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Abstract

Industry demands flexible robots that are able to accomplish different tasks at different locations such as navigation
and mobile manipulation. Operators often require mobile robots operating on factory floors to follow definite and
predictable behaviors. This becomes particularly important when a robot shares the workspace with other moving
entities. In this paper, we present a system for robot navigation that exploits previous experiences to generate predictable
behaviors that meet user’s preferences. Preferences are not explicitly formulated but implicitly extracted from robot
experiences and automatically considered to plan paths for the successive tasks without requiring experts to hard-code
rules or strategies. Our system aims at accomplishing navigation behaviors that follow user’s preferences also to avoid
dynamic obstacles. We achieve this by considering a probabilistic approach for modeling uncertain trajectories of the
moving entities that share the workspace with the robot. We implemented and thoroughly tested our system both in
simulation and on a real mobile robot. The extensive experiments presented in this paper demonstrate that our approach
allows a robot for successfully navigating while performing predictable behaviors and meeting user’s preferences.
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1. Introduction

Over the last decades, robots have reshaped the man-
ufacturing industry. Traditional industrial robots are ma-
nipulators designed to perform specific tasks at fixed loca-
tions. Recently, the demand for flexible robotic solutions
that are able to perform different tasks at different loca-
tions has grown. These tasks include mobile manipulation
and navigation to transport materials and tools from one
location to another. To operate on factory floors, mobile
robots are usually requested to fulfill some requirements.
Often, it is desirable for robots to navigate only in certain
areas of the environment and to follow definite patterns
while navigating. Furthermore, robots frequently operate
in environments populated by other moving entities such
as human workers, forklifts, other robots, etc.. In this con-
text, the reproducibility and the predictability of the nav-
igation become essential. Especially in shared workspaces,
these properties are important to avoid collisions without
limiting the flexibility of the robot navigation.

In this paper, we propose an approach that allows a
robot to navigate in such environments considering the
preferences of the user. It implicitly collects preferences
from robot’s previous experiences and exploits them to
perform new tasks. This is generally more convenient
than hard-coding control strategies. Formalizing prefer-
ences can be difficult and hard-coded rules are often com-
plex to maintain and update. In the same way, using cost
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functions to define behaviors can be problematic and usu-
ally requires experts to handle them. On the contrary,
even non-expert users can easily teach behaviors to the
robot by demonstration, e.g. joysticking the robot along
desired routes in the environment.

Our approach aims at reproducing and generalizing
previous successful behaviors to meet user’s preferences.
There exist several motion planning approaches that aim
at reusing previous experiences, but most of them do not
focus on the resulting robot behavior. Teach-and-repeat
allows a robot for repeating trajectories, however it is
hard to generalize them to different situations. This pa-
per builds upon and extends our recent conference pa-
per [24] in which we introduce a planning approach to
reuse robot’s previous experiences to meet user’s prefer-
ences while maintaining the planning flexible. We extend
this approach to consider preferences for robot naviga-
tion also in dynamic environments. Our objective is to
avoid obstacles by computing local deviations from the
path that satisfy user’s preferences, while maintaining the
global behavior. We achieve this by considering a proba-
bilistic method that takes the uncertainty of the obstacle
motion into account. We furthermore present an extended
experimental evaluation in simulated and real world envi-
ronments.

The main contribution of this paper is a system for
robot navigation that allows the robot (i) to meet the pref-
erences of the user exploiting the previous experiences of
the robot, (ii) to reproduce behaviors over different envi-
ronments and situations, (iii) to perform predictable be-
haviors providing similar solutions for similar situations,

Preprint submitted to Elsevier July 7, 2017



and (iv) to navigate in environments populated by other
moving objects while still accomplishing foreseeable be-
haviors. We achieve this by allowing the user to demon-
strate desired behaviors to the robot or to provide feedback
about its experiences. We store user’s favorite behaviors
and reuse them to guide the planning for a new but sim-
ilar navigation task. We define a similarity relationship
among tasks and a path representation for transferring ex-
periences to new situations. Our planning approach takes
advantages from theses concepts and considers previous
experiences while maintaining at the same time the flex-
ibility of a general planner. We implemented our system
using C++ and ROS, and we realized our planner in the
Open Motion Planning Library (OMPL) framework [33].

2. Related Work

Motion planning algorithms for robot navigation have
been widely studied [19]. A class of commonly used ap-
proaches are sampling-based planners such as Rapidly-
exploring random tree (RRT) [20] and its variants as RRT-
Connect [18]. These approaches are fast to discover the
connectivity of a configuration space but it is difficult to
predict the resulting paths due to their random nature.

Bruce and Veloso [3] extend traditional RRT to reuse
cached plans and bias a new search towards their way-
points. Zucker et al. [36] propose to adapt the sampling
distribution of sampling-based motion planners consider-
ing the features of workspace. Jiang and Kallmann [13]
propose the Attractor Guided Planner (AGP) that stores
every successful path and biases a new search to repro-
duce the structure of an experienced path according to
a similarity function. Our planning approach reuses and
generalizes the idea of experience-guided planner.

Other motion planning approaches reuse experiences:
Lien and Yu [21] construct roadmaps around geometric
models and reused them to plan for avoiding obstacles;
Fraichard and Delsart [5] deform previous trajectories in
the configuration-time space to fit new situations; Phillips
et al. [27] build a graph of experiences and exploit it for
performing repetitive tasks. The Lightning framework [2]
repairs previously generated trajectories to fit new plan-
ning problems. Coleman et al. [4] extend this idea by stor-
ing generated paths in a sparse roadmap. Such approaches
take advantage from previous experiences to speed up the
planning time and to find a path in high-dimensional con-
figuration spaces. Our approach does not rely on any
complex model or cost function and aims at reproducing
robot’s previous experiences to meet user’s preferences.

Jetchev and Toussaint [11] learn a mapping between
situations and trajectories and use a descriptor of the sit-
uation to transfer and optimize a previous trajectory in
a new situation. They extend this work in [12], using a
voxel representation of the environment to generalize tra-
jectories to a wider range of situations. Our approach also
uses the concept of situation descriptor to identify previous
paths fitting new situations.

Many teach-and-repeat approaches exist to reproduce
previously taught experiences. Sprunk et al. [32] reproduce
trajectories with high accuracy by matching laser scans.
Furgale et al. [9] propose a vision-based approach based
on topologically connected submaps. Furgale et al. [10]
extend standard teach-and-repeat by adding a local mo-
tion planner to account for dynamic environments. Perea
Ström et al. [25] use a similar approach for guiding a robot
home in case the mapping system fails during an explo-
ration mission. Mazuran et al. [22] optimize the demon-
strated trajectories within constraints defined according
to user’s preferences. In contrast to teach-and-repeat, our
objective is to maintain the flexibility of a real planner
while reproducing behaviors.

Case-based reasoning is another approach related to
our work. It considers robot experiences to build exper-
imental models and that are stored as cases and used in
the future tasks. Meriçli et al. [23] adopt this approach to
mobile push-manipulation, while Ros et al. [30] use it for
action selection in the robot soccer domain.

There exist several approaches for robot navigation in
dynamic environments. Many of them rely on reactive
strategies as Dynamic Window Approach [7] that repeat-
edly selects a velocity yielding to a safe trajectory within a
short time interval. Elastic Bands [28] combines a reactive
strategy with global planning to avoid obstacles. Rösmann
et al. [31] and successively Keller et al. [14] extend this ap-
proach to consider explicitly time information for optimal
trajectory planning. These approaches enable robots to
avoid dynamic obstacles, but do not allow for expressing
preferences about their behaviors.

Other researchers study human motion to allow robots
for compliant navigation in populated environments. Kruse
et al. [16] conduct a survey about human-aware naviga-
tion. Ziebart et al. [35] learn a cost function of features
to predict people trajectories and plan paths that avoid
hindrances. Bennewitz et al. [1] learn collections of tra-
jectories that characterize typical human motion patterns.
Kuderer et al. [17] as well as Kretzschmar et al. [15] model
cooperative navigation behaviors of humans to let the robot
interact with people in a socially compliant way. Pfeiffer
et al. [26] propose a navigation model trained on human-
human interaction. Trautman et al. [34] introduce Inter-
acting Gaussian Processes (IGPs) for navigating through
dense human crowds. IGPs describe a probabilistic in-
teraction between multiple navigating entities to accom-
plish cooperative collision avoidance. Fulgenzi et al. [8]
use Gaussian Processes to model typical obstacle trajec-
tories and planned with a variant of RRT that explicitly
consider the probability of collision. Ellis et al. [6] show
that Gaussian Processes allow to explicitly represent the
uncertainty of the human motion. We consider a similar
probabilistic approach to model the uncertain trajectories
of the entities with whom a robot shares the workspace on
a factory floor.
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3. Our Approach

3.1. Use Case

We consider a use case throughout this paper to explain
and motivate our work: a non-expert operator requests
a mobile robot to perform navigation tasks on a factory
floor. In this environment, other moving entities such as
human workers, forklifts, other robots, etc. may share the
workspace with the robot. We assume that both the robot
and the operator know the environment. The operator
asks the robot to perform a navigation task by specify-
ing the start and goal poses. This scenario stems from
the EU-funded H2020 project RobDREAM that focuses
on automatically adapting and improving the behaviors of
a robot over its previous experiences. Our work enables
the robot to accomplish such tasks by adapting its navi-
gation behaviors according to the user’s preferences. The
operator can express preferences by rating behaviors expe-
rienced by the robot as good or bad, for example through a
simple GUI. The operator can also demonstrate good be-
haviors to the robot by joysticking the platform. We store
the good experiences into a database that grows over time.
Our system exploits such a database of examples to cap-
ture and reproduce the preferences of the user.

3.2. Overview of the Navigation System

Our system works on two levels: the global level and
the local level. We aim at providing behaviors that repro-
duce previous successful experiences of the robot at both
levels. Given a navigation task, the global level computes
a path from the start to the goal pose in the static map of
the environment. The global level can exploit previous ex-
periences to perform a task in the same environment, but
does not generalize the exploitation of experiences across
different environments. The local level handles collision
avoidance with unforeseen obstacles planning deviations
from the global path. It considers only the local situa-
tion. Therefore, the local level is largely independent from
the map of the environment and generalizes well previous
experiences across different scenes and environments.

We consider four key concepts to realize a flexible nav-
igation system that can exploit previous experiences. The
remainder of this section briefly introduces these concepts,
which we will describe in detail in the subsequent sections.

Path Representation. We describe an experienced path as
an ordered list of its poses that captures its structure. We
call these poses attractors. Fig. 1 depicts an example of
attractors, details are in Sec. 4.

Situation Description. We define a similarity relationship
among tasks to exploit previous experiences using situa-
tion descriptors. We define different descriptors at global
and local level to capture their functions and properties.
See Sec. 5 for further details.

Figure 1: Attractor representation of a local path P =
{qs, a1, a2, a3, qg}. (δ, φ, γ) identify a local attractor ai.

Planning Exploiting Experiences. We employ a planner in-
spired by the Attractor Guided Planner [13]. It guides the
planning process to prefer trajectories that match previ-
ous experiences. As described in detail in Sec. 6, distinct
planning instances run in parallel at global and local level.

Planning in Dynamic Environments. We consider a prob-
abilistic approach based on Gaussian Processes [29] to pre-
dict obstacle trajectories. Our system define virtual con-
straints based on these predictions and plans deviations to
avoid dynamic obstacles. We provide details in Sec. 7.

4. Path Representation

We use a path representation that effectively stores and
retrieves previously experienced paths. We represent a
path P as P = {qs, a1, . . . , an, qg}, where qs and qg are
the start and goal poses and a1, . . . , an are the poses along
the path that allow to capture its structure. We call these
poses attractors, recalling the concept introduced by Jiang
and Kallmann [13]. Given an experienced path, we com-
pute its attractors and store them in a database, so that
they can be exploited for planning for a new similar task.
In Sec. 6, we will describe how our planner takes advantage
from this representation.

We compute the attractors of a path by considering
iteratively a window of path points. We initialize the win-
dow with the first two path points. If a line fits through
the points in the window, we insert the successive point.
Otherwise, we identify the last inserted point as candidate
attractor and check whether a straight motion from the
previous attractor is valid and collision free. If this is the
case, we include the candidate attractor to the list of at-
tractors, and reinitialize the window. Otherwise, we select
the previous point in the path as candidate attractor and
perform a new check. We iterate this procedure until it
processes all path points. The result is an ordered list of
poses describing the path.

Global and local levels of our system rely on different
assumptions, so it is necessary to define a different way to
store and to reuse the attractors. We maintain the expe-
riences in two distinct databases: DG for the global paths
and DL for the local ones. As global experiences do not
generalize across different environments, we represent the
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attractors of the global paths in (x, y, θ) map coordinates
and store them in a distinct database for each environ-
ment. On the contrary, to make local experiences available
across different scenes, the local level should not depend
on the environment. To this end, we apply a coordinate
transformation to the attractors that makes them inde-
pendent from the world frame and that can be inverted
in different situations for local replanning. We introduce a
local coordinate system based on the local path and on the
corresponding obstacle. It is the polar coordinate system
identified by the axis υ in Fig. 1. It has the pole in the cen-
ter of the obstacle O, and the orientation of the vector υ′

that connects the start to the goal. In this frame, the co-
ordinates (ρ, φ, γ) identify unambiguously the attractors,
where ρ is the distance of the attractor to O, φ and γ are
the angles that the line passing by O and the center of
the robot R form with υ and the robot axis. As this rep-
resentation relies only on local information, it allows for
transferring experiences across different environments. To
further generalize over different obstacles, we consider δ
instead of ρ, where δ is the distance of the attractor from
the obstacle surface along ρ. The coordinates (δ, φ, γ) al-
low for reusing an experienced local behavior even in the
cases in which the obstacle encountered by the robot has
different dimension, while keeping a safe distance from it.
To exploit an experienced local path for a new task, we
transform local attractors in the global frame of the cur-
rent environment and use them to guide the new plan.

5. Situation Description

To reproduce previous experiences, it is important to
identify which of these fits a new situation. We compare
navigation tasks using situation descriptors. A situation
descriptor is an array of vectors that describes the task
and the scene in which the robot will perform it. For each
experienced path, we compute the corresponding situation
descriptor and store it in the database together with the
attractors. We measure the similarity between two tasks
by computing the sum of the Euclidean distances of the
attributes of their situation descriptor.

As stated by Jetchev and Toussaint [11], the ability to
generalize experiences to new tasks depends on how we
describe the situation. We specify two distinct situation
descriptors to describe global and local tasks that fit the
objectives and the assumptions considered at each level.

As the global level depends on the environment, we
define a situation descriptor as the array composed by
the start and goal poses of the task expressed in the map
frame. Given the task to navigate from qs = (xs, ys, θs) to
qg = (xg, yg, θg), the corresponding situation descriptor is

dG = [xs, ys, θs, xg, yg, θg]. (1)

This descriptor fits the requirements at global level: it al-
lows for multiple queries in one environment and provides
no information across different environments. Jiang and

Figure 2: Local situation descriptor defined by the local start
(dark blue) and goal (light blue), the extent of the obstacle
(yellow) and of free space around it (red).

Kallmann [13] show that this descriptor is effective in prac-
tice for static environments. Combining this definition of
situation descriptor with the representation of paths as at-
tractors, we can consider at global level every sub-path as
a distinct example. We store each attractor individually
in the database with a reference to the path it belongs to.
Given a new task, we search the database for the pair of
robot poses (qi, qj) such that qi and qj belong to the same
path P and the sum of the distances to the start and goal
configurations of the new task is the smallest. In this way,
a new plan can be guided by any of the sub-paths of P .

At local level, we want to generalize experiences across
different environments and obstacles. As a result of that,
we define a situation descriptor that relies only on local
information, as illustrated in Fig. 2. First, we consider
the local task expressed in the local coordinates (ρ, φ, γ)
introduced in Sec. 4:

dL
task = [ρs, φs, γs, ρg, φg, γg]. (2)

We consider the distance from the obstacle center γ instead
of the distance from the surface of the obstacle δ used
for representing local attractors, as γ is straightforward to
compute and δ does not provide any further information to
describe a task. This descriptor represents the task with
respect to the obstacle, but provides no information about
the obstacle itself and the space around it. The geometry
of the obstacle and of the space around it are fundamental
to plan a path to avoid it. Therefore, we consider two
additional components. The first one describes the shape
and dimension of the obstacle by computing the extent of
the obstacle from its center O in the 8 directions defined
by the υ axis, each rotated by 45 degrees, see Fig. 2:

dL
obstacle = [e1, e2, e3, e4, e5, e6, e7, e8]. (3)

Considering this component, we favor the robot to accom-
plish similar behaviors at obstacles with similar shapes and
dimensions. In fact, these obstacles are likely to corre-
spond to similar objects and the user may want the robot
to accomplish a specific behavior to avoid a class of ob-
jects. For example, to avoid moving or potentially moving
obstacles the user may prefer a behavior that does not
cross their front or their way. The second additional com-
ponent describes the free space around the obstacle as the
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extent of free space from the obstacle surface to the next
obstacle along the same directions considered in dL

obstacle:

dL
freespace = [f1, f2, f3, f4, f5, f6, f7, f8], (4)

see Fig. 2 for an illustration. The geometry around an
obstacle is a good indicator for deciding on which side of
the obstacle the robot should pass to avoid it. Therefore,
considering this component will favor paths in the same
homotopy in tasks with similar geometry around the ob-
stacle. The resulting local descriptor is

dL = [dL
task , dL

obstacle , dL
freespace ] (5)

that allows for comparing local tasks across different sit-
uations, obstacles and environments. We combine differ-
ent measure of similarity to keep the local descriptor as
general as possible. Nevertheless, each component can be
parametrized to obtain a descriptor biased towards a spe-
cific aspect of a local task, for example, to favor similar
behaviors at similar obstacles.

6. Planning Exploiting Experiences

We introduce a path planning algorithm that exploits
robot’s previous experiences to plan for new tasks. It takes
advantage of the notions of attractors to represent the ex-
perienced paths, and situation descriptor to identify simi-
lar tasks. Consider the use case introduced in Sec. 3.1 and
assume that the operator requires the robot to perform
the task illustrated in Fig. 3: navigate from qs to qg in the
known environment M , where the robot has already suc-
cessfully performed some tasks (dotted lines). Our system
takes as input: the database of global paths experienced
in M , DG,M , the database of local paths DL, the start qs
and the goal qg poses.

6.1. Main

Alg. 1 describes the main procedure of our system. The
method PlanGlobal computes a path in the static map
(line 1). Once a path is available, the robot starts nav-
igating along it. At each step of the path, we check the
remaining poses for invalid configurations (line 4). If an
unforeseen obstacle blocks the path at some point (line 5),
PlanLocal plans a deviation that enables the robot to
avoid the blocking obstacle and to get back to the global
path (line 6). We update the path with the local devia-
tion (line 7) and the robot safely navigates towards the
next path pose (line 8). We repeat this procedure until
the robot reaches the goal. Once the robot completed the
task, we ask the user to rate the robot behaviors (line 10).
In the following, we describe in detail how local and global
planning work and how we collect user feedbacks.

(a) New task and previous experiences (dotted lines).

(b) Global planning guided by the attractors of a similar experience.

(c) Local planning guided by the attractors of a similar experience.

(d) Exploration by relaxing the attractors of a previous experience.

Figure 3: Our planning approach exploits similar experiences
at global and local level to plan for a new task.

6.2. Global Planning

The method PlanGlobal (Alg. 2) implements the
global level of our system. Given the task to navigate
from qs to qg and the static map of the environment M , it
computes a path from qs to qg in M . First, it computes the
global situation descriptor dG corresponding to the task
(line 1), as described in Sec. 5. We compare the descrip-
tor dG with the ones in DG,M to find a previous similar
experience. If no similar experience is available, we plan a
new path from scratch using standard bi-directional RRT
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Alg 1 Main(qs, qg, DG,M , DL)

1: pathglobal ← PlanGlobal(qs, qg, DG,M )
2: pathactual ← pathglobal
3: while pi ∈ pathactual ∧ pi 6= qg do
4: obstacle, invalid poses = {pj , ..., pk} ←

checkPath([pi, pg])
5: if invalid poses 6= 0 then
6: pathlocal ←PlanLocal(pj−1, pk+1, obstacle,DL)
7: pathactual ← updatePath(pathactual, pathlocal)

8: navigateTo(pi)
9: i← i+ 1

10: Feedback(qs, qg, pathactual, pathglobal, DG,M , DL)

Alg 2 PlanGlobal(qs, qg, DG,M )

1: dG ← globalDescriptor(qs, qg)
2: if attrg ←attractorsSimilarTask(dG, DG,M ) 6= 0 then
3: pathglobal ← bi-RRT(qs, qg, guided sampling, attrg)
4: else
5: pathglobal ← bi-RRT(qs, qg, uniform sampling)

6: return pathglobal

Alg 3 PlanLocal(qs, qg, obstacle,DL)

1: dL ← localDescriptor(qs, qg, obstacle)
2: if attrl ← attractorsSimilarTask(dL, DL) 6= 0 then
3: attrl ← toMapCoordinates(attrl, obstacle)
4: pathlocal ← bi-RRT(qs, qg, guided sampling, attrl)
5: else
6: pathlocal ← bi-RRT(qs, qg, uniform sampling)

7: return pathlocal

Alg 4 Feedback(qs, qg, pathactual, pathglobal, DG,M , DL)

1: if feedback(pathglobal) = good then
2: dG ← globalDescriptor(qs, qg)
3: attrg ← extractAttractors(pathglobal)
4: storePath(dG, attrg, DG,M )

5: deviations ← getDeviations(pathactual, pathglobal)
6: for each {obstacle, path} in deviations do
7: if feedback(path) = good then
8: dL ← localDescriptor(qs, qg, obstacle)
9: attrlm ← extractAttractors(path)

10: attrl ← toLocalCoordinates(attrlm, obstacle)
11: storePath(dL, attrl, DL)

(bi-RRT) [18] (line 5). Otherwise, if the robot experienced
a similar task as illustrated in Fig. 3a (green dotted line),
we retrieve its attractors attrg (line 2) and exploit them
to compute the new path (line 3). In this case, we em-
ploy as planner a tailored version of the Attractor Guided
Planner (AGP) [13]. It is based on bi-directional RRT
and biases its search trees towards a previous experience.
The attractors attrg = {a1, a2, a3, ..., an} guide the sam-
pling process. We iteratively select one of the attractors
ai ∈ attrg in an ordered fashion and sample a pose. For
the start tree, we select the attractors from the closest
to the start location to the closest to the goal location.

For the goal tree, in the opposite order. As a search tree
reaches an attractor ai, we select the next one ai+1. If
changes occurred in the environment with respect to the
previous experience, one or more attractors might not be
reachable. In this case, we sample a new pose according
to a dynamically updated Gaussian distribution centered
in the unreachable attractor and with covariance growing
proportionally to the number of non-valid states sampled
around it. We repeat this procedure until we sample a
valid state or we reach a maximum number of iterations.
If we find a valid state, the new path will exploit a previ-
ous experience even if the environment slightly changed.
Otherwise, the search continues sampling poses uniformly
in the same way as standard bi-RRT. If the planner ex-
ploited a previous experience, the new path will reproduce
its structure, as shown in Fig. 3b. Furthermore, in this case
the planning time decreases as we will show in Sec. 8.1.

6.3. Local Planning

The method PlanLocal (Alg. 3) implements the lo-
cal replanning procedure of our system. We trigger it
if the robot encounters an obstacle on its way. It con-
siders the blocking obstacle to compute the descriptor of
the local situation dL (line 1). We use the descriptor to
query the database of local paths DL for a similar experi-
ence (line 2). The planning scheme reproduces the one at
global level. If no similar previous experience is available
to be exploited, we search a new local path using stan-
dard bi-directional RRT (line 6). Otherwise, we compute
the attractors attrl corresponding to the previous similar
experience and transform them into the current situation
(line 3) to guide the sampling process (line 4). If a previ-
ous experience guides the planning, the resulting path will
reproduce it in the new situation. In the example shown
in Fig. 3c, an obstacle blocks the path and we need to plan
a deviation. Along its path, the robot has already avoided
an obstacle in a locally similar situation. Therefore, we
transform the attractors of that experience to the new sit-
uation and use them to guide the new plan. As a result,
the robot avoids the new obstacle accomplishing a similar
behavior to the experienced one.

6.4. User Feedback

The method Feedback enables the user to rate the
experienced robot behaviors (Alg. 4). First, we ask him
to provide a feedback for the global path (line 1). If the
user rates it as good, we compute the corresponding de-
scriptor (line 2) and attractors (line 3), and store them in
DG,M (line 4). Considering the deviations from the global
path generated by local replanning (line 5), the user can
also provide a feedback for robot’s local behaviors (line 7).
If he rates a local path as good, we compute the corre-
sponding local descriptor (line 8) and attractors(line 9).
At local level, we transform the attractors to local coordi-
nates (line 10) before storing them in DL (line 11). The
experiences stored in this process are then made available
to guide the planning for new tasks.
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Our system does not need any initial data to work.
Without examples, we automatically fall back to bi-RRT
performance. We built the databases by storing the good
experiences online while the robot performs its tasks. The
higher the number of feedbacks provided by the user, the
better the system fit his preferences. If the environment
changes so that some experiences cannot be exploited for
planning anymore, we remove them from the database. In
this way, we keep track only of the experiences still valid,
and we bound the growth of the database. If required,
we can easily define distinct databases for different users
such that each database contains only the preferences of a
specific user.

6.5. Exploration vs. Exploitation of Experiences

Our planning approach focuses the search for a new
path as close as possible to a similar previous experience.
This allows for reproducing behaviors and generating paths
that are predictable to the user. It comes however at the
cost of exploring only a limited portion of the configuration
space if a similar path exists.

In case an exploration towards new path is desired,
we can give to the user the possibility to switch to an
exploration mode. Two options are available to explore
the space. First, full exploration does not consider any
previous experience but plans new paths using standard
bi-RRT that probabilistically covers the whole configura-
tion space. Second, attractor relaxation relaxes the con-
straints imposed by the attractor by increasing the co-
variance around one, some, or all attractors during the
sampling process in planning. One example in which we
relaxed all of the attractors of an experience is illustrated
in Fig. 3d. Similar paths can be generated by relaxing the
attractors that still maintain some form of similarity to
the original experience.

The user can evaluate such paths in simulation and,
once he finds a path that satisfies his preferences, we re-
place the experience in the database with the new path.
Attractor relaxation does not explore the whole configura-
tion space but allows the user to find an optimal behavior
according to his preferences starting from an experienced
path.

7. Planning in Dynamic Environments

In the scenario we envisioned in Sec. 3.1, the robot
might share the workspace with other moving entities such
as persons, other robots, etc. To deal with dynamic obsta-
cles, some path planners explicitly consider time informa-
tion [5, 14]. If the state space of the planner contains a
time dimension, planning becomes more complex and the
planning time grows. This often results in slow reactions
of the robot in the presence of an obstacle and, in the
worst case, in a collision. We introduce a strategy to use
our planning approach to avoid dynamic obstacles by re-
placing the notion of time by spatial constraints.

In the situation depicted in Fig. 4a, the robot R nav-
igates along the blue dotted path. At the same time, an-
other agent H is moving nearby. To ensure that H will
not block the robot’s path at some point, we first need
to check whether a collision between the two agents may
occur. We know robot’s path and motion model, so we
easily compute its future poses. On the other side, an
entity moving on a factory floor can be a human worker,
another robot, a forklift, etc. so we cannot make any spe-
cific assumption about the trajectory and motion model
of H. As H’s future motion presents high uncertainty, we
employ a probabilistic approach to predict its trajectory.
We rely on Gaussian Processes (GPs) [29] to model the
trajectory out of the current observation data.

7.1. Gaussian Processes for Modeling Trajectories

A Gaussian Process is a collection of Gaussian random
variables defined by a mean function m and a covariance
function c. A function f(x) following this distribution is
denoted as

f(x) ∼ GP (m(x), c(x, x′)). (6)

Given n observations u of f for the input x ∈ X, we can
learn the model GP (m(x), c(x, x′)) that encodes all of our
prior knowledge of it. For a new input x∗, GPs allow for
computing the predictive mean µ∗ and variance σ∗ of f(x∗)
as follows:

µ∗ = k>K−1u (7)

σ∗ = c(x∗, x∗)− k>K−1k (8)

K =

c(x1, x1) . . . c(x1, xn)
. . . . . . . . .

c(xn, x1) . . . c(xn, xn)

 , k =

c(x1, x∗). . .
c(xn, x

∗)

 . (9)

Many works as [6],[8] and [34] demonstrate that GPs
work well to model trajectories thanks to their property to
provide Gaussian probability distribution over trajectory
poses. Furthermore, approaches using GPs are more flex-
ible than for example an Extended Kalman Filter (EKF)
for which an explicit motion model needs to be defined.

We consider a pair of GPs to model a trajectory. They
take as input the time t = 1, 2, 3, ..., T and provide as
output the changes along the x and y axes.

∆xt = xt − xt−1
∆yt = yt − yt−1

(10)

This representation assumes the movements along x
and y to be independent. As noise along x and y is corre-
lated, correlation is also induced in the posterior processes.
For both GPs, we consider a zero mean function. This is a
reasonable assumption as they represent functions of incre-
ments. Furthermore, this assumption allows for reducing
the number of hyperparameters that define our model. We
employ as covariance function the sum of a Matern kernel

7



(a) Robot R navigates along the blue dotted path while
another agent H moves nearby.

(b) Collision detected at t′ by integrating R’s future footprints over
H’s predicted uncertainty areas.

(c) Local replanning considering the gray obstacle defined by the
uncertainty areas for t′ ≤ t ≤ T .

(d) Deviation update to smoothly converge to the original path.

Figure 4: Planning a local deviation to avoid a collision with a dynamic obstacle.

with ν = 5/2 and a noise kernel:

c(x, x′) = σf

(
1 +

√
5(x− x′)

l
+

5(x− x′)2

3l2

)
exp

(
−
√

5(x− x′)
l

)
+ σ2

nδ(x− x′)
(11)

where the hyperparameters are the length scale l, the ex-
pected variance of the output σf and the noise term σn.
Matern kernel includes a large class of kernels and it is
often used in real applications thanks to its flexibility. We
preferred it over the squared exponential kernel as the lat-
ter assumes high smoothness of the function, which usually
does not hold for noisy observations of real trajectories.
We train the hyperparameters using the robot’s previous
experiences. Thus, we exploit general information about
moving entities without the need of training parameters
of an explicit parametric motion model. As a result, the
trajectory model improves over time as the robot performs
more and more experiences.

7.2. Future Collision Detection

We use this trajectory model to predict the future
poses of agents moving nearby the robot while navigat-
ing. In Fig. 4b, we predict the trajectory of H within a
time horizon T into the future. The red dotted line is
the predicted mean trajectory. We visualize the predicted
2· standard deviations confidence intervals in x, y coor-
dinates as a continuous sequence of ellipsoids, which we
call uncertainty areas. In the figure, the red ellipsoids rep-
resent the uncertainty areas generated by the prediction
of H’s trajectory. To determine whether a collision may

occur, we integrate the future footprints of R over the un-
certainty areas of H corresponding in time. If there is a
significant probability that the robot and the moving agent
are in the same area at some time t′, we detect a future
collision. This is similar to check if the future footprints
of R overlaps with the uncertainty area of H. In Fig. 4b,
we detect a future collision at t = t′.

7.3. Replanning

If we detected a future collision, our system needs to
plan a deviation from the path to allow the robot to avoid
the other moving agent. We achieve this by defining an
artificial obstacle composed by the uncertainty areas. As
illustrated in Fig. 4c, it is centered in the center of the
uncertainty area corresponding to the time of the future
collision t′, and has area delineated by the union of the
uncertainty areas of H for t′ ≤ t ≤ T . We exploit such
obstacle for local replanning as described in the previous
section. So, if a similar experience is available, we trans-
form its attractors in the current situation and use them
to guide the planning. The resulting path (blue dotted
line) avoids passing by the uncertainty areas correspond-
ing to t′ ≤ t ≤ T . This may seem a conservative strategy,
however it ensures safety in the time horizon T . Notice
that an obstacle defined in this way expands in the di-
rection in which H is moving, so the replanning favors
deviations passing on the opposite direction. In Sec. 8, we
will demonstrate that this strategy works well in practice.

While avoiding a moving obstacle, we update the ob-
stacle and plan the deviation from the global path every
time a new observation of its trajectory is received. As the
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(a) bi-RRT.

(b) Our planner given the green path as example.

(c) Area covered by a circular robot to navigate along the paths
generated by bi-RRT (red) and by our approach (blue).

Figure 5: Global paths generated for a set of similar tasks.

time goes, the uncertainty of the obstacle’s trajectory pre-
diction at t′ decreases and the corresponding uncertainty
area becomes smaller (Fig. 4d). Accordingly, also the de-
viation from the global path decreases, so that the robot
smoothly converges as soon as possible to it.

We apply the same strategy to avoid static obstacles.
If an obstacle is not moving, the predicted mean is always
equal to the current pose and the variance is zero. There-
fore, we can exploit indistinctly local experiences to avoid
static and dynamic obstacles.

8. Experiments

This section illustrates and discusses the capabilities
and performances of our system. We designed experiments
to support the claims made in the introduction. We evalu-
ate our planning approach in Sec. 8.1. Sec. 8.2 focuses on
our trajectory prediction model. We test our navigation
system in simulation in Sec. 8.3, and we present some tasks
performed running our system on a real KUKA Youbot
mobile robot in Sec. 8.4.

(a) bi-RRT.

(b) Our planner given the green path as example.

D

E

(c) Our planner given the green path in Fig. 6b as example.

Figure 6: Local paths generated to avoid unforeseen obstacles.

8.1. Planning

In the first set of experiments, we evaluate the capa-
bilities of our planning approach. Throughout this sec-
tion, we consider the scenario of the use case introduced
in Sec. 3.1 and use the implementation of bi-directional
RRT (bi-RRT) available in OMPL as baseline.

To show the ability of our planner to reproduce experi-
ences meeting user preferences, we assume an user requires
the robot to perform the 10 navigation tasks represented
in Fig. 5. These tasks are similar in a global sense, i.e. they
have nearby start and goal poses. Fig. 5a shows the paths
generated by bi-RRT for these tasks. Due to the random
nature of bi-RRT, they reveal substantial differences to
each other: some pass by the top central room, others by
the bottom central room. Thus, the user can make only
limited predictions about the resulting path for a similar
task. He also cannot express any preference about where
and how the robot should navigate.

Assume the user prefers that the robot navigates pass-
ing by the central top room to perform these tasks. Our
system allows him to express this preference by rating the
green path in Fig. 5b as good. Using this path as exam-
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Figure 7: Performance comparison for planning using bi-RRT and our approach with 10, 20, 50, 100 and 200 examples.

ple, our planner generates for the same tasks of Fig. 5a
the blue paths in the figure. These paths reproduce the
structure of the example meeting the preferences of the
user. Therefore, our planner allows for generating similar
solutions for similar tasks and, thus, for making the robot
behaviors predictable.

Our planner generates paths with such properties also
for planning local deviations. Assume the robot is moving
along the orange path in Fig. 6a. Along the path, the robot
encounters two unforeseen static obstacles A and C that
block the path at two different locations. The robot needs
to replan to avoid them and to reach its goal. In Fig. 6a, we
planned a local deviation 10 times for each obstacle using
bi-RRT. The resulting paths cause the robot to behave
differently for distinct runs of the same task. Our planner
prevents this and it further enables the user to express
preferences.

Assume the user rates the green path in Fig. 6b as
a good example to avoid obstacle A. Our planner gener-
ates the blue paths exploiting this path. These paths suc-
cessfully avoid obstacle A reproducing the example and so
meeting the user’s preferences. As the local situation at
obstacle C is similar to the one at obstacle A, our planner
transform the experience at obstacle A in the new situ-
ation and generates deviations to avoid obstacle C that
reproduce it. This shows that our system can reproduce
behaviors and user preferences across similar local situa-
tions. This holds also across different environments. Con-
sider the scenario illustrated in Fig. 6c where the orange
path is blocked by two obstacles. The situation at obsta-
cle D is similar to the one for which the user provided an
example. Thus, our system generates paths to avoid the
new obstacle that reproduce the experience in the new sit-
uation. The local situation at obstacle E is different and
so the example cannot be exploited. In this case, our plan-
ner generates new paths from scratch in the same way as
bi-RRT.

To illustrate the performances of our planning approach,
we considered 20 sets of 10 similar global navigation tasks
and 20 sets of 10 similar local tasks. First, we plan for
these tasks by using bi-RRT and then by using our planner
with 10, 20, 50, 100 and 200 examples randomly selected
among the ones generated by bi-RRT. We run this pro-
cedure 10 times for a total of 20,000 planning instances.
We consider 3 measures to evaluate the performance of the
planners: planning time, number of sampled states while

planning, area of the environment covered by a circular
robot to perform a set of similar tasks. The latter gives a
measure of the similarity of the paths generated for similar
tasks. The smaller the area covered, the more similar are
the paths. Fig. 5c illustrates an example of the area cov-
ered by a robot when using bi-RRT (red) and our approach
(blue) as planner.

Fig. 7 shows the performance of each planner setting
at global and local level. The first chart shows the average
planning time. As few examples are available, our system
outperforms bi-RRT. The planning time decreases with in-
creasing the number of examples up to approx. the 50%
in the local case and the 60% in the global case. When
the number of examples becomes large, the planning time
tends to marginally increase due to time needed to query
the database. The second chart shows the average number
of states sampled during planning. If a similar experience
is available, our planner tends to sample the correspond-
ing attractors instead of attempting to explore the whole
environment as bi-RRT. Thus, the larger the number of
examples provided, the smaller is the number of sampled
states. In the third chart, we compare the average percent-
age of area of the environment occupied by a circular robot
to perform a set of similar tasks. Even with few examples,
the area covered by our system is approx. 25% smaller
than bi-RRT at global level and 35% at local level. The
results at local level are explained by the ability of our ap-
proach to generalize experiences across different obstacles
and situations. When the number of examples available for
each task increases, the covered area grows accordingly.

8.2. Trajectory prediction

The second set of experiments aims at evaluating our
approach to predict the trajectory of moving objects. We
want to demonstrate that within a short time it provides
good trajectory predictions, and that uncertainty areas
captures well the uncertainty of the motion. To this end,
we created a setup in our lab in which people could walk
through and recorded the trajectories of 6 people walk-
ing in it for approx. 120 s each using a motion capture
system. We considered 30 s of trajectory of each person
to train the hyperparameters of our model. We used the
resulting model to predict the future trajectory of the re-
maining data within the next 5 s every 0.25 s for a total
of approx. 2500 predictions. The performance of our tra-
jectory prediction approach are illustrated in Fig. 8. The
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Figure 8: Performance of our trajectory prediction model.

first graph shows the root mean square error of the mean
trajectory predicted by our approach with respect to the
time predicted. We compare it with the trajectory pre-
dicted by a linear constant-velocity model. Our approach
always outperforms the linear model and presents half the
error for predictions up to 3 s. The second graph illustrates
in percentage the number of times that the real trajectory
belongs to the corresponding uncertainty area. The per-
centage is above 90% for predictions up to 3 s. Afterwards,
it decreases linearly and at 5 s the real trajectory is in
the corresponding uncertainty area around the 30% of the
cases. This is partially due to the zero mean assumption
made for the Gaussian Processes in our model. It means
in practice that for long predicted time the increments ∆x
and ∆y will tend to zero. Still, our approach provides
good results for short-time predictions. Furthermore, 3 s
is usually a reasonable time to react to an obstacle moving
in an indoor environment. We also contrast this effect by
continuously updating the prediction and the path while
avoiding an obstacle. In the next section, we will show
that our approach works well in practice for enabling the
robot to avoid dynamic obstacles with foreseeable and safe
behaviors.

8.3. Navigation in Simulation

We implemented our system using C++ and ROS, and
tested it using V-REP robot simulator. We required a sim-
ulated robot to perform navigation tasks in some simulated
environments. We illustrate and discuss the performance
of our navigation system comparing it to other common
approaches. We want to show specially that our system
can generate similar robot behaviors for similar tasks.

First, we require the robot to perform 10 sets of 10
similar navigation tasks in some static environments to
test our system for robot navigation at global level. We
included in the database of global paths one example per
set randomly generated using bi-RRT, so that our system

0

5

10

15

20 Path Length [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Clearance [m]

0.0

0.2

0.4

0.6

0.8

1.0 Area Covered [%]
bi-RRT
navfn
Our approach

Figure 9: Performance of navigation in static environments.

Replanning
Frequency [Hz]

Obstacle Velocity
0.4 m/s 0.8 m/s 1.0 m/s

coll. fail. coll. fail. coll. fail.
DWA 20.0 0.0 0.0 0.375 0.05 0.25 0.0
TEB 5.0 0.0 0.0 0.075 0.0 0.15 0.025
bi-RRT 20.0 0.0 0.0 0.0 0.0 0.075 0.0
Our appr. 20.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 1: Statistics for dynamic obstacle avoidance.

had some experiences available to exploit while planning.
We compared the performances of our system with bi-
RRT and navfn by ROS. navfn is a standard approach in
ROS for robot navigation based on Dijkstra’s algorithm,
while we implemented bi-RRT by considering our system
without any example. We analyze 3 measures to evaluate
their performances: executed path length, average clear-
ance during navigation and area covered by the robot to
perform a set of similar tasks. Fig. 9 shows the results of
our experiments. navfn generates in average the shortest
paths, while bi-RRT presents the largest clearance. Us-
ing our system, these measures depend on the examples
exploited while planning. A first indicator that our ap-
proach allows for providing similar solutions for similar
tasks is that it presents the lowest standard deviation for
both measures. To further support this, our system covers
almost half of the area covered using bi-RRT. navfn also
scores good. It attempts to minimize the path length and,
by doing this, the paths for similar tasks tend to pass by
the same locations. However, it does not allow to express
any preference about which these locations should be.

We evaluate robot navigation at local level by intro-
ducing moving obstacles in the environments. We defined
six situations that differ from each other for: task, obstacle
velocity and trajectory, type of collision that could occur
(frontal, lateral, etc.). We compared our system to a reac-
tive approach as Dynamic Window Approach (DWA) [7],
an approach that consider explicitly time as Time Elas-
tic Bands (TEB) [14], and our system with no examples
(bi-RRT ). We used the available ROS implementation of
DWA and TEB. For simplicity, we provided only two ex-
amples to our system: one avoiding an obstacle on the left
and one on the right. We fixed the global path and per-
formed each task 20 times for every navigation algorithm.
We considered five measures to evaluate their performance:
executed path length, deviation from the global path, ex-
ecution time, clearance, and area covered to perform one
task multiple times. Fig. 10 shows the results of our ex-
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Figure 10: Performance of navigation in dynamic environments.

Figure 11: KUKA Youbot.

periments. Our system provides in average the shortest
path length. It continuously updates the local path while
avoiding an obstacle, and so it converges as soon as pos-
sible to the global path as shown also in the analysis of
the deviation from the global path. bi-RRT also provides
good results in average as it is implemented in our system,
but it presents large standard deviation due to its random
nature. The results for the execution time reproduce the
ones for the path length except for DWA. The last chart
shows that our system allows the robot to cover the small-
est area to perform a task 20 times. This demonstrates its
capability to generate similar behaviors for similar situa-
tions also at local level.

Table 1 reports for each algorithm the replanning fre-
quency, the collision and failure rates with respect to the
velocity of the obstacle that we experienced in our exper-
iments. A collision occurs if the robot collides with an
obstacle, but it is then able to reach the goal. A failure
takes place if the robot is no able to reach the goal within
a timeout. As TEB plans optimal trajectories consider-
ing explicitly time, it plans at a lower frequency than the
other approaches. This is reflected in collision and failure
rates: when the obstacle is fast, TEB does not always re-
act fast enough. Even if replanning at 20 Hz, DWA also
can cause collisions and failures when the obstacle velocity
increases. Our system is safer. If no example is available
(bi-RRT ), it provoked collisions only in one case. Sam-
pling states uniformly may generate completely different
paths for successive planning instances. In this case, the
robot oscillates and wastes time to react to the obstacle.
Instead, we experienced no collision or providing examples
to our system.

(a) Navigation in a hallway keeping on the right.

(b) Navigation in a hallway without obstructing the passage.

(c) Navigation without passing under the table.

Figure 12: Examples of navigation tasks in real world.

8.4. Real Robot Navigation

We ran our system on a real robot to demonstrate that
our approach works for robot navigation in real world. The
platform used is the KUKA Youbot illustrated in Fig. 11.
It is an omni-directional mobile robot that we equipped
with two Hokuyo laser range finders. Using these sen-
sors, the robot localizes itself in the environment through
a Monte Carlo localization approach.
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(a) Robot navigates along the planned path. (b) Human walks nearby.

(c) Collision detection and planning deviation to avoid the obstacle. (d) Deviation update (I).

(e) Deviation update (II). (f) Deviation update (III).

(g) Deviation update and convergence to the original path. (h) Robot resumes navigation along the original path.

Figure 13: Robot navigates along a given path avoiding a human blocking its way.

We want to show that our system allows the robot for
easily performing behaviors that may be hard to encode
in typical navigation systems. To this end, we defined
3 simple navigation tasks that an user may require the
robot to perform. The first task is illustrated in Fig. 12a
and consists of navigating from one side to the other of
the hallway by keeping on the right side. If no example is

available, the robot just navigates towards the goal (red
paths). So, we joysticked the robot along the green path
that passes on the right side of the hallway, and gave it
as example to our system. Exploiting such example, our
system navigates from one side to the other of the hallway
by keeping on the right (blue paths). The second task is
illustrated in Fig. 12b. The robot has to navigate through
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Figure 14: Trajectories of robot (blue) and human (red) for
similar situations in which the robot replans to avoid collisions.

the hallway without to obstructing the passage. Without
any example, the robot just moves towards the goal (red
path) with the risk to block the passage for some time. As
we demonstrate the green example, the robot navigates
along the blue path to reach the other side of the hallway.
In the third task, the robot has to navigate from one side to
the other of a table avoid passing under it. Fig. 12c depicts
in red the path that the robot navigates if no example is
provided, and in blue the path executed when the green
path becomes available as example.

We also tested the capabilities of our system to avoid
walking people who may block robot’s path. We designed
different setups in which the robot and a human could
move through, and used a motion capture system to ob-
serve their trajectories. Fig. 13 illustrates an example in
which the robot avoids a human crossing its way using our
system. The robot navigates along the blue dotted path
(Fig. 13a). The yellow line shows the observed robot’s tra-
jectory. In Fig. 13b, a human walks into the scene. The
observations of his trajectory are depicted in red, while
the orange dotted line represents the predicted mean of
his future trajectory. Our system detects a future collision
in Fig. 13c that generates the gray artificial obstacle. So,
it plans the green local deviation that avoids the human
exploiting a previous experience. In Fig. 13(d-f), our sys-
tem updates the local deviation according to the current
the prediction of the trajectory of the human. As the hu-
man does not block the original path anymore (Fig. 13g),
our system plans paths that allow the robot to converge
to it. In Fig. 13h, the robot gets back to the global path
and continues its navigation along it. Fig. 14 illustrates
the trajectories of the robot and the human recorded for
running the same task 10 times. It shows that our system
reproduce similar behaviors for similar tasks.

9. Conclusion

In this paper, we presented a robot navigation system
that leads to navigation behaviors that are predictable and
meet user’s preferences. This is especially important for
mobile robots operating on factory floors where the oper-
ator often requires a robot to follow some criteria. Pref-
erences are implicitly extracted collecting demonstrated

examples or feedbacks about robot’s previous experiences.
Our planning approach reproduces experiences over sit-
uations and environments. This allows for accomplish-
ing similar behaviors for similar tasks according to user’s
preferences. We also introduced a probabilistic approach
to predict the trajectories of moving agents that allows a
robot for avoiding dynamic obstacles by applying the same
planning scheme. We implemented and evaluated our ap-
proach over an extensive set of experiments comparing it
with different common approaches for robot navigation.
We performed tests both in simulation and on a real mo-
bile robot operating in real world. The experiments sug-
gest that our system can reproduce and generalize previous
behaviors for robot navigation meeting user’s preferences
both at global and local level. Furthermore, it allows for
easily performing common tasks that may be hard to en-
code in typical navigation systems.
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[31] Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., Bertram,
T., 2012. Trajectory modification considering dynamic con-
straints of autonomous robots, in: Proc. German Conf. on
Robotics (ROBOTIK 2012), pp. 1–6.

[32] Sprunk, C., Tipaldi, G.D., Cherubini, A., Burgard, W., 2013.
Lidar-based teach-and-repeat of mobile robot trajectories, in:
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pp. 3144–3149.
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