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Receding Moving Object Segmentation
in 3D LiDAR Data Using Sparse 4D Convolutions

Benedikt Mersch, Xieyuanli Chen, Ignacio Vizzo, Lucas Nunes, Jens Behley, Cyrill Stachniss

Abstract—A key challenge for autonomous vehicles is to navi-
gate in unseen dynamic environments. Separating moving objects
from static ones is essential for navigation, pose estimation, and
understanding how other traffic participants are likely to move
in the near future. In this work, we tackle the problem of
distinguishing 3D LiDAR points that belong to currently moving
objects, like walking pedestrians or driving cars, from points
that are obtained from non-moving objects, like walls but also
parked cars. Our approach takes a sequence of observed LiDAR
scans and turns them into a voxelized sparse 4D point cloud.
We apply computationally efficient sparse 4D convolutions to
jointly extract spatial and temporal features and predict moving
object confidence scores for all points in the sequence. We develop
a receding horizon strategy that allows us to predict moving
objects online and to refine predictions on the go based on new
observations. We use a binary Bayes filter to recursively integrate
new predictions of a scan resulting in more robust estimation.
We evaluate our approach on the SemanticKITTI moving object
segmentation challenge and show more accurate predictions than
existing methods. Since our approach only operates on the
geometric information of point clouds over time, it generalizes
well to new, unseen environments, which we evaluate on the
Apollo dataset.

Index Terms—Semantic Scene Understanding; Deep Learning
Methods

I. INTRODUCTION

D ISTINGUISHING moving from static objects in 3D
LiDAR data is a crucial task for autonomous systems and

required for planning collision-free trajectories and navigating
safely in dynamic environments. Moving object segmenta-
tion (MOS) can improve localization [5], [7], planning [34],
mapping [5], scene flow estimation [2], [15], [37], or the
prediction of future states [38], [40]. There are mapping
approaches that identify if observed points are potentially
moving or have moved throughout the mapping process [1],
[7], [16], [28]. On the contrary, identifying objects that are
actually moving within a short time horizon are of interest
for online navigation [34], can improve scene flow estimation
between two consecutive point clouds [2], [15], [37], or
support predicting a future state of the environment [40].
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Fig. 1: Given a sequence of point clouds, our method identifies that
the points belonging to the bicyclist move in space over time. Top:
Input sequence with points colorized (blue) with respect to the time
step. The darker the blue color, the newer the scan. Bottom: Our
method successfully predicts the bicyclist as moving (red) and the
parked car as static (black).

In this work, we focus on the task of segmenting moving
objects online using a limited time horizon of observations.
Given a sequence of 3D LiDAR scans, we predict for each
point if it belongs to a moving object, for example bicyclists
or driving cars, or a static, i.e., non-moving one, like parked
cars, buildings, or trees.

In contrast to the task of semantic segmentation, moving
object segmentation in 3D LiDAR data does not require a
complex notion of semantic classes with extensive labeling
to supervise learning-based methods or to evaluate their per-
formance. Instead, the goal is to predict if a local point
cloud structure moves throughout space and time or remains
static as visualized in Fig. 1. In general, the task requires
the extraction of temporal information from the LiDAR se-
quence to decide which points are moving and which are not.
Previous works tackled this problem by extracting temporal
information from residual range images [5] or bird’s eye
view (BEV) images [26], typically using a 2D convolutional
neural network (CNN). The back-projection from these 2D
representations to the 3D space often requires post-processing
like k-nearest neighbor (kNN) clustering [5], [9], [12], [25] to
avoid labels bleeding into points that are close in the image
space but distant in 3D. Other approaches can identify objects
that have moved in 3D space directly during mapping [1]
or with a clustering and tracking approach [6]. Nevertheless,
these offline methods often rely on having access to all LiDAR
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observations in the sequence.
The main contribution of this paper is a novel approach

that predicts moving objects online for a short sequence of
LiDAR scans. We exploit sparse 4D convolutions to jointly
extract spatio-temporal features from the input point cloud
sequence. The outputs of our network are moving object
confidence scores for the points in each input scan. Since
we directly predict in a voxelized sparse 4D space, we do
not require any back-projection and clustering to retrieve per-
point predictions. Our method operates in a sliding window
fashion and appends a new observed scan to the input sequence
while discarding the oldest one. By doing so, our method can
include new observations into the estimation as they arrive. We
implemented a binary Bayes filter to fuse these predictions and
in this way increase the robustness to false predictions. Since
our method uses only the spatial point information over time,
it is class agnostic and generalizes well on unseen data.

In sum, we make three key claims: Our approach (i)
segments moving objects in LiDAR data more accurately
compared to existing methods, (ii) generalizes well to un-
seen environments without additional domain adaptation tech-
niques, and (iii) improves the results by integrating on-
line new observations. We back explicitly up these three
claims by our experimental evaluation. The code of this
paper as well as our pre-trained models will be available at
https://github.com/PRBonn/4DMOS.

II. RELATED WORK

We can group LiDAR-based moving object segmentation
methods with respect to their definition of dynamic objects.
Besides map cleaning methods [17], [28], there are also
mapping approaches that remove objects that have moved
throughout the mapping process from the data before fusing
them with the map [1], [7], [16]. For example, Wang et al. [39]
apply graph-based clustering to segment objects that could
move in 3D LiDAR data. Ruchti and Burgard [30] use a deep
neural network to predict dynamic probabilities for each point
in a range image before fusing them with a map. In contrast
to that, Thomas et al. [34] proposed a self-supervised method
for classifying indoor LiDAR points into dynamic labels. The
authors explicitly distinguish between short-term and long-
term movable objects to treat them differently in localization
and planning. Arora et al. [1] explore ground segmentation
with ray-casting to coarsely remove dynamic objects in LiDAR
scans. Other researchers encode non-static objects into the
map by estimating multi-modal states [33]. Recently, Chen et
al. [6] propose a pipeline to automatically label moving objects
offline. They first use an occupancy-based method to find
dynamic point candidates and further identify moving objects
by sequential clustering and tracking. Instead of removing all
long-term changes caused by objects that have moved, our
method segments motion online and focuses on objects that
are actually moving within a limited time horizon.

Previously, scene-flow methods first classify moving points
and then estimate separate flows for static and moving objects
between two point clouds [2], [15], [37]. In more detail,
Baur et al. [2] estimate the 3D scene flow between two point

clouds composed of a rigid body motion for static and a per-
point flow for moving objects. They use a self-supervised
motion segmentation signal based on the discrepancy between
per-point flow and rigid body motion for training their net-
work. Even though moving object segmentation can be a by-
product of scene flow estimation, most methods only consider
two subsequent frames which could be a too short time horizon
for classifying slowly moving objects.

Other methods primarily focus on segmenting moving ob-
jects online using a larger time horizon. To cope with the
computational effort of 3D point cloud sequences, projection-
based methods have been proposed. Chen et al. [5] developed
LMNet, which exploits existing single-scan semantic segmen-
tation networks that get residual range images as additional
inputs to extract temporal information. Recently, Mohapatra et
al. [26] introduced a method using BEV images for moving
object segmentation and achieve faster runtime but inferior
performance compared to LMNet. Projection-based methods
often suffer from information loss or back-projection artifacts
and require additional steps like kNN clustering [5], [9], [12],
[25]. In contrast, our method directly predicts in 4D space and
does not require any post-processing techniques.

Extracting temporal information from sequential point cloud
data is gaining more attention in research since it allows to
increase temporal consistency for classification tasks or to
predict future states of the environment. To fuse independent
semantic single-scan predictions, Dewan and Burgard [10]
use a binary Bayes filter by propagating previous predictions
to the next scan using scene flow. In contrast, Duerr et
al. [12] optimize a recurrent neural network to temporally align
range image features from a single-scan semantic segmen-
tation network. Some works project the spatial information
into 2D representations like range images [5], [12], [19],
[24] or BEV images [23], [26], [40] and then apply 2D
or 3D convolutions to reduce the computational burden of
jointly processing 4D data. Besides point-based methods [13],
[14], [21] for processing point cloud sequences, representing
point clouds as sparse tensors can also circumvent the back-
projection issue and makes it possible to apply sparse convo-
lutions efficiently. For example, Shi et al. [32] propose SpSe-
quenceNet for 4D semantic segmentation which processes two
LiDAR frames with sparse 3D convolutions and combines
their temporal information with a cross-frame global attention
module. To apply convolutions across time, Choy et al. [8]
propose Minkowski networks for semantic segmentation using
sparse 4D convolutions on temporal RGB-D data.

In this paper, we propose a novel moving object segmen-
tation method that jointly applies sparse 4D convolutions on
a sequence of LiDAR point clouds building on top of the
Minkowski engine [8]. Unlike previous methods, we operate
online and do not need a pre-built map representation. Whereas
most classification methods output one prediction for each
frame, we propose to predict moving objects using a receding
horizon strategy. This allows us to incorporate new observa-
tions in an online fashion and refine predictions more robustly
by Bayesian filtering.

https://github.com/PRBonn/4DMOS
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Fig. 2: Overview of our approach operating with a receding horizon strategy. We transform all scans of the considered receding window to
the current viewpoint. Next, we aggregate all points and create a sparse 4D point cloud. We apply sparse 4D convolutions to jointly extract
spatio-temporal features. Our final layer predicts moving object confidence scores for all points in the input sequence.

III. OUR APPROACH

Given a point cloud sequence S={Sj}N−1j=0 of N LiDAR
scans Sj={pi∈R4}Mj−1

i=0 with Mj points represented as ho-
mogeneous coordinates, i.e., pi= [xi, yi, zi, 1]

>, the goal of
our approach is to predict, which points are actually moving
in the input sequence S. We denote the current scan as S0 and
index the previous past scans from 1 to N−1.

As shown in Fig. 2, we first transform the past point
clouds S1, . . . ,SN−1 to the viewpoint of the current scan S0
and create a sparse 4D tensor, see Sec. III-A. We extract spatio-
temporal features with a sparse convolutional architecture
and predict confidence scores of being actually moving for
each point in the sequence, see Sec. III-B. As soon as we
obtain a new LiDAR scan, we shift the prediction window as
explained in Sec. III-C. The receding horizon strategy allows
to recursively update the estimation by fusing later predictions
for the same scan in the sequence in a binary Bayes filter,
see Sec. III-D.

A. Input Representation

The first step is to locally align all past point
clouds S1, . . . ,SN−1 in the sequence S to the viewpoint of
the current LiDAR scan S0. In this work, we assume to
have access to estimated relative pose transformations T j−1

j

between scans Sj−1 and Sj . Odometry estimation is a standard
task for autonomous vehicles and can be efficiently solved
on-board with an online SLAM system like SuMa [4] and
further improved by integrating information from an inertial
measurement unit [31] or by using wheel encoders. Our
approach is agnostic to the source of odometry information
and a local consistency is sufficient such that obtaining this
data is not a problem in practice. We represent the relative
transformations between scans T 0

1, . . . ,T
N−1
N as transforma-

tion matrices, i.e., T j−1
j ∈R4×4. Further, we denote the jth

scan transformed to the current viewpoint by

Sj→0 = {T 0
jpi}pi∈Sj with T 0

j =

j−1∏
k=0

T j−k−1
j−k . (1)

The motivation behind locally aligning the scans in the
sequence is that our CNN should focus on local point patterns
that move in space over time and for that, pose information
helps. We also provide an experimental analysis on the ef-
fect of the pose alignment in Sec. IV-E. After applying the
transformations, we aggregate the aligned scans into a 4D
point cloud by converting from homogeneous coordinates to
cartesian coordinates and by adding the time as an additional
dimension resulting in coordinates [xi, yi, zi, ti]

> for point pi.
Since outdoor point clouds obtained from a LiDAR sensor

are sparse by nature, we quantize the 4D point cloud into
a sparse voxel grid with a fixed resolution in time ∆t and
space ∆s. We use a sparse tensor to represent the voxel grid
and store the indices and associated features of non-empty
voxels only. Sparse tensors are more memory efficient com-
pared to dense voxel grids since they only store information
about the voxels that are actually occupied by points. The
sparse representation allows us to use spatio-temporal CNNs
efficiently since common dense 4D convolutions become in-
tractable on large scenes.

B. Sparse 4D Convolutions

Using the sparse input representation discussed
in Sec. III-A, we can apply time- and memory-efficient
sparse 4D convolutions to jointly extract spatio-temporal
features from the sparse 4D occupancy grid and predict a
moving object confidence score for each point. To this end,
we use the Minkowski engine [8] for sparse convolutions.
Sparse convolutions operate on the sparse tensor and define
kernel maps that specify how the kernel weights connect
the input and output coordinates. The main advantage of
sparse convolutions is the computational speed-up compared
to dense convolutions.
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We use a sparse convolutional network developed for 4D
semantic segmentation on RGB-D data and adapt it for moving
object segmentation on LiDAR data. More specifically, we use
a modified MinkUNet14 [8], which is a sparse equivalent of
a residual bottleneck architecture with strided sparse convo-
lutions for downsampling the feature maps and strided sparse
transpose convolutions for upsampling. The skip connections
in a UNet fashion [29] help to maintain details and fine-
grained predictions. We reduce the number of feature channels
in the network resulting in a model with 1.8 M parameters,
which is comparably low compared to the moving object
segmentation baseline LMNet [5] with SalsaNext [9] (6.7 M)
or RangeNet++ [25] (50 M) backbones. The last layer of
our network is a 4D sparse convolution with a softmax that
predicts moving object confidence scores between 0 and 1 for
each point.

In contrast to 4D semantic segmentation methods that use
RGB values as input features [8], we initialize voxels occupied
by at least one point with a constant feature of 0.5. Therefore,
our input is a sparse 4D occupancy grid only storing voxels
occupied by a point. This makes it easier to deploy the ap-
proach in new environments without estimating the distribution
of coordinates or intensity values to standardize the input data
as done for semantic segmentation [25]. The generalization
capability of our approach is further investigated in Sec. IV-C.

C. Receding Horizon Strategy

The fully sparse convolutional architecture introduced
in Sec. III-B jointly predicts moving object confidence scores
for all points in the input sequence. At inference time, one
option would be to divide the input data into fixed, non-
overlapping intervals and to predict each sub-sequence once.

Instead, we propose a different strategy and develop a
receding horizon strategy for moving object segmentation.
When the LiDAR sensor obtains the next point cloud, we add
it to the input sequence and discard the oldest scan resulting in
a first in, first out queue, see Fig. 2. The main advantage is that
we can re-estimate moving objects based on new observations
and therefore increase the time horizon used for prediction.
It is a natural idea to use multiple observations to reduce
the uncertainty of semantic estimations and has been well
investigated in mapping algorithms like SuMa++ [7]. It is still
rarely used for online segmentation, and we propose a method
to improve the online moving object segmentation.

D. Binary Bayes Filter

Since our proposed method predicts moving objects
in N scans at once, the receding horizon strategy leads to
a re-estimation of the previously predicted N−1 scans. These
multiple predictions from different time steps allow refining
the estimation of moving objects based on new observations.
We propose to fuse them recursively using a binary Bayes
filter. This makes it possible to increase the time horizon
used for segmentation and helps to predict slowly moving
objects that only moved a small distance within the initial
time horizon. The Bayesian fusion reduces the number of false

Fused
Predictions

Binary Bayes Filter

t=1 t=2 t=3 t=5t=4 t=6 t=7 t=8 t=9

Temporal
Windows

Non-overlapping Strategy
Receding Horizon Strategy
Confidence Predictions

Fig. 3: Overview of our proposed binary Bayes filter. At t=5, the non-
overlapping strategy uses the five per-scan confidence predictions,
whereas our receding horizon strategy integrates the next observation
at t=6 by shifting the temporal window. Our binary Bayes filter
then fuses multiple moving object confidence scores to improve the
prediction.

positives and negatives that arise due to occlusions or noisy
measurements.

More formally, for a scan Sj , we can estimate moving ob-
jects at time t by fusing all predicted moving object confidence
scores from previously observed point cloud sequences z0:t
that contain the scan Sj . The term zt denotes the observed
input point cloud sequence S0, . . . ,SN−1 with S0 recorded at
time t. We want to estimate the joint probability distribution
of the moving state m(j) of all points up to time t denoted by

p
(
m(j) | z(j)0:t

)
=
∏
i

p
(
m

(j)
i | z

(j)
0:t

)
, (2)

where m(j)
i ∈{0, 1} is the state of point pi∈Sj being moving

in the scan Sj . For better readability, we will from now on
consider a single point pi in point cloud Sj and omit the
superscript j without loss of generality.

We apply Bayes’ rule to the per-point probability distribu-
tion p (mi | z0:t) in Eq. (2) and follow the standard derivation
of the recursive binary Bayes filter [36]. Using the log-odds
notation l(x)= log p(x)

1−p(x) commonly used in occupancy grid
mapping, we finally end up with

l (mi|z0:t)=

{
l (mi|z0:t−1)+l (mi |zt)−l(mi), if t∈T
l (mi|z0:t−1) , otherwise,

(3)
with T being the set of time steps in which we observe
point pi in the input sequence zt. Whereas l (mi | z0:t−1) is
a recursive term including all predictions for the point i up
to time t−1, the term l (mi | zt) denotes the log-odds of the
probability to be moving at time t. Note that if we do not
observe the point pi at time t, there is no prediction and we do
not update the recursive term l (mi | z0:t−1). The prior prob-
ability p0∈(0, 1) in the last part l(mi)= log p0

1−p0
provides a

measure of the innovation introduced by a new prediction. For
moving object segmentation, the prior determines how much
a predicted moving point in a single scan influences the final
prediction. We will investigate different priors in Sec. IV-E.

At time t, our network outputs moving object confi-
dence scores ξ(j)t ∈{ξt,i}

Mj−1
i=0 with ξt,i∈(0, 1) for each point
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cloud Sj with Mj points in the current input sequence zt. We
can interpret the predicted confidence score ξt,i for a single
point pi given the input sequence zt as posterior probability
reading

ξt,i = p (mi = 1 | zt) . (4)

The log-odds expression of the confidence score in Eq. (3)
is then given as

l (mi | zt) = log
ξt,i

1− ξt,i
. (5)

Fig. 3 illustrates the non-overlapping strategy in the upper
part and our proposed receding horizon strategy with a binary
Bayes filter to fuse multiple predictions in the lower part. We
obtain the final prediction by converting the recursively esti-
mated per-point log-odds l (mi | z0:t−1) to confidence score
using p(x)= log l(x)

1+l(x) . If the confidence is larger than 0.5,
we predict the point to be moving and otherwise non-moving.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is a method to segment actually
moving objects in 3D LiDAR data by exploiting consecutive
scans in an online fashion. Additionally, we carry out the
prediction using a receding horizon strategy and integrate new
predictions recursively in a binary Bayes filter.

We present our experiments to show the capabilities of
our method and to support our three key claims: Our ap-
proach (i) segments moving objects in LiDAR data more
accurately compared to existing methods, (ii) generalizes well
to unseen environments without additional domain adaptation
techniques, and (iii) improves the results by integrating online
new observations.

A. Experimental Setup

For our experimental evaluation, we train all models on
the SemanticKITTI [3] dataset. We use sequences 00-07 and
09-10 for training, 08 for validation, and 11-21 for testing.
During training, we optimize the model with a binary cross-
entropy loss for all points in the input sequence and a learning
rate of 0.0001 and a weight decay of 0.0001 with the Adam
optimizer [18]. If not stated differently in the experiments,
our input point clouds sequences contain N=10 input scans
with a temporal resolution of ∆t=0.1 s. The spatial voxel
size for quantization is ∆s=0.1 m. To increase the diversity
of the training data and to avoid overfitting, we follow the
data augmentation of Nunes et al. [27] and apply random
rotations, shifting, flipping, jittering, and scaling to all points
in the same 4D point cloud. We train all networks for less
than 60 epochs and keep the model with the best performance
on the validation set. We follow the receding horizon strategy
presented in Sec. III-C and combine predictions with the
binary Bayes filter proposed in Sec. III-D using a prior
of p0=0.25.

For quantitative evaluation, we report the standard
intersection-over-union (IoU) metric [11] for the moving class
given by

IoUMOS =
TP

TP + FP + FN
, (6)

IoUMOS [%]

SalsaNext [9] (movable classes) 4.4
SceneFlow [20] 4.8
SpSequenceNet [32] 43.2
LMNet [5] 58.3
KPConv [35] 60.9
Ours, N=10 Scans, ∆t=0.1 s, p0=0.25 65.2

LMNet+AutoMOS+Extra [6] 62.3

TABLE I: Performance on SemanticKITTI [3] moving object seg-
mentation benchmark [5]. Baseline results taken from [6]. Best result
in bold.

with true positive TP, false positive FP, and false negative FN
classifications of moving points.

To evaluate the generalization capability of our ap-
proach across environments, we additionally test it on an-
other dataset without the use of domain adaptation tech-
niques. We follow the setup of Chen et al. [6] and use
the Apollo-ColumbiaParkMapData [22] dataset sequence 2
(frames 22300-24300) and sequence 3 (frames 3100-3600)
annotated the same way as SemanticKITTI. Note that Se-
manticKITTI and Apollo both use Velodyne HDL-64E LiDAR
scanners, but they are mounted on a different car at a different
height and recorded data in a different environment.

B. Moving Object Segmentation Performance

Our first experiment evaluates the performance of our model
on the SemanticKITTI [3] moving object segmentation bench-
mark [5]. The results support the first claim about segmenting
moving objects more accurately compared to existing methods
that are published and open-source. For a fair comparison,
we follow the setup from LMNet [5] and use the provided
SemanticKITTI poses estimated with an online SLAM sys-
tem [4]. We report the result on the hidden test set in Tab. I
and compare it to additional baselines provided by Chen et
al. [5].

One can see that single-scan segmentation with Sal-
saNext [9] and predicting all movable classes as moving
leads to low performance of 4.4% IoUMOS. The same ap-
plies to estimating scene flow and thresholding the flow
vectors to determine if an object moves. The online multi-
scan semantic segmentation methods SpSequenceNet [32],
LMNet [5], and KPConv [35] show improved results up
to 60.9% IoUMOS, see Tab. I. Our method can outperform
all baselines with an IoUMOS of 65.2%, which demonstrates
the effectiveness of our approach. Our performance is also
better than LMNet+AutoMOS+Extra [6], which additionally
uses automatically generated moving object labels for training.
This emphasizes the strength of our result.

C. Generalization Capabilities

The next experiment evaluates our method’s ability to gen-
eralize across different environments. It supports our second
claim that the approach generalizes well on unseen data. We
test our model on the Apollo dataset without using any domain
adaptation techniques or re-training and compare to baselines
that use different levels of domain adaptation. LMNet [5] uses
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IoUMOS [%]

LMNet [5] 16.9
LMNet+AutoMOS [6] 45.7
LMNet+AutoMOS+Fine-Tuned [6] 65.9
Ours, N=10 Scans, ∆t=0.1 s, p0=0.25 73.1

TABLE II: Performance on Apollo [22] dataset. Best result in bold.

the same SemanticKITTI [3] sequences for training, whereas
LMNet+AutoMOS [6] is LMNet trained on an automati-
cally labeled training set of Apollo. LMNet+AutoMOS+Fine-
Tuned [6] is a model pre-trained on SemanticKITTI and fine-
tuned on Apollo, see [6] for details. The results in Tab. II
suggest that for the baselines, domain adaptation like re-
training or fine-tuning improves the results with a maximum
IoUMOS of 65.9%. Our method yields the highest IoUMOS
of 73.1% without any additional steps, which shows that the
approach is well capable of predicting moving objects in an
unknown environment.

We hypothesize that extracting moving object features in a
sparse 4D occupancy grid is advantageous since the method
does not use any sensor-specific information like intensity or
RGB values. Directly operating in 4D space also makes the
network less prone to overfitting to a specific sensor location
as in the case of range-images, where moving objects are
usually found in certain areas of the image. We also do not
use information about semantic classes whose distribution can
differ between environments.

D. Receding Horizon Strategy and Fusion

This section backs up our third claim that the proposed
receding horizon strategy combined with a binary Bayes filter
improves the MOS results by integrating online new obser-
vations. We investigate the effect of using different numbers
of input scans N and temporal resolutions ∆t for prediction
as well as fusing with different prior probabilities p0 in the
Bayesian fusion presented in Sec. III-D.

We compare models trained on N=2, 5, and 10 input and
output scans as well as a model that predicts a single output
scan. Since the combination of a receding horizon strategy
and the Bayesian fusion of multiple beliefs allows us to
use information from a larger time horizon, we additionally
compare to two variant setups using N=5 input and output
frames but with a different temporal resolution. One uses a
resolution of ∆t=0.2 s resulting in a time horizon of 0.8 s, the
other one processes 1.2 s of scans that are ∆t=0.3 s apart. For
comparison, the method using N=2 scans with a resolution
of ∆t=0.1 s has a time horizon of 0.2 s, the one with N=5
scans a horizon of 0.4 s and the model using N=10 scans
looks at 0.9 s of data. We visualize the time horizons and
temporal resolutions for each variant in Fig. 4 as colored dots
on a timeline sampled at 10 Hz.

The Bayesian prior p0 in Eq. (3) serves to compute
the difference between the new predicted log-odds and the
initially expected log-odds. Therefore, modifying the prior
influences the contribution of new observed moving objects
to the updated prediction. Fig. 4 shows the IoUMOS on
the SemanticKITTI validation set for different priors. With a

Fig. 4: Comparison of IoUMOS on the SemanticKITTI [3] validation
set using different moving object priors for the binary Bayes filter.
The colors indicate variants of our approach using different time
horizons and resolutions. The colored dots on the timeline visualize
which past scans we input to the model for prediction at time t

.

small prior (e.g. p0=0.01), we fuse predicted moving objects
more aggressively leading to more true positives, but also
an increased number of false positives since inconsistent
predictions are not filtered out. A large prior (e.g. p0=0.99)
results in a conservative fusion where objects are only pre-
dicted to be moving if all predictions agree. We found that a
moving object prior between 0.1 and 0.3 works best for the
SemanticKITTI validation sequence. We experienced that for
a lot of slowly moving objects in the scene, setting a lower
prior helps to keep them in the final prediction even if they
have not been predicted moving from all available instances
in time. We achieve the best result with a model using N=10
input and output frames and a Bayesian prior of p0=0.25,
which is the setup for the experiments presented in Sec. IV-B
and Sec. IV-C.

In general, a combination of processing more scans and
fusing multiple predictions with the receding horizon strategy
works best for achieving a larger time horizon resulting in
better moving object segmentation. Our approach also works
with fewer scans but with a larger temporal resolution, which
reduces the computational effort. The models using N=5
input scans with a larger temporal resolution of ∆t=0.2 s
and ∆t=0.3 s between scans outperform the model with the
same number of processed scans but a smaller resolution
of ∆t=0.1 s, which is the actual sensor frame rate. This shows
that the extended time horizon achieved with a larger temporal
resolution leads to better segmented slowly moving objects
since their motion is more visible in the sequence.

E. Ablation Study

To further support our third claim and show the effec-
tiveness of individual proposed components of our approach,
we train different variants of our network and evaluate their
performance on the validation set. We train all models for up
to 60 epochs and report the best IoUMOS on the validation
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# Inputs # Outputs Poses? ∆t IoUMOS [%]

w/o BF w/ BF

[A] 5 5 X 0.1 s 69.1 74.5
[B] 5 5 X 0.2 s 71.8 75.6
[C] 5 5 X 0.3 s 71.6 74.9
[D] 5 5 7 0.1 s 35.6 39.9
[E] 5 1 X 0.1 s 66.5 -
[F] 2 2 X 0.1 s 64.9 69.0
[G] 10 10 X 0.1 s 74.3 77.2

TABLE III: Ablation study on different variants of our approach with
and without the proposed receding horizon strategy and Bayesian
fusion (BF) using a prior p0=0.25. We denote the temporal resolution
between scans by ∆t. Best results in bold.

set during training, see Tab. III. For all methods, we compare
two prediction strategies: First, a non-overlapping strategy that
divides the input sequence into sub-sequences and predicts
each sub-sequence independently, see the upper part in Fig. 3.
Second, our receding horizon strategy proposed in Sec. III-C,
which generates multiple predictions for the same scan and
fuses them in a binary Bayes filter (again using a prior
of p0=0.25). We visualize this combination in the lower part
of Fig. 3.

In general, we see an improvement of up to 5.4 percentage
points of IoUMOS for all models using the proposed receding
horizon strategy. More precisely, using the binary Bayes
filter with model [A] reduces the number of false negatives
by 8.2% and the number of false positives by 18.9%. This
indicates that the proposed approach successfully integrates
more observations into the estimation and is more robust to
false predictions due to occlusions or noisy measurements.
If we compare the performance of model [A] using N=5
scans which are ∆t=0.1 s apart to the networks trained with
larger temporal resolutions of ∆t=0.2 s [B] and ∆t=0.3 s [C],
we again see that the results can be further improved by
considering a larger time horizon, see also Sec. IV-D. If the
point clouds are not transformed into a common viewpoint, the
method [D] is still able to infer moving objects but at a reduced
performance of IoUMOS =39.9% with Bayesian fusion. This is
because the network needs to infer both the ego-motion of the
sensor as well as the relative motion of the objects. When only
training to predict a single output scan [E], the result is worse
and fusing more predictions is not possible since no additional
predictions are available. Next, one can see that our method
can also achieve moving object segmentation with two scans
only [F] but the performance is worse. The best performing
model [G] takes N=10 input scans with a temporal resolution
of ∆t=0.1 s and fuses the predictions resulting in an IoUMOS
of 77.2%. The results show that we achieve a better moving
object segmentation by increasing the time horizon with a
combination of processing more scans, increasing the temporal
resolution, and using the proposed receding horizon strategy
with a binary Bayes filter.

F. Qualitative Results
Finally, we illustrate that our method predicts actually

moving objects in 3D space without the need for geo-
metric post-processing like clustering. We use the model

Our ApproachProjection-based Method

True PositiveFalse PositiveTrue Negative False Negative

Fig. 5: Qualitative comparison of segmentation accuracy. Left: Pre-
diction by range image-based LMNet [5] after kNN post-processing.
Right: Our sparse voxel-based approach without further post-
processing. Best viewed in color.

True PositiveFalse PositiveTrue Negative False Negative

Frame 245 Frame 250 Frame 255 Frame 260 Frame 265

Bicyclist

Vehicle
moves

Vehicle
stops

Fig. 6: Change in moving object segmentation if an object stops
moving. Best viewed in color.

from Sec. IV-B trained on N=10 scans with a temporal
resolution of ∆t=0.1 s. In Fig. 5, we show the segmentation of
scan 1638 from the SemanticKITTI [3] validation sequence 08.
We compare the range image-based method LMNet [5] to
our sparse voxel-based approach. One can see that despite
the geometric-based kNN post-processing, the baseline still
shows artifacts and bleeding labels behind the moving car
illustrated as red-colored false positives whereas our method
directly predicts in the 3D space without boundary effects.

Next, Fig. 6 shows how the prediction changes for a scene
in the validation set in which a vehicle stops moving. Since our
method does not use any semantic understanding of objects, it
only reasons about how the points move in space for the given
time horizon. Since the vehicle stops moving to yield at the
intersection, our method’s prediction changes from moving to
static. The bicyclist in the back is successfully classified as
moving. Note that this results in a false negative indicated in
blue since the ground truth SemanticKITTI labels consider if
an object has moved throughout the data collection and not
based on recent movement.

G. Runtime
With our unoptimized Python implementation, the net-

work requires on average 0.078 s for predicting moving
objects in 10 scans and 0.047 s for 5 scans both using
an NVIDIA RTX A5000. Our binary Bayes filter only adds a
small overhead of 0.008 s on average for fusing 10 predictions
and 0.004 s for fusing 5 predictions.

V. CONCLUSION

In this paper, we present a novel approach to segment
moving objects in 3D LiDAR data. Our method jointly pre-
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dicts moving objects for all scans in the input sequence and
operates using a receding horizon strategy. We report improved
performance on the SemanticKITTI moving object segmenta-
tion benchmark and show that the approach generalizes well
on unseen data. Our proposed receding horizon strategy in
combination with a binary Bayes filter allows us to extend
the time horizon used for segmenting moving objects and to
increase the robustness to false positive and false negative
predictions. Currently, we estimate odometry and moving
object segmentation separately which can be jointly optimized
in future work.
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