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ABSTRACT:

UAVs are becoming an important tool for field monitoring and precision farming. A prerequisite for observing and analyzing fields is
the ability to identify crops and weeds from image data. In this paper, we address the problem of detecting the sugar beet plants and
weeds in the field based solely on image data. We propose a system that combines vegetation detection and deep learning to obtain
a high-quality classification of the vegetation in the field into value crops and weeds. We implemented and thoroughly evaluated our
system on image data collected from different sugar beet fields and illustrate that our approach allows for accurately identifying the
weeds on the field.

INTRODUCTION

Agrochemicals can have several side-effects on the biotic and abi-
otic environment and may even harm human health. Therefore,
we need better tools and novel approaches to achieve a reduction
in the use of agrochemicals in our fields. In conventional weed
control, the whole field is treated uniformly with a single herbi-
cide dose, spraying the soil, crops, and weed in the same way.
In order to perform selective spraying, we must acquire knowl-
edge about the spatial distribution of the weeds and plants in the
field. One way to collect this data is through UAVs equipped
with vision sensors in combination with an automatic classifica-
tion system that can analyze the image data and label the crops as
well as the weeds in the acquired images. One could even go a
step further and use autonomous ground vehicles to execute a me-
chanical or laser-based elimination of the individual weed plants
identified by the UAV.

In this paper, we address the problem of classifying image content
into crops and weeds. By exploiting the georeferenced location
of the UAV, the location for each plant can be determined using a
bundle adjustment procedure. Through a detection on a per-plant
basis of sugar beets (crops) and typical weeds, we can select rele-
vant information for the farmers or for instructing an agricultural
ground robot operating on the field. Given the 3D information
and a pixel-wise labeling of the images obtained with our ap-
proach, we can directly provide the location of every weed to a
ground robot or to a selective spraying tool used on a traditional
GNSS-controlled tractor.

Thus, we focus in this paper on the vision-based classification
system for identifying sugar beet plants and weeds. We rely on
RGB and near infra-red (NIR) imagery of agricultural fields (see
Figure 1 for an example). We use modern convolutional neural
networks and deep learning pipelines to separate the plants based
on their appearance. Our approach is an end-to-end approach,
i.e., there is no need to define features for the classification task
by hand.

The main contribution of this paper is a vision-based classifica-
tion system to separate value crops from weeds using convolu-
tional neural networks (CNNs). We target sugar beets as crops,

Figure 1. Illustration of our approach. Top: Original RGB and
NIR images. Middle: NDVI mask and connected blob

segmentation. Bottom: Classified blobs and pixel-wise overlay
to original image.

which is an important crop in Northern Europe. To build up our
classification system we provide an end-to-end approach where
no hand-crafted features are used, as done in most of the previous
work on this topic (Lottes et al., 2016a; Wang et al., 2008; Kumar
et al., 2012; Cerutti et al., 2013; Elhariri et al., 2014; Perez-Ortiz
et al., 2016). The only preprocessing step we perform separates
vegetation from background such as soil, etc. We then only focus
on the image regions containing vegetation. These sub-images
are scaled to a standard size and fed into the neural network. As
we show in this paper, there is no need for the network to be es-
pecially deep to provide high-quality classification results for this
task, and as a result, the amount of training data that is required to
train the CNN is comparably small, in the order of a few hundred



images. Furthermore, the network can be executed in real-time in
a UAV.

In sum, we make the following four key claims: Our approach (i)
does not require any hand-crafted features and thus can be imple-
mented quickly, (ii) is able to provide accurate weed classification
in real sugar beet fields with an accuracy of more than 95% in a
field with plants in similar growth stage, (iii) can be retrained ef-
ficiently to reuse the learned features for other data types or later
growth stages, and (iv) is lightweight and fast, which makes it
suitable for online operation in a flying robot.

RELATED WORK

The ability to estimate semantic information from sensor data
is an important capability for autonomous and semi-autonomous
systems operating indoors (Stachniss et al., 2005) as well as out-
doors (Lottes et al., 2016a). For example, mobile robots like
UAVs and ground vehicles serve as sensor platforms to obtain fast
and detailed information of arable field environments. Robotic
approaches for monitoring key indicators of crop health have be-
come a popular research topic. Geipel et al. (2014), Khanna et
al. (2015), and Pfeifer et al. (2016) estimate the crop height as
well as the canopy cover using UAV imagery. These works rely
on bundle adjustment procedures to compute terrain models and
subsequently perform a vegetation segmentation to estimate the
crop height based on the obtained 3D information.

Several approaches have been developed for vision-based vegeta-
tion detection by using RGB as well as multispectral imagery of
agricultural fields (Guo et al., 2013; Hamuda et al., 2016; Torres-
Sanchez et al., 2015). Hamuda et al. (2016) present a survey about
plant segmentation in field images by analyzing several threshold
based as well as learning based methods. Torres-Sanchez et al.
(2015) investigate an automatic and adaptive thresholding method
for vegetation detection based on the Normalized Difference Veg-
etation Index (NDVI) and the Excess Green Index (ExG). They
report a vegetation detection rate of around 90− 100%. In con-
trast, Guo et al. (2013) apply a learning-based approach using
a decision tree classifier for vegetation detection. They exploit
spectral features using different color spaces based on RGB im-
ages to perform a prediction on a per-pixel basis.

In the context of leaf image classification and segmentation, re-
searchers have investigated using hand-crafted features and struc-
tural operators (Wang et al., 2008; Kumar et al., 2012; Cerutti et
al., 2013; Elhariri et al., 2014). Wang et al. (2008) segment leaf
images by using morphological operators and shape features and
apply a moving center hypersphere classifier to infer the plant
species. Kumar et al. (2012) start from segmented images of
leaves. They extract curvature features and compare them with
a given database to find the best match with a labeled type. To
cover a variety of leaf shapes, Cerutti et al. (2013) apply a de-
formable leaf model and use morphological descriptors in order
to classify their species. Elhariri et al. (2014) compare a Ran-
dom Forest classifier and a linear discriminant analysis based ap-
proach in their work for classifying 15 plant species by analyzing
leaf images. They extract statistical features from the HSV color
space of leaf images as well as gray level co-occurrence matrices
to exploit additionally shape and vein (leaf structure) information.
Hall et al. (2015) conducted a study on features for leaf classifi-
cation. They compared the classification performance based on
classical hand-crafted and ConvNet features by using a random
forest classifier. They simulated varying conditions on the public

Flavia leaf dataset and conclude that ConvNet features support
the performance and robustness of the classification results.

In contrast, we avoid the time consuming process of designing
features by hand and exploit a CNN approach in order to com-
pletely learn a representation of the data, which is suitable for
discriminating sugar beets and weeds in image patches.

In the field of machine learning, several approaches have been ap-
plied to classify crops and weeds in imagery of plantation (Garcia-
Ruiz et al., 2015; Guerrero et al., 2012; Perez-Ortiz et al., 2016,
2015; Haug et al., 2014; Lottes et al., 2016a, 2017; Latte et al.,
2015). Perez-Ortiz et al. (2015) propose an image patch based
weed detection system. They use pixel intensities of multispec-
tral images and geometric information about crop rows in order
to build features for the classification. They achieve overall accu-
racies of 75− 87% for the classification by analyzing the perfor-
mance of different machine learning algorithms. Perez-Ortiz et
al. (2016) use a support vector machine classifier for crop/weed
detection in RGB images of sunflower and maize fields. They
exploit statistics of pixel intensities, textures, shape and geomet-
rical information as features. Guerrero et al. (2012) propose a
weed detection approach for image data containing maize fields.
Their method allows to identify the weeds after its visual appear-
ance changed in image space due to rainfall, dry spell or herbicide
treatment. Garcia-Ruiz et al. (2015) propose an approach for sep-
arating sugar beets and thistle based on narrow band multispec-
tral image data. They apply a partial least squares discriminant
analysis for the classification and obtain a recall of 84% for beet
and 93% for thistle by using only four of the narrow bands at
521, 570, 610 and 658 nm. Haug et al. (2014) present a method
to detect carrot plants in weeds by using RGB and NIR-images
without needing a presegmentation of the scenes into vegetation
blobs. They perform a prediction on pixel level on a sparse grid
in image space and report an average accuracy of around 94%
on an evaluation set of 70 images where both, intra and inter-
row overlap is present. In previous work, Lottes et al. (2016a,
2017) design a crop and weed classification system for ground
and aerial robots. The work exploits NDVI and ExG indices to
first segment the vegetation in the image data and then applied
a random forest classifier to the vegetative parts to further dis-
tinguish them into crops and weeds. Latte et al. (2015) use color
space features and co-occurrence matrices to classify images cap-
tured on crop fields containing several plant types. They apply an
artificial neural network classifier and obtain an accuracy around
84% on average. Their results show that using statistical mo-
ments of the HSV distribution improves the overall classification
performance.

Also deep learning methods have recently been employed to ob-
tain plant statistics and distinguish value crops and weeds in the
fields (Mortensen et al., 2016; Chen et al., 2017; McCool et al.,
2017; Potena et al., 2016). Mortensen et al. (2016) apply a deep
CNN for classifying different types of crops to estimate individ-
ual biomass amounts. They use RGB images of field plots cap-
tured at 3m above soil and report an overall accuracy of 80%
evaluated on a per-pixel basis. Chen et al. (2017) propose a vi-
sual system with the purpose of obtaining a robust count of fruits
in the field under dramatic lighting changes, and with heavy oc-
clusions from neighboring foliage. They first use a CNN for
blob region proposal, then they use a counting algorithm based
on a second CNN to estimate the fruit count in each region, and
they finally apply a linear regression model to get the final count.
McCool et al. (2017) address the crop and weed segmentation



problem by using an end-to-end ensemble of CNNs. They ob-
tain these lightweight CNNs through the compression of a pre-
trained, more descriptive and complex model, and report an ac-
curacy of 93.9%, processing images at little over 1 frame per
second. Potena et al. (2016) present a perception system based
on RGB+NIR imagery for crop and weed classification using
two different CNN architectures. A shallow network performs
the vegetation detection and then a deeper network further dis-
tinguishes the detected vegetation into crops and weeds. They
perform a pixel-wise classification followed by a voting scheme
to obtain predictions for detected blobs in the vegetation mask.
They obtain a performance of around 97% for the vegetation de-
tection, which is comparable to a threshold based approach based
on the NDVI, and 98% for the crop and weed classification in
case the visual appearance has not changed between training and
testing phase.

Our approach uses RGB-NIR imagery and CNNs, and is able to
reach an accuracy of 97% with low running times even in embed-
ded hardware that can be fitted in a flying platform. We achieve
97% precision and 98% recall for the classification of the weeds
when the classifier is used in a similar growth stage as the one it
was trained in. We are also able to obtain 99% recall and 89%
precision for weeds in later growth stages without retraining. Fi-
nally, we show that we can jump from 89% to 97% in recall for
weeds if we retrain the classifier with new data from the current
growth stage in a fast way. All of this allows our system to do
statistics and selective weed removal in a very quick and accurate
manner.

VISION BASED PLANT AND WEED CLASSIFICATION

The main goal of our plant classification pipeline is to allow mo-
bile agricultural robots to detect unwanted species to remove them
reactively, by either applying selective spraying or mechanical
extraction/destruction. This requires the algorithm to run in real-
time (or near real-time) on hardware that is compact and light
enough to run in a flying platform, which is our principal aim. In
our case, we consider the case of sugar beet plantations, which
is a valuable study case both due to its popularity in Northern
Europe, and because it has been solved before using other ap-
proaches, which gives us the possibility to compare accuracy, ro-
bustness and real-time capabilities against other state-of-the-art
algorithms.

We need to achieve a high recall on the weed classification in or-
der to enable the robot to remove a high number of weeds on the
field. Therefore, we detect the coordinates relative to the robot’s
coordinate system to synchronize the removal with the extrac-
tion/spraying systems. This means that we are relaxed on the
boundaries of the plants as long as we are able to direct the re-
moval tools to the right position within our desired accuracy with-
out harming the valuable crops. This allows for certain hypothe-
ses that make a computationally cheap and fast blob approach
suitable while still achieving state-of-the-art performance, such
as: doing most of the training of the classifier and weed removal
in early stages of the crop growth, and relaxing on the precision
of the boundaries of the vegetation at the pixel level. However,
as we can see in the last image of Figure 1, where the output
classification is overlayed with the input image, a combination
of the NDVI thresholded segmentation with a blob segmentation
and classification gives a solid almost pixel-wise representation
of the output mask, due to the masking done by the preprocess-
ing, making this algorithm not only faster but also very similar in

Figure 2. Top: RGB and NIR images. Bottom: NDVI transform
and mask obtained by a conservative threshold in the NDVI

image.

output quality as the pixel-wise approach, which is both compu-
tationally more complex and more time expensive to label.

We divide our classification pipeline in three main steps. First,
we perform a vegetation detection to eliminate irrelevant soil in-
formation from the images using multispectral images containing
RGB and near infra-red information. Second, we describe the
detected vegetation with a binary mask and perform a blob seg-
mentation in order to extract patches containing singular crops
or weeds. Finally, we classify each patch with a convolutional
neural network that we train in an early growth stage to avoid
overlapping crops and weeds in the data, and that we can later
on re-train in a supervised or semi-supervised manner to adapt to
other types of crops, or other stages of the crop growth. The blob
approach makes the network run fast for both the forward pass
and the retraining of the classifier, which makes it able to run on
a flying platform using readily available single-board computers
such as the NVIDIA Jetson platform. In the following subsec-
tions we discuss each step of the pipeline in more detail.

Vegetation Detection

The goal of this pre-processing step is to separate the relevant
vegetation content of every image I taken by the robot from the
soil beneath it, for which we need to apply a mask of the form:

IV(i, j) =
{

1, if I(i, j) ∈ vegetation
0, otherwise , (1)

with the pixel location (i, j).

As we can see in Figure 2, separating vegetation from soil in
a plain RGB image is difficult task even for a human observer.
Luckily, an approach exploiting the high reflectance of chloro-
phyll in the near infra-red spectrum (NIR) has been thoroughly
studied by Rouse et al. (1974) prompting us to use the Normal-
ized Difference Vegetation Index (NDVI), which is a normalized
ratio of the NIR and red bands. If we apply this index pixel-
wise we obtain a distribution that is more suited for a thresholded
segmentation than the original image, which we can later apply



as our mask, as we can also see in Figure 2. Namely, using the
NDVI to create the mask we have:

INDVI(i, j) =
INIR(i, j)− IR(i, j)
INIR(i, j) + IR(i, j)

(2)

Such transformation is used successfully to solve this very prob-
lem by Lottes et al. (2016b), and improved by Potena et al. (2016)
by adding a low cost convolutional neural network to a mapping
obtained by a very permissive thresholding in the post NDVI seg-
mentation operation. In our experiments, we use the thresholded
segmentation of the NDVI-transformed image, similar to Lottes
et al. (2016b), to separate the plants from the soil. An example is
shown in Figure 2.

A threshold-based classification based on the NDVI can also lead
to individual pixel outliers (or small groups of pixels). These
are mostly caused by lens errors as chromatic aberration, which
leads to a slightly different mapping of the red and the near infra-
red light on the camera chip. We eliminate most of these effects
through basic image processing techniques such as: morpholog-
ical opening and closing operations to fill gaps and to remove
noise at contours, which is done with a 5×5 disk kernel 1× open-
ing followed by a 1× closing; and removal of tiny blobs which
share less than a minimum amount of vegetation pixels, which
depends on the Ground Sampling Distance and therefore it varies
with the UAV distance to ground.

Blob-wise Segmentation

Given the vegetation mask we search for vegetation blobs. Each
vegetation blob is given through a connected component of the
vegetation pixels in the image (see Figure 3). We create an indi-
vidual image patch of a certain size (64×64 pixels in our current
setup) for each detected blob in the vegetation mask. Here, we
first compute the bounding box of the contour of the blob and ap-
ply an affine transformation to it in order to translate the blob into
the center of the image patch and scale it to the desired size.

These image patches serve as input for our classification approach.
Thus, the CNN can learn a representation based on such patches,
which mostly describe whole plants or leaves. Through center-
ing the blobs within the image patches we achieve translation in-
variance and through scaling the detected blobs we reduce the
influence of the plant size, which can vary a lot even for plants
growing on the same field.

Figure 3. Blob selection from connected regions.

Classification using Convolutional Neural Networks

The advantage of using Convolutional Neural Networks for im-
age classification is that they have the ability to learn features
describing complex non-linear relations between dependent and
independent variables by themselves, when given enough data.

This is not only useful for achieving a high classification accu-
racy in a specific dataset, but also to later transfer that knowl-
edge to other domains. Therefore, we can train the network with
a high number of plants from different species under different
weather and lighting conditions and then use the feature extrac-
tors to cheaply train other classifiers for unseen species.

The main ideas behind weight sharing and CNNs were introduced
in LeCun et al. (1989) and LeCun et al. (1998), and more recently
brought back to public interest by Krizhevsky et al. (2012) where
they exploited an efficient GPU implementation of the convolu-
tion to break the ImageNet challenge benchmark at the time by
an astounding 10% difference over their closest competitor, mak-
ing them widely popular. They make the assumption that in im-
age data, neighboring pixels are more correlated than pixels far
away, therefore introducing the concept of local connectivity, al-
lowing for less neuron wiring, which yields not only in better
results, but also in less training and execution time. Today, deep
convolutional neural networks are undoubtedly the most widely
used approach for image classification, with it’s more novel fla-
vors achieving top-5 classification errors in the test set of Ima-
geNet as low as 3.57% (He et al., 2015), and 3.08% (Szegedy et
al., 2016), outperforming the average human classification error
which is around 5%.

The original architecture used by Krizhevsky et al. (2012) is com-
parably shallow when measured against today’s state-of-the-art
image classification networks, but we use a similar one to solve
our classification problem, because it proves to have enough ex-
pressiveness to describe our decision boundaries and has the ad-
vantage that it is cheap to train and run in compact and low-power
consumption hardware such as the one in a UAV.

Selection of the Architecture

The network has to be expressive enough to be able to describe
the decision boundary between classes, but not too expressive as
to overfit to our training data. This characteristic is set by the
depth of the network, the amount of kernels in each convolutional
layer and the amount of neurons in the fully connected ones. To
choose our network size, we iterate starting with networks of a
small number of filters per layer and of only one convolutional
layer and one fully connected, and grow the network until we are
almost able to overfit to a small sample of our dataset. After this,
we further increase the expressiveness by adding more kernels to
each convolutional layer and more neurons to the fully connected
ones, and we train it again using our full training dataset. To
avoid the bigger network to overfit to our training data we use a
state-of-the-art method called “dropout” (Srivastava et al., 2014).
This prevents neurons from learning complex co-adaptations in
the fully connected layers by randomly dropping some of them
during training, making the network generalize better, which we
corroborate by getting a good performance in our cross-validation
data. We also have to be careful to set an upper boundary in the
network’s complexity, due to our constraint of real-time capabil-
ity, meaning that the network needs to be both lightweight and
of a complexity that is low enough to run fast in an embedded
platform that we can fit in a flying vehicle. We are careful when
choosing the depth and size of each layer to enforce this restric-
tion.

Finally, we want our classifier to represent a vector containing
the a probablity distribution of the input patch being a plant and a
weed. For this, we use output neurons with a softmax activation



Figure 4. Detailed architecture used for the blob-wise classification.

function, which convert the output of the network to a pseudo-
probability distribution that works well for this problematic.

From this we design a network like the one in Figure 4. This ar-
chitecture is composed by 3 convolutional layers (2 of kernel size
5×5 and the last one of 3×3 kernels), all of them using the Rec-
tified Linear Unit for the non-linearity, which proves to speed up
training considerably, and followed by 2×2 max-pooling for di-
mensionality reduction. These 3 convolutional and max pooling
layers are followed by 2 fully connected layers with 512 neurons
each, which results in a 512-dimensional vector to be fed into the
softmax layer that outputs the pseudo probability distribution we
want as an output.

It is important to note that even though the network is shallow
compared to the ones used by He et al. (2015); Szegedy et al.
(2016), it is more complex and than those normally used for plant
discrimination problems (Potena et al., 2016). However, due to
the blob approach, the network doesn’t need to examine every
pixel of the original input image, and it only runs one time per
segmented patch, speeding up the process considerably.

Retraining for different crop growth stage

As the plants grow, they not only change their size, but also their
shapes and colors, which means that we may not get the best re-
sults if the growth stage is very different. In this case, the features
extracted from the convolutional and fully connected layers may
still be useful, so we can try to retrain the last layer of the net-
work, which is the classifier, by feeding the network with a sam-
ple of labeled data in the new growth stage. We will show that
even though the classifier is very good without retraining, this
technique can yield significant improvements, and can be done in
a fast way due to the need to only train a linear classifier and in a
small subset of the new data.

EXPERIMENTAL EVALUATION

The experiments are designed to show the accuracy and efficiency
of our method and to support the claims made in the introduction
that our classifier is able to (i) learn feature representations by
itself and thus be implemented quickly, (ii) learn an accurate de-
cision boundary to accurately discriminate plants and weeds with
an accuracy of over 95%, being able to eliminate a majority of
weeds with a minimal number of misclassified crops when tested
in a similar growth stage; (iii) quickly improve after retraining by

using the previously learned features and adapting the last layer
to a small subset of labeled new data; and (iv) run in real-time.

We implement the whole approach presented in this paper rely-
ing on the Google TensorFlow library. This allows a new PhD
student in the field of plant classification to perform the full im-
plementation of the approach and its evaluation in slightly over
two months (not including the acquisition time of the training
and evaluation datasets), which supports our claim (i) that due to
the self-learning of feature descriptors the pipeline can be imple-
mented quickly.

Training of the Network

To train the network we use a dataset which we will call “Dataset
A”, from Table 1. We split the dataset in 3, leaving 70% of it
available to us for training, 15% for validation, and 15% for test
after the whole pipeline was designed and trained, and therefore
show how the network generalizes to unseen data. This dataset
was captured with the plants in an early growth stage and it is
quite balanced in it’s plants/weeds relation. We compare it with
Dataset B from Table 1, which was captured 2 weeks later, in a
more advanced growth stage, and we analyze the performance of
the network.

Both datasets were captured using a JAI camera in nadir view
capturing RGB+NIR images. For a typical UAV based monitor-
ing scenario, not every image from the camera needs to be classi-
fied, and one image per second is sufficient for real applications.
Thus, we take images at 1Hz , setting the upper bound for testing
our real-time classification capabilities to 1 second per raw input
image.

Parameter Dataset A Dataset B
no. images 867 1102
no. patches 7751 28389

no. crops 2055 2226
no. weeds 5696 26163

Pc/Pw 0.36 / 0.64 0.08 / 0.92
avg. patch/image 9 25

Table 1. Information about the datasets.

A commonly used technique for augmenting datasets is to apply
affine transformations to the training portion of the dataset, in or-
der for the network to learn some type of invariance. In our case,
all the plants are previously scaled to patches of 64x64 pixels,



aiming for scale and translation invariance, and we further apply
64 even rotations to try to learn rotationally invariant features.
After this we perform a per image normalization, which is also a
common practice in learning to speed up the training.

Then we run the training using a cross-entropy cost function,
which works well with the ReLU activations, along with a first
order optimizer, which we use to minimize the cost by using
stochastic gradient descent in batch sizes of 100. During training
we reduce the learning rate by a third every 2 epochs to converge
better the cost function’s minima, and we run until convergence
is achieved.

The training takes 3 days in a low-cost NVIDIA GeForce GTX
940MX, which is not a top notch graphics card, and it is actu-
ally less powerful than a currently available embedded platform
like the Jetson TX2 which runs in a drone. This is critical if re-
training is necessary, as we show later. If we use state of the art
GPU’s for training, the process is cut short by an order of magni-
tude, not only because of the difference in the floating operations
per second, but also because the whole pipeline can be stored
in GPU memory avoiding a bottleneck in the copying operations
from system memory to GPU memory before each calculation.
In Table 2 we show these differences. This further supports our
claim (i) that the system can be implemented quickly, given the
short training time even in a low-cost GPU.

Model Cores Arch. TFLOPs RAM
Titan Xp 3840 Pascal 12 12GB

Jetson TX2 SoC 256 Pascal 1.5 8GB
GTX 940MX 384 Maxwell 0.84 2GB

Intel i7 - - 0.04 -

Table 2. Hardware comparison.

Performance of the Classifier

This experiment is designed to support our claim (ii) which states
that we learn an accurate decision boundary to accurately dis-
criminate plants and weeds with an accuracy of over 95%, being
able to eliminate a majority of weeds with a minimal number of
misclassified crops.

We now analyze the accuracy of the learned classifier and we
evaluate its invariance to the crop growth. We tested the accuracy
of our classifier in the test set (which only contains unseen data)
of dataset A, and its accuracy in the test set of dataset B, when
trained in A. We can see the results in Table 3:

Dataset Test set A Test set B
Accuracy 97.3% 89.2%

Table 3. Accuracy of the classifier trained in train set of A, and
evaluated in Test set of A and B.

As we can see, we have a very high overall accuracy in the unseen
data from dataset A, because it is from the same crop growth
stage as the data the network has seen while it was being trained,
and the performance of the classifier drops when used 2 weeks
later. However, the overall accuracy does not say much about the
quality of the classifier, especially in cases like dataset B, that
are highly unbalanced. Since the main goal of our classifier is to
detect weeds to proceed to their elimination, in Table 4 we show
the obtained precision and recall for the detection of weeds in
both datasets.

It is important to note that due to the nature of our problem it is
critical to have a low precision in the weed classifier, because a
large number of false positives means that plants get classified
as weeds and thus get eliminated, especially in the case of me-
chanical treatment. This is not the case for selective spraying, but
spraying plants with herbicides defeats the purpose of the sys-
tem anyway. It is also desirable to have a high recall to eliminate
the most weeds we can, but not eliminating crops is of a critical
importance.

Dataset Dataset A Dataset B
True Positives 829 16353

True Negatives 290 1406
False Positives 27 94

False Negatives 16 2020
Weed precision 96.84% 99.42%

Weed recall 98.10% 89.00%

Table 4. Quality comparison of the classifier for the weed class
trained in A.

Taking this into consideration, we can see from Table 4 that even
if the recall of the weed detector decreases two weeks later, the
precision is very high, allowing us to not eliminate valuable crops
erroneously, fulfilling our demands for the system, and support-
ing our claim (ii).

Retraining the network

This experiment is designed to prove claim number (iii) that our
system can be easily and cheaply retrained to adapt to new growth
stages.

As stated in the previous section, even though the precision of the
weed detector was still very high two weeks later in the growth
stage, the recall fell considerably, meaning that a good number of
weeds were not being removed from the field. To fix this problem,
we can cheaply retrain the last layer of the classifier, re-utilizing
the feature vectors extracted by the convolutional filters learned
from dataset A. We show the results it yields in Table 5, where
we can see that both precision and recall have improved, mak-
ing the system not only eliminate less crops erroneously, but also
eliminate more weeds, which is the main purpose of it. In Table 6
we can also assess the general accuracy of the retrained classifier.

Dataset Trained in A Retrained in B
True Positives 16353 17927

True Negatives 1406 1190
False Positives 94 60

False Negatives 2020 696
Weed precision 99.42% 99.66%

Weed recall 89.00% 96.26%

Table 5. Quality comparison of the classifier for the weed class
in test set of B, before and after retraining.

Dataset Trained in A Retrained in B
Accuracy 89.2% 96.1%

Table 6. Accuracy in dataset test set of B before and after
retraining on small subset (15%) of training set of B.

What is most important to point out is that, while the full classifier
takes 3 days to train in the cheap GPU, the retraining achieves
remarkable improvements in only 20 minutes. This is done by
feeding the training with a balanced sub-sample (15%) of dataset
B containing the same number of weeds and plants.



This supports our claim that our system can be easily and cheaply
adapted to new growth stages where plants have significantly
changed their appearance.

Figure 5. Architecture used for the blob-wise classification, with
the size of each layer specified and the amount of floating

operations needed per pass.

Runtime

This experiment is designed to prove claim number (iv) that our
system can run in real-time in a flying platform. In Figure 5, we
show another representation of the network, in which we can also
see how many variables each layer contains, and how many float-
ing operations it takes to pass through it. The final architecture
needs 1.4 G floating point operations to do a full forward pass,
which means that we can roughly calculate how long it will take
to do a full pass depending on the FLOPs of the hardware. This
results in Table 7. It is important to note that we left out the most
powerful GPU because it is non realistic to think that we would
put a desktop workstation in a small flying drone with the purpose
of inference.

Another aspect we can see from Figure 5 is that the architecture
is using a total number of 10 M 32-bit floating point parameters.
This means that we can will have a full network size of 40 MB,
which is something that our embedded hardware can store easily.

Hardware Theoretical time Actual time
Jetson TX2 SoC 1ms 4ms± 1ms

Geforce GTX 940MX 2ms 7ms± 1ms
i7 Processor 40ms 50ms± 10ms

Table 7. Average and standard deviation running time per blob,
depending on the hardware.

In Table 8, we analyze how long it would take in average to do a
forward pass in all patches from a raw image, depending on the
dataset. This highly depends on the growth stage, as we can see
from the fact that dataset B has more patches per image, meaning
that there are more plants and weeds present in the field, which
makes sense. In this table we see that even with 25 images per
image, which is our worst case, we are still very relaxed in our
real-time constraint, by a margin of 5 in the case of our outdated
GPU and a margin of 10 in the state of the art SoC, fulfilling our
efficiency claim. This means that we can either analyze images
at a higher frame rate, or fly higher, covering more crops, if the
resolution of the camera is good enough to capture them from a
distance. We also show that for our purposes, it is worth to loose

constant time complexity of the algorithm towards linear time be-
cause, due to the upper bound of the number of patches contained
in each raw image, we are actually gaining in performance.

Dataset Dataset A Dataset B
avg patches per image 9 25

GEForce940Mx(7 ms/patch avg) 63 ms 175 ms
Jetson TX2(4 ms/patch avg) 36 ms 100 ms

Table 8. Average runtime per image.

As a final comment about runtime, we should consider that for
each raw input image containing n vegetation blobs we segment
we get a patch array of size n. Since our neural network platform
allows us to run forward passes in batch, we can gain a consider-
able increase in performance if we send the whole batch of blobs
to the GPU RAM at the same time, rather than queuing all oper-
ations sequentially.

The presence of low cost, lightweight, power efficient hardware
that can run this classifier in remarkably low time with great per-
formances, make this approach a great alternative for online use
in flying platforms working in dynamic environments. This sup-
ports our claim number (iv) that our system can run in real-time
in a UAV.

CONCLUSIONS

UAVs as well as other robots for precision farming must be able
to distinguish the crops on the field from weeds. In this paper, we
addressed the problem of detecting sugar beet plants and weeds
using a RGB+NIR camera over real fields. We developed a classi-
fication system based on convolutional neural networks (CNNs).
Our approach is purely vision-based exploiting 4-channels and
does not require geometric priors such as that the sugar beets
must been planted in crop rows. In addition to that, the CNNs are
an end-to-end approach such that no manual features must be de-
fined. The input to the CNNs are blobs of vegetation and provide
a classification output for such blobs. This renders the approach
fast such that the system can be executed online. By relying on
existing libraries for CNNs such as Tensorflow by Google, our
classification system can be replicated quickly in the order of 2
months. We implemented our approach and thoroughly evalu-
ated it using image data recorded on a real farm in different sugar
beet fields and illustrate that our approach allows for accurately
identifying the weeds on the field.
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