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Abstract— Although most robots use probabilistic algorithms
to solve state estimation problems, path planning is often per-
formed without considering the uncertainty about the robot’s
position. Uncertainty, however, matters in planning, but con-
sidering it often leads to computationally expensive algorithms.
In this paper, we investigate the problem of path planning
considering the uncertainty in the robot’s belief about the
world, in its perceptions and in its action execution. We propose
the use of an uncertainty-augmented Markov Decision Process
to approximate the underlying Partially Observable Markov
Decision Process, and we employ a localization prior to estimate
how the belief about the robot’s position propagates through the
environment. This yields to a planning approach that generates
navigation policies able to make decisions according to the
degree of uncertainty while being computationally tractable.
We implemented our approach and thoroughly evaluated it
on different navigation problems. Our experiments suggest
that we are able to compute policies that are more effective
than approaches that ignore the uncertainty, and that also
outperform policies that always take the safest actions.

I. INTRODUCTION

Whereas robots often use probabilistic algorithms for
localization or mapping, most planning systems compute
paths assuming that the robot’s position is known. Ignoring
position uncertainty during planning may be acceptable if
the robot is precisely localized, but it can lead to sub-optimal
navigation decisions if the uncertainty is large. Consider for
example the situation depicted in Fig. 1. The belief about the
robot’s position while following the blue path is represented
by the black shaded area (the darker, the more likely). This
belief indicates that the robot could be in the proximity of
intersection A or B. The localization system is not able
to disambiguate these intersections as they present similar
structure (see right side of Fig. 1). Ignoring the position
uncertainty, we would assume the robot to be at the most
likely intersection, that is B. Thus, the robot should turn to
the right to reach the goal (dotted orange path). However, if
the true position of the robot is A (less likely, but possible),
turning right would lead it to a detour (dash dotted red path).

In this paper, we investigate the problem of path planning
under uncertainty. Uncertainty-aware plans reduce the risk
to make wrong turns when the position uncertainty is large.
For example, in Fig. 1, the robot could navigate towards
intersection C, which has distinctive surrounding and, thus,
where the robot is expected to localize accurately. There, it
can safely turn towards the goal reducing the risk to go for
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Fig. 1: Robot navigation along the blue path with large position uncertainty.
The black shaded area is the belief about robot’s position (the darker, the
more likely). A,B,C are the road intersections (in detail on the right side).
The paths from each intersection are colored respectively in red, orange and
green. The black arrows indicate the roads’ directions.

long detours (green). A general formalization for this type of
problem is the Partially Observable Markov Decision Process
(POMDP). POMDPs, however, become quickly intractable
for real-world applications. In this work, we investigate
an approximation that is able to consider the localization
uncertainty, while being computationally efficient.

The main contribution of this paper is a novel approach
to take a step forward towards planning routes on road
networks considering the uncertainty about robot’s position
and action execution. Our approach relies on the Augmented
Markov Decision Process (A-MDP) [24], which approxi-
mates a POMDP by modeling the uncertainty as part of the
state. We employ a localization prior to estimate how the
uncertainty propagates along the road network. The resulting
policy minimizes the expected travel time while reducing the
number of mistakes that the robot makes during navigation
with large position uncertainty. Considering explicitly the
robot’s uncertainty, our planning approach, first, is able to
select different actions according to the degree of uncertainty;
second, in complex situations, it leads to plans that are on
average shorter than a shortest path policy operating under
uncertainty but ignoring it.

II. RELATED WORK

Path planning in urban environments has received a
substantial attention in the robotics community. Several
urban navigation robots such as Obelix [18] or the
Autonomous City Explorer [19] use A∗ on topo-metric



(a) OSM map. (b) Traversability grid map X . (c) Road graph G. (d) Localizability map Z .

Fig. 2: Environment representation X ,G and localizability map Z extracted from OpenStreetMaps (a). In (b), the traversable roads are in white, blue refers
to non-traversable areas, and buildings are in dark blue. In (c), the orange arrows are the roads E and the red dots are their intersections V . In (d), the
darker the pixels along the roads, the smaller the localizability covariance.

maps [16] to navigate. Publicly available map services, such
as OpenStreetMap, offer free topo-metric maps of most cities
that have been used in various robotic systems for path
planning, localization, and mapping [9], [11], [27]. We also
use these maps in this work.

The Markov Decision Process, or MDP, allows for op-
timally solving planning problems in which state is fully
observable but the actions are noisy. There are many widely
studied algorithms to solve MDPs such as policy iteration.
If the state is not observable, the problem turns into a
Partially Observable MDP, or POMDP. The computational
complexity of POMDPs is often too high to provide useful
results for real-world problems [21]. Some approaches such
as POMCP [25] or DESPOT [26] use sampling methods to
locally solve POMDPs. These approaches require significant
resources and planning is limited to short horizons. Roy et
al. [24] proposed the Augmented Markov Decision Process
(A-MDP) to approximate a POMDP. A-MDPs formalize
POMDPs as MDPs with an augmented state representation
including the uncertainty. Hornung et al. [12] use A-MDPs
to plan velocity commands for a mobile robot minimizing
the motion blur of its camera, whereas Kawano [15] use
A-MDPs to control under-actuated blimps under the effects
of wind disturbance. In this paper, we use A-MDPs to plan
routes on road networks taking the uncertainty about robot’s
position into account.

Approaches that incorporate uncertainty into the planning
process are usually referred to as planning in belief space.
The belief roadmap [23] is a variant of a probabilistic
roadmap algorithm that plans in belief space for linear Gaus-
sian systems. Platt et al. [22] assume maximum likelihood
observations and generate policies using linear quadratic
regulation. The LQG-MP [2] combines an LQG controller
with a Kalman filter to estimate the robot’s state along paths
and so selects the best candidate path. These approaches
compute a path offline without considering the sensor or
process noise during the execution. FIRM [1] generalizes
probabilistic roadmaps over the belief space and assigns
a unique belief to each node taking all possible future
observations into account. However, FIRM does not account
for reaching a node with a different belief. In contrast, our
approach generates offline a policy that deals with different
degrees of uncertainty, and selects online the optimal action
given the current robot’s belief.

Some approaches integrate planning under uncertainty into
the SLAM framework. For example, Chaves et al. [7] plan
revisit paths for loop-closure, whereas Fermin-Leon et al. [8]
plan for re-localization in the Graph SLAM representation.

Other works such as Candido et al. [6], Indelman et
al. [14] and Van Den Berg et al. [3] approach planning in
belief space in the continuous domain. These approaches are
computationally very expensive and, thus, not suited for city-
scale domains. We consider a discrete space representation
and use a compact representation of the robot’s belief similar
to Bopardikar et al. [5] to tackle larger environments and,
thus, to take a step towards real world applications.

III. PLANNING AND LOCALIZATION IN ROAD NETWORKS

Typically, localization and planning for robot navigation
rely on a map of the environment for estimating the position
of the robot and for computing routes to the desired locations.

A. Metric-Topological Maps

Several probabilistic approaches for robot localization rely
on occupancy grid maps, whereas topology graphs are an
effective representation for planning. We combine these two
representations using a metric-topological map, similar to
the hierarchical maps [16]. We define our environment rep-
resentation by extracting information about buildings, roads
and their directions from publicly available map services
such as OpenStreetMap (OSM), see for example Fig. 2a.
We store this data in a 2D grid map X in which each cell
contains information about its traversability (Fig. 2b). Our
localization system uses X to estimate the position of the
robot. In addition to that, we consider a more abstracted
representation of the environment for planning routes. We
define a topological graph G = (V,E) defined over the
discretized metric space X in which the vertexes V ⊂ X are
the road intersections and the oriented edges E are the roads
between them (Fig. 2c). Therefore, an edge of G corresponds
to a sequences of traversable cells in X .

B. Localization System

We consider a mobile robot equipped with a 360-degree
range sensor that uses a Markov localization system [10] to
localize in X . Markov localization uses the scans and the
odometry to estimate the robot’s position using a discrete
Bayes filter. The belief about the robot’s position is repre-
sented by a probability distribution in form of a histogram



over all cells of X , without requiring probabilities to be
restricted to any particular class of distributions.

C. Localizability Map

Given the buildings’ footprints from OSM data and the
sensor model of the laser range finder, we can estimate
in advance of how scans fired at a given location affect
the localization. We compute this prior using the method
proposed by Vysotska and Stachniss [27]. It simulates at
each location a virtual scan by ray-casting the map. Then,
it translates/rotates the virtual sensor and estimates the error
between the scan and the map. Considering the decay in
the observation likelihood, it computes a covariance matrix
that estimates how well the scan matches the map under
position uncertainty. At locations where the surrounding
environment has a distinctive geometry, the covariance is
small, whereas it is large if the surrounding is not informative
or ambiguous. We compute this prior for each traversable cell
in X and we refer to this as the localizability map Z , see
for example Fig. 2d.

D. MDP-based Planning Ignoring Position Uncertainty

Given our representation of the environment G, we can for-
malize the problem of planning a route as a Markov Decision
Process in which the states are the road intersections V and
the actions correspond to the roads E. The transition function
allows for transitions between intersections connected by a
road, and the rewards correspond to the length of the roads.
Solving this MDP generates a navigation policy that leads the
robot to the goal along the shortest path. However, the MDP
assumes that the exact robot’s position is always known, and
this is often not the case in practice. Therefore, following a
MDP policy in situations with large position uncertainty may
lead the robot to take the wrong way and go for a long detour.

IV. OUR APPROACH TO PLANNING IN ROAD NETWORKS
CONSIDERING LOCALIZATION UNCERTAINTY

We propose to improve decision making at intersections
by integrating into the planning process the uncertainty about
the robot’s position provided by the localization system. A
common formulation for this problem is a POMDP. However,
POMDPs are typically hard to solve. We approximate a
POMDP by designing an Augmented MDP (A-MDP) [24]
for planning routes on road networks in which we augment
the conventional MDP state with the robot’s position un-
certainty. Due to the augmented state representation, the
transition function and the reward function become more
complex. But, in their final formulation, A-MDPs have
an analogous representation as MDPs, except for a larger
number of states. Therefore, A-MDPs can be solved by using
the same algorithms as for MDPs.

A. Augmented States

We define the state space of our A-MDP by augmenting
the state of the MDP formulation in Sec. III-D with a statistic
representing the robot’s position uncertainty. Different statis-
tics can be used to represent the uncertainty but, in general,

the more compact a representation, the more efficient is the
planner. Although our localization system can potentially
generate any kind of belief, we assume that during planning
we can approximate the belief by a Gaussian distribution
with isotropic covariance, and we use the corresponding
variance to represent the uncertainty. This representation
augments the state space by only one dimension and, thus,
avoids that planning explodes in complexity.

We define the set of augmented states S as:

S = {s = (v, σ2) | v ∈ V, σ2 ∈W}, (1)

where V are the road intersections, and W is a set of
variances that discretizes the possible degrees of uncer-
tainty. Each augmented state s corresponds to the normal
distribution N (v, Σ), with Σ =

[
σ2 0
0 σ2

]
. We refer to s

defined over the discrete space X as the probability mass
function p(x | N (v,Σ)) or, equivalently, p(x | s).

B. Actions

In our A-MDP, actions correspond to take a direction at a
road intersection, analogously as in the MDP. We assume that
every intersection is a junction of up to 4 roads corresponding
to the cardinal directions. Thus, A = {↑, ↓,←,→} is the set
of the actions. If needed, more actions can be added trivially.

C. Transition Function Considering Position Uncertainty

The A-MDP transition function T (s′ | s, a) takes as input
an augmented state s ∈ S and an action a ∈ A, and maps it to
a probability distribution of possible A-MDP end states s′ ∈
S. As our A-MDP states represent probability distributions,
the transition function is more complex to define compared
to standard MDPs. We define T in three steps:
1) We compute the robot’s position posterior starting at an

intersection, p(x | v, a), without considering any uncer-
tainty in the input position, for all v ∈ V and a ∈ A.

2) We compute the posterior starting at a state s, p(x | s, a),
by integrating all of the possible posteriors starting at
intersections according to the belief corresponding to s.

3) We define the state transition, T (s′ | s, a), by mapping the
posterior starting at s to our A-MDP state representation.

Posterior starting at an intersection: For computing the
posterior probability p(x | v, a) over X , we simulate the
robot taking action a at intersection v and moving along
the corresponding road according to:

xt = g(xt−1, ut) + εt, with εt ∼ N (0, Mt), (2)

where g is a linearizable function, ut is the one-step control
corresponding to action a and Mt is the motion noise. We
assume that the belief about the position of the robot while
navigating along the road can be approximated by a Gaussian
distribution, and we estimate it using the prediction step of
the Extended Kalman Filter (EKF):

p(x̂t | xt−1, ut) = N (µ̂t, Σ̂t), (3)

where µ̂t = g(µt−1, ut), Σ̂t = GtΣt−1G
>
t + Mt, and Gt

is the Jacobian of g. As we simulate robot navigation, we



Fig. 3: Uncertainty propagation (blue circles) at intersections vj , vk, vl ∈
V (red dots) for taking action a =→ at vi.

do not have measurements to correct the EKF prediction.
Instead, we compute the localizability map Z and use it to
estimate how position uncertainty propagates along the road
by combining the covariance from the EKF prediction Σ̂t
with the localizability covariance Σµ̂t,Z at µ̂t:

p(xt | xt−1, ut,Z) = N (µt, Σt). (4)

where µt = µ̂t, and Σt = (Σ̂−1t + Σ−1µ̂t,Z)−1. We use
recursively this procedure to compute the belief about robot’s
position along each cell of the road. For example, in the topo-
metric map depicted in Fig. 3, we estimate the posterior be-
liefs about robot’s position of navigating from intersection vi
to vj as the Gaussian distribution N (vj ,Σj|ia) computed by
using recursively Eq. (3) and Eq. (4) along the cells of X
belonging to the corresponding road.

While navigating with large position uncertainty, we ex-
plicitly model the possibility that the robot misses an in-
tersection and ends up in a successive one. For example,
in Fig. 3, while navigating rightwards from vi, the robot
could miss vj and end up in vk or vl. We compute the
probability that the robot detects vj such that the smaller
the uncertainty Σj|ia, the higher the probability to detect it:

pdetect(vj | vi, a) = p(x = vj | N (vj ,Σj|ia)). (5)

We compute the posterior p(x | v, a) of taking action a at
intersection v by considering the probability to end up in
each of the reachable intersections:

p(x | v, a) =
∑|J|

j=1
N (vj ,Σj|ia) pdetect(vj | v, a)

·
∏j−1

k=1
(1− pdetect(vk | v, a)), (6)

where J is the ordered set of subsequent intersections that
the robot may reach by missing a previous intersection. The
probability that the robot ends up in each of the J intersec-
tions decays according to the probability that a previous one
has been detected. The residual probability is assigned to the
last intersection. If no road exists for executing a at v, we
set the posterior to be equal to the input intersection v.

Posterior starting at a state: We consider now that the
input position of the robot is represented by the belief corre-
sponding to the A-MDP state s ∈ S. As the input position is
described by a probability distribution, the posterior of taking
an action should represent all of the possible transitions that
might occur. Therefore, we compute the posterior probability
of the robot’s position p(x | s, a) by weighting all of the
possible posteriors starting at the intersections according to s:

p(x | s, a) = η
∑|V |

i=1
p(x = vi | s) p(x | vi, a). (7)

where η is a normalization factor.
State Transitions: We define the transition probability of

taking an action a from an A-MDP state s to another s′

by computing a correspondence between the posterior belief
about robot’s position starting at s, p(x | s, a), and the belief
represented by s′. To this end, we use the Bhattacharyya
distance DB [4] which measures the amount of overlap
between between two distributions over the same domain.
We prefer the Bhattacharyya distance to the Kullback-Leibler
divergence [17] as it is a symmetric measure of the similarity
between distributions. We define the state transition T (s′ |
s, a) according to the DB over X between the posterior p(x |
s, a) and s′, that we transform into the probability space
using the softmax function:

T (s′ | s, a) = η e−DB(p(x|s,a), p(x|s′)), (8)

where η is a normalization factor.

D. Reward Function Considering Transitions Uncertainty

We define the A-MDP reward function such that the
resulting policy makes uncertainty-aware decisions that lead
the robot to the goal minimizing in average the travel time.
Equivalently, our reward function maximizes the negative
time. Similarly as for the transition function, we first compute
the rewards for navigating between intersections r that does
not consider any uncertainty in the input and end position,
and then we combine the rewards between the intersections
to define the A-MDP reward function R.

We define the reward r(vi, a, vj) of taking action a ∈ A
from vi to vj , with vi, vj ∈ V , similarly as in the MDP:

r(vi, a, vj) = −`(vi, a, vj), (9)

where ` indicates the length of the road and we assume that
the robot moves with unitary velocity. If vk is not reachable
from vi through a, we assign to r a constant penalty:

r(vi, a, vk) = −rnoroad, with rnoroad � 0. (10)

For each intersection vi that brings the robot to the
goal vgoal ∈ V through action a, we assign a positive reward:

r(vi, a, vgoal) = rgoal − `(vi, a, vgoal), rgoal ≥ 0. (11)

We compute the reward R(s′, a, s) of taking action a from
an A-MDP state s to another one s′, with s, s′ ∈ S, so that
it reflects the uncertainty of the transitions. To this end, we
combine the rewards between intersections r according to the
beliefs corresponding to the input and end states, s and s′:

R(s′, a, s) =
∑|V |

i=1
p(x = vi | s)

·
∑|V |

j=1
p(x = vj | s′) r(vi, a, vj).

(12)

E. Solving the A-MDP

The A-MDP formulation allows for computing the optimal
policy by using the same tools as for MDPs. We solve
our A-MPD by using the policy iteration algorithm [13].
Policy iteration presents a polynomial bound in the number
of states and actions for solving MDPs with fixed discounted



rewards [20], but in practice it is often much more efficient.
Solving A-MDPs has the same complexity as MDPs but A-
MDPs require a larger number of states, |S| = |V | · |W |. On
the contrary, POMDPs are PSPACE-complete [21]. Thus, A-
MDPs are practically and theoretically more efficient than
POMDPs.

F. Navigation Following an A-MDP Policy

Solving the A-MDP defined above, we obtain a policy π∗

that, given the belief about robot’s position, selects the
optimal action to execute. During navigation, the localization
system compute continuously an estimate bel(x) over X
about the robot’s position as described in Sec. III-B. As the
robot reaches an intersection, we compute the A-MDP state
that presents the minimum distance to bel(x):

sbel = argmin
s∈S

DB(bel(x), s). (13)

and execute the corresponding action a∗ = π∗(sbel).

V. EXPERIMENTAL EVALUATION

The main focus of this work is a planning approach for
robot navigation on road networks that explicitly takes the
robot’s position uncertainty into account. Our experiments
shows that our planner makes different effective navigation
decisions depending on the position uncertainty, the geome-
try of the environment, and the goal location. We furthermore
provide comparisons to two baseline approaches.

A. Experimental Setup and Baseline

All experiments presented here are conducted in a simu-
lated environment that uses a grid map containing buildings
and road information extracted from OSM. The robot navi-
gates along the roads and uses the buildings to simulate laser
range observations as well as to compute the localizability
map as described in Sec. III-C. The scans and the odometry
are affected by noise. The robot localization system imple-
ments Markov localization as described in Sec. III-B. The
navigation actions at the intersections are non-deterministic,
and the probability of missing an intersection is proportional
to the variance of the belief about the robot’s position.

For comparisons, we consider a shortest path policy sim-
ilar to the one described in Sec. III-D that assumes the
robot to be located at the most likely position given the
belief provided by the localization system. We compare our
approach also against a safest decision policy that uses the
localizability information for selecting always the actions
that reduce the position uncertainty.

B. Situation-Aware Action Selection

The first experiment (Exp. 1) is designed to show that
our approach reacts appropriately according to the situation
and the position uncertainty. We consider the environment
depicted in Fig. 4 and assume that the robot goes for a
long detour if it navigates towards O,M or N. According to
the localizability map Z , the robot expects to localize well
along some roads such as JK,KC, but finds little structure
to localize in others such as AB,BC that cause a growth

Fig. 4: Environment of Exp. 1. The intersections are the red dots denoted
by letters, the roads are the orange arrows, and the buildings’ footprints are
in blue. The localizability Z along roads is colored such that the darker,
the smaller the covariance.
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Fig. 5: Avg. travel time of Exp. 1 to the goal F (left) and G (right).

in the position uncertainty. Given the initial belief that the
robot is at A, B, I, or J (green circle), we sample the initial
true position with uniform probability, and consider two
navigation tasks to show that our approach is able to adapt
the action selection depending on the planning problem.

First, we set F as the goal location. The shortest path
policy leads the robot rightwards to reach the goal fast,
whereas the safest path policy seeks to go through JK where
the robot is expected to localize better. The policy generated
by our approach follows a similar strategy as the shortest
path one. In fact, although the robot cannot localize perfectly
along AE, it is expected to relocalize along EF and, thus,
to reach safely the goal even by following a greedy plan.
Fig. 5 (left) shows the average travel time of the three
policies. Our policy presents the same performances as the
shortest path, outperforming the safest path policy.

The situation changes if we set G as the goal. The safest
path policy seeks again to go through JK to reduce the
uncertainty and take the correct turn at D. Whereas, the
shortest path policy leads the robot rightwards to quickly
reach D and make the turn to the goal. However, navigating
along AD, the uncertainty grows and so the probability that
the robot takes the wrong turn or misses intersection D. This
leads to an overall suboptimal performance, see Fig. 5 (right).
As reaching D with large uncertainty may cause the robot to
make mistakes that lead it to long detours, our planner seeks
to reduce the uncertainty before making the turn. Thus, in
this case, it behaves similarly to the safest path policy. This
experiment showcases the ability of our planner to adapt to
the situation and uncertainty by picking the best of both the
shortest and the safest path worlds.

C. Uncertainty-Aware Action Selection
The second experiment (Exp. 2) illustrates the ability of

our approach to deal with different degrees of uncertainty. To
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Fig. 6: Avg. travel time of Exp. 2 (Fig. 7) to reach the goal G starting from A, B, C respectively with different levels of uncertainty σ.

Fig. 7: Environment of Exp. 2: Same notation as in Fig. 4.

this end, we consider the environment depicted in Fig. 7. The
robot starts from A, B, or C with different initial position
uncertainties and navigates to the goal G.

Trivially, the shortest path to the goal is to navigate
upwards and make a right turn to the goal at E. If the robot
is accurately localized, following this path leads it fast and
safely to the goal. However, as there is little structure to
localize along AE, the position uncertainty upon reaching E
grows. Reaching E with large uncertainty increases the
probability to mismatch the intersections D and E. If the
robot expects to be at E whereas it is actually at D, the
shortest path policy makes the robot turn right leading it to
a long detour through L. Large uncertainty may also cause
the robot to miss E or F leading also to detours.

The safest path policy seeks to make safe turns at inter-
sections in which the robot is expected to localize well, for
example, at the end of the roads or where the localizability is
good. Therefore, to reach the goal, it leads the robot upwards
to H, and makes a safe right turn towards I. From I, it
moves the robot rightwards to J, turns to K and, finally,
to the goal G. However, the safest path policy always makes
safe decisions ignoring the position uncertainty of the robot
while executing the plan. Therefore, it follows an overly
conservative (and often longer) path also in the situations
in which the uncertainty is small.

Our approach makes decisions by explicitly considering
the whole belief provided by the localization system. De-
pending on the degree of uncertainty, it selects the action that
leads the robot to the goal trading off safety and travel time.
The performance of the three policies in Exp. 2 are shown
in Fig. 6. We considered 18 different levels of uncertainty

with σ ranging from 1 to 50 meters, and performed 200
runs for each initial location and uncertainty. The safest
path policy presents in average similar travel time when
varying the initial uncertainty. The shortest path policy shows
short travel time when the uncertainty is small but, when
the uncertainty grows, it takes in average longer than the
safest path to reach the goal. Our approach follows a strategy
similar to the shortest path when the uncertainty is small
and thus mistakes are unlikely. However, in tricky situations
when the uncertainty becomes large, our approach makes
decisions similarly to the safest path, thereby avoiding long
detours. Therefore, our approach is able to take the appropri-
ate navigation action according to the degree of uncertainty,
overall outperforming the shortest and safest path policies.

D. Discussion

Even though our approach for planning routes considering
position uncertainty is more efficient than a POMDP, the
complexity to compute a policy at city-scale, where the
number of roads and intersections is very large, is still high.
However, planning under uncertainty is more relevant in
practice at a local scale, where mistakes at intersections can
lead to significant detours. Therefore, planning at a city-scale
can be more effective by combining, in a hierarchical manner,
our approach with a higher level planner that plans paths in
a coarse representation, and uses our policy at a finer level to
make appropriate, uncertainty-aware, local decisions where
they have the highest impact.

VI. CONCLUSION

In this paper, we presented an approach for efficient path
planning under uncertainty on road networks. We formulate
this problem as an Augmented Markov Decision Process
that incorporates the robot’s position uncertainty into the
state space without requiring to solve a full POMDP. We
define the A-MDP transition function by estimating robot’s
belief propagation along the road network through the use
of a localization prior. During navigation, we match the
belief provided by the localization system with the A-
MDP state representation to select the optimal action. Our
experiments illustrate that our approach performs similarly
to the shortest path policy if the uncertainty is small, but
outperforms it when the uncertainty is large and the risk of
making suboptimal decisions grows. Therefore, our approach
is able to trade off safety and travel time by exploiting the
knowledge about the robot’s uncertainty.
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