

point in Preal for each p̂.253

The third term Ledges is a regularization loss to enforce that the distance between neighboring254

points in P̂ is close to a user-defined value l. This loss enforces that points are evenly distributed255

in space, penalizing areas that are too sparse or too dense. We compute a k-NN graph over the256

output point cloud P̂ defining a maximum distance dmax for two points to be connected, i.e., we257

define an edge eu,v ∈ E of length lu,v = ||p̂u − p̂v||2 between points p̂u and p̂v if p̂v ∈ NNk(p̂u),258

where NNk(p̂u) is the set of k neighbors with distance from p̂u smaller than dmax. We then compute259

the loss as260

Ledges =
1

N
∑

u |NNk(p̂u)|

N
∑

u=1

∑

v∈NNk(p̂u)

∣

∣lu,v − l
∣

∣ , (9)

where |NNk(p̂u)| is the cardinality of the nearest neighbors of point p̂u, and |lu,v − l| is the absolute261

distance of edge lu,v from l.262
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The last term Lsmooth is a regularization loss to enforce the generated leaf point cloud P̂ to have263

a smooth surface. This loss acts like a denoising operation and penalizes single points that are too264

far from their neighbors and that would lead to sharp changes of the leaf surface. We use the edges265

computed before via the k-NN graph to compute the Laplacian matrix L ∈ R
N×N as266

Lu,v =











−1 if u = v
1

|NNk(p̂u)|
if ∃eu,v ∈ E

0 otherwise

(10)

Then, we compute the Laplacian smoothing objective as Q = LP̂, where P̂ ∈ R
N×3 is a matrix267

where each row is a point p̂u ∈ P̂. We define the loss as268

Lsmooth =

N
∑

u=1

|Qu| , (11)

where Qu ∈ R
3 is the u− th row of Q.269

Distribution Loss Functions. The second group of loss functions enforces that the distribution270

of the points in our generated dataset Dours of size Dours, is as close as possible to the points271

distribution of the real-world dataset Dreal of size Dreal. We use three commonly used metrics for272

data generation and phrase them as losses. The first term LCMMD is the maximum mean discrepancy273

of the 3D CLIP embeddings [39] given by274

LCMMD =
1

Dours(Dours − 1)

Dours
∑

i=1

Dours
∑

j ̸=i

⟨vCLIP
r,i ,vCLIP

r,j ⟩+
1

Dreal(Dreal − 1)

Dreal
∑

i=1

Dreal
∑

j ̸=i

⟨vCLIP
f,i ,vCLIP

f,j ⟩

−
2

DoursDreal

Dours
∑

i=1

Dreal
∑

j=i

⟨vCLIP
r,i ,vCLIP

f,j ⟩,

(12)

where vCLIP
r,i and vCLIP

f,j are the CLIP embeddings of the i−th real-world point cloud and of the j−th275

generated point cloud. Jayasumana et al. [40] were the first to propose the use of CLIP embeddings,276

initially for the evaluation of generated images. Exploiting the work by Hegde et al. [39] who provide277

3D CLIP embeddings trained on point cloud-image-caption triplets, we compute the CMMD on point278

clouds.279

The second term LFID comes from the Fréchet inception distance (FID). As for the previous280

term, we first compute embeddings for all point clouds, both the real-world Dreal and the generated281

ones Dours. We can use the model by Hegde et al. [39] to obtain CLIP embeddings or any other282

neural network to extract embedding from the point clouds. Once we have the embeddings vr,i for283

all the real-world point clouds and vf,j for all the generated point clouds, we fit Gaussians N (µr,σr)284

and N (µf ,σf ) to the two embedding distribution. We compute the FID as285

LFID = ∥µr − µf∥2+tr
(

Σr +Σf − 2
√

ΣrΣf

)

, (13)
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where Σr and Σf are the covariance matrices of two distributions, and tr(·) is the trace operation286

over the matrix.287

The third term LPR comes from the precision and recall metrics. These metrics have been288

extended for evaluating generative approaches by Kynkäänniemi et al. [41]. We shortly explain289

how the metrics are computed and how we adapt them to use them as losses. As for the previous290

distribution loss functions, we need point cloud embeddings. We call Φr and Φf the sets of features291

extracted from the real and generated point clouds. For each set, we estimate a manifold in the292

feature space sampling a set of points and surrounding each with a hypersphere that reaches its293

k − th nearest neighbor. We then evaluate whether an embedding v is inside the volume estimated294

from the set of features Φ as295

b(v,Φ) =







1, if ∃v′∈Φ : ∥v − v′∥2 < ∥v′ −NNk(v
′,Φ)∥2

0, otherwise
(14)

where NNk(v
′,Φ) returns the k-th nearest embedding of v′ from Φ. We now compute the precision296

Pr and recall R as297

Pr =
1

|Φf |

∑

vf∈Φf

b(vf ,Φr) (15)

298

R =
1

|Φr|

∑

vr∈Φr

b(vr,Φf ). (16)

In contrast to the previous loss functions, which are distances, we cannot use the precision and299

recall as they are, since we aim to maximize them. Thus, we define the precision-recall loss as300

LPR = log10

(

1

Pr + ϵ

)

+ log10

(

1

R + ϵ

)

, (17)

where ϵ is a small value to ensure numerical stability. In the original paper [41] the authors noticed301

that the score is inaccurate when measuring the quality of a generated sample that falls into an area302

of the manifold where only a few real samples are present. Thus, they introduce the realism score303

Realism (vg,Φr) = max
vr

{

||vr −NNk(vr,Φr)||2
||vg − vr||2

}

, (18)

which is used to filter out elements in such sparse areas of the manifold. The higher the minimum304

realism score the more we are pruning our manifold Φr, thus yielding accurate and higher scores.305

Since the real-world data distribution does not change during training, we can easily pre-compute306

the target values for all the distribution loss functions LCMMD, LFID, andLPR, i.e., vr, N (µr,σr),307

and Φr.308

4.4 Generating New Leaves309

Our generative model g takes as input the desired leaf length and width. However, our network needs310

as input a point cloud P computed from a skeleton point cloud S, as explained in Sec. 4.2. Thus,311
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we need to define how to build a skeleton point cloud S without extracting it from a real-world leaf.312

As mentioned in Sec. 4.1, the skeleton consists of three parts: petiole, main axis, and lateral axis.313

We construct the skeleton in the 3D Cartesian frame, building the main axis along the x direction314

and the lateral axis along the y direction. The petiole is a line315

z(x) = αx, x ∈ [xmin, 0] , (19)

where α ∼ U
(

π
6 ,

π
3

)

and xmin ∼ U (−1,−0.25). Since we want a 3D point cloud, all these points still316

need a y coordinate, which we fix to 0. The petiole can be removed from the generative procedure317

when it’s known that the petiole is not present in the training data Dreal. We do not use the petiole318

for the maize leaves since the petiole is not present in the used real-world point clouds Preal. The319

central axis is defined as a hyperbolic tangent320

z(x) =
ex − e−x

ex + e−x
, x ∈ [0, 1] , (20)

where we clamp the hyperbolic tangent between x = 0, where the petiole starts, and x = 1. All321

points have y = 0. We then scale the axis to different sizes.322

We define the point where the central axis intersects the lateral axis as pcross = [xcross, 0, zcross]
T
,323

where xcross ∼ U(0.25, 0.75) and zcross is given by Eq. 20. We use a parabolic function,324

z(y) = a y2 + b y + c (21)

to represent the lateral axis, where all points have x = xcross. To compute the parabola coefficients325

a, b, and c, we need 3 points. One point is pcross, and two are the extremes on the right and left. We326

define them as327

pr = [xcross, 0.5, zcross + zr]
⊤

pl = [xcross,−0.5, zcross + zl]
⊤
,

(22)

where zr and zl are two distinct values sampled from U(−0.25, 0.25). It is important to note that the328

width of the leaf projected on the y axis is 1 and we can scale it to different sizes. The final skeleton329

is the collection of points sampled along the curves in Eq. (19), Eq. (20), and Eq. (21). We then330

scale this parametric skeleton by multiplying all x coordinates of the points for the length scaling331

factor sl, and all the y coordinates for the width scaling factor sw. The scaling factors are the only332

user-defined parameters that influence the length and width of the generated leaves. Thanks to the333

different randomly sampled parameters α, xmin, xcross, zr, and zl, we obtain a large variety of leaves334

whose lengths and widths are centered on the user desired dimensions.335

We compute the final length and width of the leaf using the formula for the computation of arc336

lengths. The width of leaf Lwidth is computed as337

Lwidth =

∫ sw

−sw

√

z′(y)2 + x′(y)2 dy =

∫ sw

−sw

z′(y) dy =

∫ sw

−sw

(2ay + b) dy, (23)
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where x′(y) = 0 because all points on the lateral axis have x = xcross and we compute z′(y) deriving338

equation Eq. 21. The length of the leaf Llength is computed as339

Llength =

∫ sl

x̂min

√

z′(x)2 + y′(x)2 dx =

∫ 0

x̂min

αdx+

∫ sl

0

(

1− tanh2(x)
)

dx, (24)

where x̂min is the resulting minimum value for x we got multiplying xmin for sl, y
′(x) = 0 because all340

points of the main axis have y = 0, and we derived Eq. 19 and Eq. 20 to sum the length of the petiole341

and the length of the leaf blade. We show examples of the skeletons built with our approach in the342

supplementary material. One can make the skeletons more complex using different functions, or343

polynomials of higher grade to represent the axes. However, the results of our generative procedure344

suggest that our skeletons capture the characteristics of the used crop species.345

5 Results and Discussion346

The main focus of this work is an approach to generate 3D leaf point clouds of known length and347

width. Using our data improves the performance of trait estimation approaches and enables a more348

fine-grained analysis of crop growth and productivity. We present our experiments to show the349

capabilities of our method and to support our key claims: (i) using our generated leaves Dours to350

tune trait estimation approaches perform better than using other generated leaf point clouds; and351

(ii) all generated leaves respect the leaf traits we condition on and have a high probability of being352

sampled from the real-world leaf distribution.353

5.1 Experimental Setup354

Datasets and Baselines: We use the BonnBeetClouds3D [42] dataset, computed via photogram-355

metric reconstruction and bundle adjustement, and Pheno4D [43] dataset, captured with a laser356

scanning system. Both datasets provide single-leaf point clouds. We evaluate our approach by357

comparing our generated leaf point clouds Dours to the leaves generated by three possible g func-358

tions in our problem formulation in Eq. (3). First, a set of leaves generated using the procedural359

agriculture simulation software Helios [31] exported by means of a simulated LiDAR sensor, from360

now on called DH. Second, we apply transformations specific to the agricultural domain from our361

previous work [44] to the leaves obtained from Helios to obtain a larger variety of leaves, that we362

call DHT where HT stands for “Helios + transforms”. Third, we train LiDiff [45] to generate leaves363

conditioned on the skeletons using diffusion, from now on denoted as DLiDiff. Lastly, we also use the364

real-world per-plot ground truth data Dreal to highlight the importance of per-leaf traits to improve365

the performance of the leaf trait estimation methods.366

Training Details and Hyperparameters: We train our network using the Adam opti-367

mizer [46] with learning rate 0.001. In our loss, we set the weights of the different components368

to λ0 = 1, λ1 = 0.1, λ2 = 0.1, λ3 = 10, λ4 = 0.01. These weights help preserve traits while369

producing realistic leaf point clouds. We use different scaling factors for the different plant species:370

sl ∼ U(0.02, 0.50) and sw ∼ U( sl4 , sl) for the sugar beets, sl ∼ U(0.15, 0.90) and sw ∼ U( sl
10 ,

sl
5 ) for371
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the maize and sl ∼ U(0.10, 0.50) and sw ∼ U( sl2 , sl) for the tomato leaves. We use J = 2 for sugar372

beets and tomato leaves, and J = 1 for maize leaves. We plan to make our code publicly available373

upon acceptance.374

Metrics: We evaluate the estimated traits by comparing the mean and the standard deviation375

estimated by all approaches when trained on the different generated data. Additionally, we compute376

the Fréchet inception distance (FID) [47], the CLIP Maximum Mean Discrepancy (CMMD) [40],377

and the F-score computed by the precision (Pr) and recall (R) [41] explained in Sec. 4.3 to estimate378

how close the distributions of the generated and real data are. We use the pre-trained networks from379

Mohammadi et al. [48] and Hedge et al. [39] to extract the embeddings v, both networks provide380

open-source code and pre-trained models. Embedding-based metrics, as the ones employed in our381

evaluation, are the standard approach to evaluate generative methods [41, 49–52]. These metrics382

provide a semantic and perceptually relevant comparison, allowing for distribution-level comparisons383

that would not be possible for distance metrics based on the raw points’ positions. To verify that we384

are not generating the same leaf when conditioned on one specific skeleton, we compute the mean385

and standard deviation of two different metric distances between multiple leaves P̂ generated from386

the same skeleton input S.387

5.2 Trait Estimation388

The first experiment evaluates how tuning off-the-shelf trait estimation approaches on Dours improves389

the performance compared to other datasets. We show that tuning on Dours provides better estimates390

in terms of mean and standard deviation without relying on costly manual annotations. We test the391

fine-tuned approaches on the validation set of BonnBeetClouds3D [42], which only provides mean392

and standard deviation per sub-areas – patches – of the field.393

We use three trait estimation approaches f : (1) the approach by Choudhury et al. [12] fits a394

polynomial to the skeleton of the leaf and then computes the leaf length via integration; (2) the395

approach by Huang et al. [13] uses the principal components to define the direction of the length and396

width of the leaf and then computes the longest shortest geodesic distance along those directions397

via A* [53]; (3) Coherent point drift [14] uses GMMs to find the best correspondences between two398

set of points. Coherent point drift needs a source point cloud to deform, i.e., a leaf point cloud399

template, for which we use the leaf template defined by Marks et al. [15]. As explained in Sec. 4.1,400

this template mesh already defines the points belonging to the main and lateral axes, allowing us to401

compute the length and width of the leaf after the deformation carried out by Coherent Point Drift.402

For DH, DHT, and Dours, we have per-leaf traits, while Dreal only provides per-patch averages.403

This introduces a systematic error since all leaves from the same plot will have the same ground404

truth. For DLiDiff [45], we use our skeletons of known traits, without changing the noise generation405

and training procedure. We point out that, for our skeletons, we also know the ground truth leaf406

angle. However, since this was not in any dataset ground truth measurements, we were not able to407

use it for evaluation purposes.408

In Fig. 4 (a), we show the results testing the approach by Choudhury et al. [12] on the validation409

patches of the BonnBeetClouds3D dataset. We see that the second patch is the one where tuning410
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(c) Myronenko et al. [14]

Figure 4: We show the leaf blade length and width estimated by the approaches for BonnBeet-
Clouds3D [42] after tuning them on the different datasets. Each bar plot is centered on its mean,
the size corresponds to its standard deviation, and we show the maximum and minimum estimated
values.
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over Dours performs worse. This suggests that our generated point clouds do not align well with411

the leaves in this patch, which is the one with the larger leaves. This could also explain why we412

are the only one underestimating the size of patch 4, where using DH and DHT results in smaller413

variances and better maximum and minimum estimates compared to the other patches. In general,414

the maximum and minimum estimates obtained tuning on Dours are better, even when other datasets415

provide a mean closer to the ground truth.416

The results of Huang et al. [13] shown in Fig. 4 (b) provide similar estimates across all the patches417

and datasets, suggesting an algorithmic limitation rather than dataset influence. The pipeline has418

few hyperparameters to remove outliers and define the path cost of the A* algorithm [53] used to419

compute the leaf blade length and width. We think that the PCA-based method struggles with420

the complex heart shape of the sugar beet leaf and with occlusions, misidentifying the main axis421

and, thus, leading to estimate errors. Failures to identify the main axis would also explain the large422

differences in maximum and minimum estimates. The differences in the results likely depend on the423

dataset’s resolution and sparsity, which would impact the outliers detection and the computation of424

the distances.425

We show in Fig. 4 (c) tuning Coherent point drift [14] on Dours provides means closer to the426

ground truth but with larger standard deviations. The second patch remains problematic, confirming427

the trend observed for the approach by Choudhury et al. [12]. While DH and DHT perform better428

on patch 2, the uniformity of their results suggests a potential overfitting or a failure to capture the429

data diversity. Tuning the approaches on Dreal yields diverse results but large standard deviations,430

especially for the blade width, likely because of the lack of per-leaf ground truths. Similarly, also431

using DLiDiff shows high standard deviations, likely because the generation procedure does not432

preserve the traits accurately. More details about the data generated with LiDiff can be found in433

the supplementary material.434

The results show that using accurate per-leaf traits, even when artificially generated, improves435

the estimation results on real-world leaves. Our approach enables precise trait estimation without436

manual labeling or expensive expert knowledge. This is crucial for breeders and agronomists assessing437

plant traits linked to crop growth and productivity. However, ambiguity in defining leaf width (e.g.,438

midsection vs. widest point) complicates evaluation. Mismatches in width definitions across datasets,439

generative models, and estimation methods introduce systematic errors, highlighting the need for440

standardization in trait measurement.441

5.3 Realistic Data Generation442

The second set of experiments assesses how closely our generated leaf point clouds match real-443

world distributions. We demonstrate that our approach generates leaf point clouds with features444

similar to real-world data, making them valuable for tuning trait estimation approaches to use in445

real-world scenarios. Additionally, our method generated diverse leaves while maintaining specified446

blade length and width, bridging the gap between simulated and real-world data. As detailed in447

Sec. 5.1, we evaluate the generated points clouds with the metrics explained in Sec. 4.3. They448

compare distributions of embeddings, which we extract using the two different pre-trained networks449
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Figure 5: Examples of sugar beet leaves generated by our approach with different leaf angles, stem
lengths, and blade lengths and widths. We show a side (blue rectangle) and a top view (purple
rectangle) of three plants generated using the same leaves with different orientations and positions.
We show zoomed in views of the first (green rectangle) and second plant (orange rectangle).

mentioned in Sec. 5.1.450

5.3.1 Leaf Distribution451

We use the validation set from BonnBeetClouds3D, from now on called SugarBeets dataset, and the452

unlabeled plants from Pheno4D as real-world target point clouds. We show examples of the leaves453

generated by our approach trained on SugarBeets in Fig. 5, where we use all the information we454

have thanks to the skeleton to also merge our generated leaves into complete plants. We can see that455

the network learned different leaf shapes that are not uniquely connected to the leaf dimensions.456

For example, the yellow and green leaves have a similar shape even if the green leaf is smaller. We457

can also modify the stem angle, giving the desired orientation to each leaf; this is clear for the458

orange leaf whose is almost vertical in the left plant and almost horizontal in the central plant.459

Looking at the light blue leaf, we can see that we are also able to rotate the leaf around the stem460

axis, thus changing the surface orientation. We compute all metrics for Dours, DH, DHT and DLiDiff.461

Since LiDiff requires conditioning on skeletons but does not provide a skeleton generation procedure,462

we use the skeletons of the training set to generate new leaves, potentially giving it an advantage463

over methods relying on domain expertise or procedurally generated skeletons. Tab. 1 shows the464

results of the CMMD, FID, and F-score. For the F-score, we use both feature extractors, i.e., the465

network by Mohammadi et al. [48] and by Hedge et al. [39], to isolate network-specific influences.466

Fitting a Gaussian on the CLIP embeddings of the real-world point clouds was failing and starting467
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Dataset Generated Data FID ↓ F-score ↑ F-score + CLIP ↑ CMMD ↓

SugarBeets

DH 312.84 0.01 0.01 169.71
DHT 14.01 0.36 0.01 28.45
DLiDiff 26.89 0.35 0.11 22.05
Dours,rec 108.73 0.03 0.17 20.46
Dours 13.71 0.21 0.20 19.53

Maize

DH 11.28 0.19 0.02 29.39
DHT 0.17 0.39 0.17 16.36
DLiDiff 1.05 0.22 0.09 65.14
Dours 0.12 0.55 0.36 11.51

Tomato

DH 7.89 0.01 0.06 28.26
DHT 5.29 0.02 0.06 24.16
DLiDiff 6.66 0.05 0.10 65.42
Dours 2.76 0.15 0.17 12.39

Table 1: Evaluation of the Fréchet inception distance (FID), F-score, and CLIP Maximum Mean
Discrepancy (CMMD) for the leaf point clouds generated by the different approaches compared to
the test sets. Our approach outperforms the others on most metrics across the different datasets.
Our results are highlighted using gray colored rows.

with non-default initializations provided inconsistent results, thus we do not include the FID metric468

with CLIP embeddings. Since the improved precision and recall metrics depend on the number of469

neighbors used to construct the real and generated data manifolds (Φr and Φf ), we evaluate the470

F-score across multiple values of k, specifically k ∈ {2, 4, 8, 16, 32, 48, 64, 96}. We then report the471

mean F-score over these values to provide a more stable and robust estimate.472

We see that applying our domain-specific transforms to DH improves all metrics across all473

datasets. The results are generally better on Pheno4D, likely because they provide leaves at differ-474

ent growth stages while the SugarBeets dataset was recorded over the same day. Overfitting to the475

exact growth stage could lead to a boost, explaining the results of LiDiff which uses the skeleton476

of the training point clouds. Our approach outperforms the others across most of the investigated477

scenarios, except for FID + CLIP and the F-score on the SugarBeets dataset, where the feature478

extractors yield conflicting results. For the SugarBeets dataset we also provide an ablation study479

on our approach, namely Dours,rec, where we keep everything the same but we train using only the480

reconstruction losses, without the distribution ones. We can see that using the distribution losses481

improves all metrics, especially the FID and the F-score that get 7 times better. This shows the482

contribution of our distribution loss functions and the importance of a distribution supervision while483

generating the leaf point clouds.484

Given the low F-score values in Tab. 1, we compute the realism score as in Eq. 18 and re-evaluate485

the generative approaches on the SugarBeets dataset, where the two feature extractors contradict486

each other. We noticed that the number of samples filtered out by the realism score was high,487

especially for low values of k. Tab. 2 shows the F-score filtering out elements with low realism488

and considering only results where more than half of the generated leaves were used. Most results489

improve while increasing the minimum realism score, but many approaches fail when the minimum490
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Realism Generated Data F-score ↑ F-score + CLIP ↑

0.0
DH 0.01 0.01
DHT 0.36 0.01
DLiDiff 0.35 0.11
Dours 0.21 0.20

0.5
DH 0.01 0.01
DHT 0.48 0.02
DLiDiff 0.33 0.11
Dours 0.22 0.23

1.0
DH 0.02 0.02
DHT 0.45 0.04
DLiDiff 0.64 0.11
Dours 0.29 0.55

1.5
DH - -
DHT 0.80 -
DLiDiff - -
Dours 0.29 0.90

Table 2: F-score computed for all the approaches using different values of realism to filter out the
outliers. When less than half of the samples were valid, we do not report any result (-). The more
samples we filter out, the higher the metrics. Our approach is the only one that always provides
enough samples in the dense area of the distribution.

accepted realism is too high. When realism exceeds 1.0, only our generated leaves consistently allow491

F-score computation with both models, indicating strong alignment with real-world distributions.492

This explains why tuning on our data enhances leaf trait estimation. However, the feature extractors493

still disagree, highlighting the need for a standardized feature extractor, as it exists in the image494

domain, or even a domain-specific feature extractor that better captures important features in the495

agricultural domain.496

5.3.2 Leaf Variety497

Our method generates leaf point clouds from skeletons, but we want to ensure diversity by generating498

different leaves given the same skeleton. This enhances the dataset variety without altering skeleton-499

building procedures or training multiple generative networks g. A diverse dataset is crucial to500

optimize trait estimation approaches avoiding overfitting to common samples. In this experiment,501

we input the same skeleton multiple times and compare the generated leaves by computing two502

distances. First, we use the Chamfer distance. Second, we compute the meshes from the leaf point503

clouds via ball pivoting [54] and measure the surface differences as the differences of the distances504

from the meshes to randomly sampled 3D points. In Fig. 6, we show a simplified 2D example of the505

point-to-mesh distance.506

In Tab. 3, we report the mean chamfer and point-to-mesh distances on 10 leaves generated with507

the same skeleton averaged over 10 runs. Since we cannot condition the Helios software on a skeleton,508

we report the results only for our approach and LiDiff. While the chamfer distances have similar509
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(a) (b)

(c) (d)

Figure 6: (a) and (b) are two leaves generated from the same skeleton. We show in (c) that when
using the Chamfer distance, the outliers in the blue circles are the only ones providing a meaningful
distance since most of the points are in the same area. In (d), we show our proposed point-to-mesh
distance, where we compute the difference between the distances from each gray point to the two
meshes.

Generated Data
Chamfer [mm] point-to-mesh [mm]
mean std mean std

DLiDiff 6.14 7.53 55.82 57.87
Dours 5.69 1.69 67.69 17.58

Table 3: Average mean and standard deviation for the chamfer and point-to-mesh distances, com-
puted over 10 trials on 10 leaves generated conditioning the network with the same skeleton.

means, LiDiff’s standard deviation is approx. 4.5 times higher, likely due to the weaker compliance510

to the skeleton. For the point-to-mesh distance, we see a larger difference in the mean, more than511

1 cm, and again the standard deviation of LiDiff is more than 3 times ours.512

Given our previously reported results, we think that our approach provides more precise per-leaf513

ground truths for tuning trait estimation methods. In contrast, LiDiff produces a wider variety514

of leaves, at the cost of higher leaf trait errors. Since LiDiff is a general-purpose approach for515

conditioned diffusion, adding specific losses could help the approach follow more closely the input516

skeleton and improve the results.517

6 Limitations and Future Work518

In this article, we tested our approach on different crop varieties, all exhibiting similar shape com-519

plexity. Our approach works also on more complex shapes, as compound leaves – leaves where the520

blade is divided into two or more leaflets, if enough data is provided. Since the network learns from521

20



real-world data, we can use the whole compound leaf as it is for the network to learn its shape.522

Nonetheless, structural complexity presents additional challenges, and some enhancements could523

improve the convergence speed and the overall performance. One improvement involves modifying524

the algorithm for building the skeleton. For example, we could combine multiple skeletons to capture525

the morphology of a compound leaf. Additionally, adjusting the number of Gaussians J in the GMM526

can improve the initial position of the points, leading to more efficient training. While these changes527

are not strictly required, they could reduce the need for training data and provide a better a more528

effective initialization. Another potential direction is to learn the shape of single leaflets instead of529

the entire compound leaf. This method wouldn’t require algorithmic changes, but it would require530

access to single leaflet point clouds – harder to obtain than single leaves. Furthermore, knowledge531

about the leaf structure would be needed to reconstruct complete leaves from the generated leaflets.532

As with any deep-learning method, our approach assumes that the distributions of the training533

and inference data is similar. When there is a mismatch – such as training on simple low-resolution534

skeletons and then performing inference on complex and high-resolution skeletons, or vice versa –535

the performance may degrade. However, this is the only assumption we make on the skeletons. As536

demonstrated in our experiments, our methods works with different skeletons extracted by different537

methods without requiring adaptation.538

For future work, we aim to evaluate our approach on more fine-grained tasks, such as generating539

distinct varieties within a single crop species. This would require large and variety-specific datasets,540

as the network must learn finer details. Currently, the primary limitation for this direction is the541

lack of available data. Moreover, existing evaluation metrics often rely on networks pre-trained542

on large datasets of common objects [55, 56], which may struggle to differentiate between single543

crop species varieties. A domain-specific foundation model tailored to plant data would yield more544

reliable evaluations. Another possible direction for future research is integrating our method with545

plant growth models. Since our network can be trained on leaves from specific growth stages, we can546

generate a large variety of leaves for each stage. Plant growth models could provide the expected547

leaf blade length and width based on environmental and nutritional input, allowing for more realistic548

simulations without the need for external user-defined inputs.549

7 Conclusions550

In this paper, we address the data bottleneck when working with 3D point clouds of leaves and pre-551

sented an approach that can generate realistic leaf point clouds with given traits, such as leaf length552

and width. Our method generates realistic leaves that can then be directly used to train or fine-tune553

off-the-shelf leaf trait estimation approaches. We have shown that optimizing the hyperparameters554

of different methods on our generated data achieves better results than using per-plot ground truth555

averages or leaves generated by other state-of-the-art approaches. Using our data allows for more556

precise and fine-grained estimation of traits that directly influence crop growth and productivity.557

Our results suggest that per-leaf ground truth data is essential for estimating leaf traits and that558

generated data can significantly boost the performance of existing methods. We run experiments559

on three different plant species, demonstrating the potential of learning from real-world data with-560
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out requiring labels. Even when real-world per-leaf ground truth measurements are available, our561

approach can generate leaves of different lengths and widths to fill potential gaps in the collected562

data. Thus, we can obtain unbiased datasets from different growth stages, reducing the efforts of563

the experts and the need for destructive measurements.564
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S .1 Problem Decomposition10

The main problem we aim to solve with our approach is the lack of accurate leaf trait annotations11

needed to optimize trait estimation methods. Our solution is to generate synthetic leaves, for12

which we know the accurate traits. Such generated data can be used to tune the trait estimation13

approaches, which can then be deployed on real-world leaves, obtaining more accurate results. We14

provide an overview of how we decompose the problem of generating the data for traits estimation15

approaches in Fig. S.1. Firstly, we separate the generation from the trait estimation, which are16

depicted in the upper and lower purple blocks. Each purple block has a blue block inside, which17

corresponds to the pure inference pipeline that is run after the block has already been optimized.18

When we focus on the upper block, i.e., the block about the generative method, we see that19

at inference time our input is a vector t of desired traits. We then build a skeleton point cloud S20

reflecting the desired input traits. In our article, we explain how we augment the skeleton point21

cloud to obtain the input for our network. However, considering the augmentation as part of our22

generative approach, we can use the point cloud skeleton S as the input of the generative approach g,23

depicted in green. The output of the generative approach is a point cloud P̂. To obtain as output a24

realistic leaf point cloud that respects the input traits, the generative approach must be optimized.25

Outside the blue block, we can optimize the generative approach by minimizing the error between26

the generated leaf point cloud and the real-world point clouds. We explain each component of our27

loss function in Sec. 4.3 of the article.28

In the lower block, i.e., the block about the trait estimation method, we see that the trait29

estimation approach f , depicted in yellow, only takes as input a generated point cloud P̂. In the30
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Figure S.1: Outline of the training and inference procedure for generating a leaf point clouds P̂i,

with given traits ti (top), and for estimating leaf traits t̂i for a given point cloud P̂i (bottom). We
highlight the generative approach g in green and the trait estimation approach f in yellow. The
training procedure is colored in purple, while the inference is in blue.

article, we cover how the different off-the-shelf estimation approaches use the raw point cloud to31

estimate the leaf blade length and width. The output of the approach f is, thus, a set of traits t̂32

estimated for the current point cloud in input. As for the generative method, to obtain a good trait33

estimation, the parameters of the estimation approach f must be optimized. Since the output is34

the set of traits t̂, we need to compute the error between the estimated traits and the real traits t35

associated with the input point cloud. To optimize the trait estimation methods, we compute the36

error as the absolute distance between the estimated and ground truth trait.37

S .2 Skeletons Examples38

One crucial part of our approach is the ability to produce different types of skeletons to guide the39

generative approach into creating a large variety of realistic leaves. We do not only consider the two40

traits we use for the evaluation, i.e., the leaf blade length and width, but also other characteristics41

to increase the differences between our generated leaves. We vary the length of the stem, the leaf42

angle between the stem and the blade, the position at which the main and lateral axes intersect,43

and the orientation and the skewness of the parabola representing the lateral axis.44

We show two exemplary skeletons in Fig. S.2. We can see that the skeletons have different stem45

lengths, leaf angles, and intersection points of the two axes; this is mostly clear from the side view46

of the skeletons [(a) and (c)]. The two skeletons also present a lateral axis with opposite orientation.47

In the views from the petiole [(b) and (d)], we can see that the lateral axes are skewed, not being48

perfectly symmetrical with respect to the main axis.49

We point out that our approach generates different leaves also when starting from the exact50

2



(a) (b) (c) (d)

Figure S.2: Generated skeletons seen from the side [(a) and (c)] and from the petiole [(b) and (d)].
The axis angle, the petiole length, and the extremities of the lateral axis vary.

same skeleton, as explained in Sec. 5.3.2. This ulteriorly increases the number of possible leaves we51

generate, allowing our generated data to cover more and more of the distribution of the real-world52

leaves’ shapes and sizes.53

S .3 Failure Cases of Diffusion54

The main point of our approach is to generate realistic point clouds of known leaf length and width.55

The realistic part is important to avoid a wide gap between the dataset and the real-world leaves,56

on which we want to apply the trait estimation approaches. Knowing the accurate leaf length and57

width is essential to optimize the trait estimation approaches and obtain parameters that work well58

on real-world leaves.59

Here, we provide some qualitative examples of the dataset generated by LiDiff (diffusion-based60

baseline) and explain the main drawback of using this dataset to tune the trait estimation methods.61

We show in Fig. S.3 two exemplary leaves generated by LiDiff. We see that the leaves look realistic,62

qualitatively resembling leaves. However, the leaves generated by LiDiff do not accurately follow63

the skeletons, depicted as black dots, representing our desired input traits. In Fig. S.3 (a), the leaf64

is shorter than expected, leaving one skeleton point outside of the leaf blade, thus providing an65

incorrect leaf length. In Fig. S.3 (b), we see the opposite problem; the last skeleton point is actually66

inside the leaf blade that overshoots the expected leaf length.67

This problem is hard to address because it is not systematic, i.e., we do not always have shorter68

or always longer leaves. In that case, we could estimate the systematic error and use it to correct the69

ground truth measures associated with the generated leaves. However, since this is not the case, we70

are left with inaccurate leaf traits. Using inaccurate traits during the optimization leads to the same71

problem of using the ground truth “per plot” measures. This is why, in Sec. 5.2 of the article, the72

results of the trait estimation approaches tuned on the data generated by LiDiff have large standard73

deviations and larger errors in the means of the estimated traits.74

S .4 Dataset Images75

To better understand the differences between the leaves of the different crop species we used in the76
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(a) (b)

Figure S.3: Two leaves generated by LiDiff, where we show in black dots the skeleton used for the
conditioning and in green the generated point clouds. The point clouds have the appearance of
leaves, but do not respect the skeleton traits. We point out the errors in red circles.

article, we include images from all three crop species. We show in Fig. S.4 images of sugar beets plants77

from BonnBeetClouds3D [marks2024iros] [(a) – (f)], tomato plants from Pheno4D [schunck2021plosone]78

[(i), (j), and (n) –(p)], and maize plants from Pheno4D [schunck2021plosone] [(g), (h), and (k)–79

(m)]. We used the labels of the leaf instances to assign a different color to each leaf for all the80

plants. For the tomato and maize plants, we show one plant from the first date [(g)–(j)] and the81

same plant from the last date [(k)–(p)]. We can see that leaves at the early stages are more similar,82

but they grow into very different shapes and structures in the later growth stages. For the sugar83

beets, we do not have access to earlier growth stages, so we present two distinct plants from the84

dataset. However, sugar beets are dicotyledonous plants, thus resembling tomato plants in the early85

growth stages [(g) and (h)]. Since BonnBeetClouds3D [marks2024iros] was captured in the field86

and not in a controlled environment, we can see that the bottom part of the plant is occluded and not87

entirely present in the point cloud, which increases the challenge in estimating the correct traits.88
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Figure S.4: Exemplary plants from the three datasets used in the article. (a) – (f) are from BonnBeet-
Clouds3D [marks2024iros], (g), (h), and (k)–(m) are maize plants, while (i), (j), and (n) –(p) are
tomato plants from Pheno4D [schunck2021plosone]. For Pheno4D we show the same plants at
the first date (g)–(j) and at the last date (k)–(p) of data acquisition. For every plant, one different
color is assigned to a unique leaf.
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