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Abstract

Feature extraction is the first and crucial step of all image analysis
procedures. Together with their mutual relations, features form perceptual
structures on which hypothesis generation and reconstruction processes are
built. The article gives a framework for feature extraction within an interpre-
tation system, discusses a possible object and image wmodel useful for building
up perceptual structures and gives examples for the use of various features
for standard photogrammetric tasks.

INTRODUCTION

DIGITAL PHOTOGRAMMETRY is the field of research and application dealing with the
extraction of geometric and thematic information from digital or digitised images.
Without being obvious, it became part of the broad area of computer vision and image
understanding. On one hand this requires a new definition of what is typically
“photogrammetric™: the geometric aspects of image analysis, the still photographic data
capture and/or the photogrammetric fields of application, especially topographic map-
ping? On the other hand, the enrichment of the tool box of image analysis opens the
door to full or at least partial automation of image interpretation. This requires a
redefinition of the basic concepts in our field; the physical aspect of the imaging process
cau no longer be reduced to the perspective geometry including the necessary calibra-
tion procedures, but it has to be modelled from the very beginning thus closing the
researcn gap between photogrammetry and remote sensing. At the other extreme, an
explicit modelling of the objects to be extracted with image analysis tools is necessary,
linking photogrammetry with photo-interpretation, with data modelling in geoinfor-
matics and with knowledge representation in artificial intelligence.

This article discusses the impact of automatic feature extraction using techniques
from pattern recognition and image understanding for use in present and future digital
photogrammetric systems. It tries to illustrate the new changes with respect to concepts
and procedures, using examples from recent photogrammetric research and develop-
ment. The topic of feature extraction seems to be best suited for this purpose as it is at
the heart of all automatic and semi-automatic systems for image analysis and hence also
for digital photogrammetry.

In the following account we will first place the task of feature extraction into the
larger framework of an image interpretation system. We thereby discuss the many
facets of feature extraction and show their role as links between the image(s) and the
objects to be extracted. Then we discuss a possible framework for feature extraction
and illustrate its use for the extraction of points, lines and regions including their
relations. The use of various types of symbolic image descriptions obtained in this
way will then be shown for standard photogrammetric tasks, namely aerial
triangulation, digital elevation model generation, control point location and object
reconstruction.
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FIG. 1. A possible set-up for an interactive interpretation system (adapted from Lawton et al., 1987). The Oxford

English Dictionary defines INSTANTIATION as “the action or fact of instantiating; representation by an instance.”

The term appears to have originated among philosophers in the 1940s and 1950s. Lawton et al. used the term in
a computer science context of giving a specific value to a variable.

CONCEPTS FOR AN INTERPRETATION SYSTEM

The connexion of computer and image content allows the inclusion of automatic
image interpretation modules in a photogrammetric system. Mensuration and orienta-
tion procedures then appear as submodules in a larger system which, more or less
autonomously, selects these procedures among others for identifying objects. As iden-
tifying objects, say points, like the corner of a building, is an interpretation task which
has, up to now, been performed by the human operator, interpretation appears to occur
prior to accurate mensuration. The measurement appears to be simple when we con-
sider the complexity of the corresponding algorithms for interpretation and the amount
of knowledge required.

Up to now, the process of image interpretation has not been well understood in
detail. However some components which seem to play a central role are known and,
perhaps better still, are agreed upon. Fig. 1 shows a possible set-up of an interpretation
module, adapted from a system for autonomous vehicle guidance (Lawton et al., 1987).
[texplicitly refers to the image features, here called perceptual structures, stressing the
necessity of rich image descriptions for image interpretation.

The concept distinguishes between modules which contain possibly changing
information or knowledge (boxes) and modules which operate on these information or
knowledge sources (ellipses). There are three groups of information sources.

Models

Interpretation of images (or other data) consists of matching models of the objects
to be extracted with the data obtained by some sensor. Therefore the object models have
to contain a rich enough structure in order to be able to represent all possibly visible
parts. They therefore have to contain relations between parts of the objects (roof is part
of house), classification (house is a building) as well as relations between objects
(house is near road). The appearance of objects needs to be stored as well, as it is the
link to the measurements to be taken. Obviously no detailed description of the objects
is possible, only some generic knowledge may be encoded in the models leaving both
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structural details (garage right or left or behind house) as well as actual values of
parameters unmodelled (length = 10 m).

As the perspective projection preserves certain relations between different objects
(neighbour relation), these may be used in the interpretation process and therefore have
to be stored, thus to be modelled explicitly. The neighbour relation and the knowledge
about likely occlusions are the basis for an invocation network (cf. Bruce et al., 1989).
The inferred existence of one object (e.g. sky) leads to the set up of an hypothesis of
another object (e.g. telephone wire) to be searched for in the image. As this search is
usually limited to a certain area, such as at the boundary of the known object, the
perceptual interest of the system may be guided by this part of the scene model.

Long Term Memory

The goal of the interpretation is to find a coherent description of the scene. This
may have to be stored for later analysis, as in a geographic information system (GIS).
Prior knowledge about the scene, such as maps or control points again possibly avail-
able in a GIS, may be used to trigger the interpretation or just to find the orientation of
the camera. One may interpret this type of knowledge as belonging to the long term
memory of the system. It is gradually updated by inserting a stable hypothesis derived
from the image data. Obviously these hypotheses have to have the structure given by
the object models and thus are instances of these models.

Short Term Memory

The link between the models and the long term memory is established by data
derived from the images. This is achieved by image descriptions on a level where they
can be linked to the appearance models of the objects to be extracted. These image
descriptions consist of more or less rich perceptual structures or features which may
be derived using no or only minimal specific knowledge about the scene. The structures
then may be used to set up hypotheses about the image content (such as using spectral
or geometric attributes of regions). These hypotheses then have to be checked until they
are rejected or until enough supporting evidence has been collected, such as by using
the invocation network and the relations between the objects, so that they may be
treated as stable hypotheses and stored in the long term memory.

Operator

The complexity of natural scenes as well as the great variety of tasks makes a
human operator indispensable when building an interpretation system. His responsibil-
ity lies in guiding the perceptual interest, in helping to substantiate good hypotheses or
in supporting the location inference in the case of difficult matching situations. The
necessary man-machine interface has to link the operator internal with the computer
internal modelling of the system. This reveals the control of the system (not shown in
Fig. 1) to be the central problem.

This unsolved problem, which was the motivation for the interactive set-up of the
image understanding environment (IUE) (cf. Mundy et al., 1992), is under active
current research in the artificial intelligence community.

There are several systems which show this kind of set-up.

(a) The Visions system (Bruce et al., 1989) is probably the most advanced and
contains parts of hierarchies and appearance models. It uses bottom up and top
down strategies and works on a blackboard architecture. It is built for
analysing outdoor scenes for visual navigation.

(b) The Condor system (Strat and Fischler, 1991) aims at interpreting natural
scenes. The object models contain rich structural context relations between
likely neighbouring objects. The strategy efficiently selects consistent cliques
and uses the “core knowledge system” (Strat and Smith, 1987) and is also the
basis for a digital photogrammetric workstation (Hanson and Quam, 1988).

(c) The Ernest system (Niemann ef al., 1990) is a shell for pattern analysis using
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FIG. 2. The structure of the perceptual structure data base (from Lawton et al., 1987).

semantic networks. It allows handling of specialization and containment hier-
archies using the A* algorithms as search strategy. Applications occur in both
image and speech analysis (Sagerer, 1985).

(d) The “hierarchical structure code” developed by Hartmann (1983) is a highly
organized perceptual data base, containing an iconic and a symbolic image
pyramid. Using the Ernest system, it is used for identifying machine parts
(Mertsching et al., 1990).

Without going into more detail, we want to discuss the perceptual image structures as
the basis for a clear understanding of the feature extraction problem.

PERCEPTUAL STRUCTURES AND FEATURE EXTRACTION
The Perceptual Structure Data Base

The perceptual structures obviously form the link between the sensor data and the
appearance models. The perceptual structures have to be derived from the images by
a bottom up procedure by using no knowledge or only low level knowledge about the
scene. They consist of distinct points, edges and regions in the two dimensional images;
these are the basic image features which, after being matched with structures of other
images, lead to surfaces or volumes. They may be grouped based on their proximity,
their symmetry and their spatial or temporal coherence (Fig. 2).

The perceptual structure can only partly be built in a bottom up manner. During
the interpretation, further structures may be derived based on hypothesised expecta-
tions in the image (for example, in case a house has to be found with a certain
orientation, special filters may be used to find low contrast edges with a prespecified
orientation). Due to the amount of structures which have to be processed and because
the perceptual structures are the basic primitives for the whole interpretation process,
they may be organised in a data base with special tools for queries or methods for
changes and for processing the perceptual structures. Fig. 2 suggests the data base to
be extensible in a way that hierarchical image structures are made explicit. On the other
hand only the lower levels of such structural pyramids are well understood unless the
structure of the pyramid is homogeneous through several levels as in the hierarchical
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structure code of Hartmann (1983). In general the aggregation criteria should be found
by the system itself, based on the available object knowledge leading to a variable
structure with increasing aggregation level (Lindeberg, 1990).

The Role of Feature Extraction

Features, playing the linking role between image and object, are characteristic or
striking parts of objects. Describing objects is identical to describing their features. It
also is the basic paradigm of artificial intelligence that the real world may be modelled
and described this way.

Feature extraction in this context may now be seen to be identical to filling the
perceptual structure data base. Depending on the complexity of the features, we may
distinguish three types:

(a) low level features which are attributes of the pixel arrays of the images.
Examples are spectral features used in multispectral classification, textural
features used for segmentation or temporal features used for change detection.
No labelling of the features is assumed to be available;

(b) mid level features which are either geometric primitives such as points, edges
or regions or they are aggregates of these primitives including their relations.
As mentioned above, they may be further grouped into more complex struc-
tures. Again, it is essential that no meaning needs to be attached to these
primitives or relations; and

(c) high level features which are already interpreted, usually quite complex struc-
tures derived from the images. Examples are “a roof” or “a tree trunk™ and are
thus parts of the images where a meaning has already been attached. Carto-
graphic features derived from an aerial image belong to this group.

Strictly speaking, spectral features which are also labelled, for example “grass land”,
should be termed high level as a meaning is attached to the feature. This reveals that
the above distinction is no rigorous classification. It is meant, however, to help classi-
fying the different notions to which the term “feature”™ refers.

We now want to concentrate on the extraction of mid level features which are
understood best and which allow the derivation of rich enough image descriptions
which are useful for various photogrammetric tasks. We therefore refer to points, lines,
regions and their relations as features without further specification.

A CONCEPT FOR FEATURE EXTRACTION

As features are the observable elements on which any image analysis procedure
is based, modelling feature extraction is equivalent to modelling the observation pro-
cess. This requires a specification of the object model used from which the appearance
or image model may be derived using knowledge about the imaging process employed.
The image model itself should then contain the necessary components which define the
goal of the feature extraction procedures (cf. Forstner, 1993).

The Object and the Image Model

We use a very much simplified object model in the sense that no high level or
semantic knowledge is involved. However, it is complex enough to cover the geometry
and physics of a larger class of objects. We assume the object to have the following
properties:

(a) the surface of the object consists of piecewise smooth patches;

(b) the boundaries of the surface patches consist of piecewise smooth boundaries;

(c) the albedo of the object consists of piecewise smooth patches;

(d) the boundaries of the albedo patches consist of piecewise smooth boundaries;
and _

(e) the surface and albedo patch boundaries may or may not coincide.
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Instead of the surface or the albedo, any locally computable function of the surface
geometry or of the albedo may be assumed to be piecewise smooth. This is essential
when modelling textured objects, where the texture may result from local geometric or
physical variations. For special applications we restrict the surface to consist of planar
patches and thus the objects to be polyhedra.

This object model is motivated by the coherence of matter. No objects with fractal
type or ill defined boundaries are included. Here the strong dependency of the mod-
elling on the scale of aggregation becomes obvious, which depends heavily on the
application.

Based on this object model and assuming a homogeneous illumination, we obtain
the image model. We assume the image function to have the following properties:

(a) the image consists of segments;

(b) the image intensities or locally computable functions are assumed to be piece-
wise smooth within the segments; and

(c) the segments show piecewise smooth boundaries.

The image model explicitly refers to segments with piecewise smooth boundaries.
Therefore one may describe the image with a set of basic features, namely points, edges
and regions and their mutual relations. The points may either be boundary points of
high curvature or nodes where three or more regions meet. Boundaries may result from
depth discontinuities (contours), orientation discontinuities (break lines), albedo dis-
continuities (material changes) or, in the case of shadows, illumination discontinuities
(Binford, 1981).

The image model is observed to contain a region overlay of projections of the
surface and the albedo patches. Therefore the interpretation of the result of a segmen-
tation needs to recover this overlay. Also no guarantee is given for the observability of
the patch boundaries. They may very well disappear in the image, making the segmen-
tation an ill posed problem which requires regularization based on higher level
knowledge about the scene to be recovered.

Formalization of the Image Model

In the most simple case of a grey level image this model may be formalized in the
following manner. We start with the continuous image. The image area $ is segmented
into three sets:

(a) homogeneous segments &.
(b) smooth boundaries %, and
(c) points P,.

Points are positions where the boundary is not smooth, or where three or more segments
meet. The segments ¥, are assumed to be open two dimensional sets, the boundaries B,
are one dimensional sets, embedded in two dimensions, whereas the corners are single
points (x,y) € $. Of course the boundaries may also be assumed to be part of the
segments, but then neighbouring segments, theoretically, share a boundary and no
classification of all image points into three disjoint sets is possible anymore.

Thus we obtain the decomposition of the image area:

Ny np ny

$=9+3+?2= U g+ Ug+ Uao, (1)

i=1 j=1 k=1

We now have to choose a homogeneity or smoothness measure, say h(x, y). It should
be suited so as to distinguish the three different classes of image points.

One possible choice is based on the average squared gradient of the image func-
tion f:

Tof (x,y) = Go(x, y)*If(x, y) (2)
with
Kt 9= Vfe )Vstn 3 = S0 RO ) 3
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and G,(x, y) being the centred normal density function with standard deviation o.

We first distinguish between segments on one hand and boundaries and points on
the other hand by investigating the frace of the average squared gradient being a
meaningful homogeneity measure:

4 if 1r Tof (x,y) < T(0)
(x‘y)e{%u@ else : “)

The threshold may be chosen to lead to 3 — o wide boundary regions. In the limit
0—0, these regions then become thin lines.

In the second step, we separate boundaries and points by investigating the curva-
ture

(= )

of the isolines (isophotes) in the non-segment area. It depends on the ratio 4,/4, of the
two eigenvalues of the homogeneity measure I,f(x, y). We therefore obtain

o [ B K (f) <T(0)
(.)€ { P else '

The true digital image f(r, ¢) (r = rows, ¢ = columns) is obtained by sampling, that
is by discretization and quantization of the continuous image leading to an array of
integers. The observed image g is a contaminated version of the true signal f with
possibly signal dependent noise n:

g(r,c)=f(r,c)+n(r, o). @)

The proof of (5) uses the function g(u, v) = au + bv*. It is an approximation of the
image function g(x, y) at places with | Vgl # 0, with u being the gradient direction and
v perpendicular to it. It has constant slope g, = a in u direction and constant curvature

(6)

K= — 8./8.= — 2b/a of the contour lines (isophotes) at all points of the u axis and
especially at (0, 0). With Vg = (a, 2bv)’", the average squared gradient
_ ([ (a 2abv) _(a2 0 )

I30,0)= J J (Zabv 4p2y?)Celb VIaudv =\ 42 ®)

-0 —o0

has eigenvalues A, = a* and A, = 4b*0” from which 1./, = 0°k* follows.

Feature Extraction

We are now able to describe the extraction of the basic features of a digital image.
Homogeneous and non-homogeneous regions are distinguished by testing the homo-
geneity measure, here traceI', g, thus the gradient magnitude, to be significantly larger
than 0, must be larger than a threshold 7),(c). Boundary and corner regions are distin-
guished by testing the curvature k,(f) of the boundary, to be significantly larger than
0, that is larger than a threshold 7,(o). Both thresholds 7),(c) and 7(0) can be made
dependent on the noise characteristics, the width of the used kernel G, and a pre-
specified significance level. Using 6> 0 leads to boundary regions and point regions.
The thin boundaries (one dimension) and points (zero dimension) then lie within these
regions.

Fig. 3 shows the principle of this classification of the image content. The low level
feature 17T, g (Fig. 3(b)) and kg (Fig. 3(c)) of the house image (Fig. 3(a)) are grouped
into regions (Fig. 3(d)) which obviously reflect the image structure correctly. A precise
location of the boundary (that is edge and corner elements) may be achieved by a two
step procedure which first searches for optimal windows and then estimates an optimal
position of the boundary or the corner within these windows. For locating corners we
proceed as follows. The centres of the most likely windows for determining the point
location are found by searching for the relative maxima of 71, g. Then the optimal
position p, = (7., ¢,)’ within these windows may be determined from the equation
system

[Go#Ig] - po=Gox[Ig - p] 9)
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FIG. 3. A house (a), the homogeneity and the curvature measure (b) and (c), the three classes of image points
(d). the extracted edges/boundaries (e) and the final segmentation (f).
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where p = (r, ¢)" denotes all pixel positions in the used window W', which when replac-
ing G, by a simple box filter yields (X1Ig) - p,= S(I'g - p) or explicitly (Forstner and
Giilch, 1987)

X2 o ; (g + g.8.c,)
W Ww ( u)_ w

PRX -
W W

Observe that p, in (9) is a weighted centre of gravity with the weights being propor-
tional to I'g and decreasing with increasing distance from the centre of the window. 9)
and (10) are especially useful for locating corners of polyhedra without explicitly
extracting edges.

Similarly we obtain the procedure for detecting and locating edges. The centres of
the most likely windows for the determination of the edge location are the relative
maxima of 7rI'; g across the edges, that is in the gradient direction. An optimal position
p. may be determined from

(Go#Ig+06521) - po=Gox(I'g - p) (1)

where the term o, * I is necessary to stabilize the edge position along the edge. Other
approaches for determining the precise edge position are available (Canny, 1986).

The amount of averaging is determined by the choice of o which may be different
for edge and corner detection and should be determined automatically or given by the
object model.

The result of this step consists of lists of edge and corner clements, possibly with
further attributes such as contrasts or degree. The edge elements then have to be
grouped according to their neighbour relations involving chains of edge elements.
These may be approximated by piecewise smooth curves or polygons. The relations of
the edge and corner regions with respect to the homogeneous regions may be used to
finally arrive at a rich symbolic description.

The line segments (Fig. 3(e)) of the house image (Fig. 3(a)) are grouped (Treutler,
1992) and lead to the final segmentation (Fig. 3(f)). All relations between points, lines
and regions may be collected in the perceptual structure of that image.

The next section discusses the use of image features and their relations for
photogrammetric tasks.

S (10)

D(g.gr, + g2,
W

PHOTOGRAMMETRIC APPLICATIONS OF FEATURE EXTRACTION

This section intends to give an impression of the potential of the use of automatic
feature extraction for classical photogrammetric tasks. Aerial triangulation (AT) and
digital elevation model (DEM) generation are typical for using point type features. The
identification of buildings as natural control points for efficient exterior orientation can
be based on sets of straight line segments. The mutual links between features may be
used for both image to map matching based on structural descriptions and for interpre-
tation.

Point Features

Points are the basic elements for classical photogrammetric tasks. The manual
selection of points and the numbering are difficult, time consuming and error prone
procedures. They can be fully automated. In most cases the numbering is only of
internal value as long as the selected points do not carry a meaning. This holds for point
transfer in AT and, to a certain extent, for point mensuration in DEM generation.

Automation of point selection and numbering can be done very efficiently. There-
fore the strategy for selecting points can be changed completely. Instead of selecting a
small number of well defined points which carry rich information with respect to
precision and possibly for interpretation but show unfavourable local redundancies, one
can now select a huge number of points which, when seen individually, may not carry
much information with respect to precision and reliability, but allow us to exploit the
resultant extremely high redundancy to achieve very robust and stable results. Formally
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FIG. 4. The coarse to fine strategy of point transfer using a point feature pyramid. The matching results of the
coarser levels serve as approximate values for the matching in the finer levels (from Tsingas, 1992).

using groups of 50 points of five times higher standard deviation yields the same result
as highly accurate point pairs, but allows simple, automatic and therefore internal error
checking. As, on average, the automatically selected points are comparable or even
better than manually selected points, we can expect an overall increase of the perfor-
mance when using automatic feature extraction procedures.

Automatic Point Transfer for Aerial Triangulation. Tsingas (1992) developed a
concept for full automation of AT based on digitized aerial images. In case approximate
values for the orientation parameters (for example, by GPS) and some manually mea-
sured control points are available, the selection and the numbering of the tie points can
be done without human interaction. He extended the point based matching procedure
(Paderes et al., 1984; Forstner, 1986) to an n stage matching procedure, allowing each
automatically selected point to appear in any number of overlapping images (Fig. 4).
The results are automatically selected and points numbered with their image co-
ordinates. For efficiency reasons, the matching or the point transfer is performed in a
coarse-to-fine manner using images of different resolution. He used 375 pm, 75 um and
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15 pum (Fig. 4). The result of the matching in the lower resolution serves as an approx-
imation for the match in the next finer resolution.

Tsingas tested the approach with a close range 60 per cent sidelap bundle block
with five strips consisting of five CCD images each. The system automatically selected
1060 tie points leading to 5934 observations. The block with 3330 unknowns and a
redundancy of 2604 was highly overconstrained. The estimated accuracy of the tie
points was o, = 0-29 pixel = 4-5 um which is extremely good for natural tie points. The
absolute accuracy was (1, = 15 um in planimetry and y, = 0-5 pixel = 7-5 um measured
at image scale which corresponds to the theoretical expectation. The main fact, how-
ever, seems to be that there were no outliers in the block adjustment. This proves the
robustness and reliability of the automatic approach.

DEM Generation. Manual mensuration of a DEM contains several steps. These
are the mental match of the images on the retina of the operator, which results in a dense
(internal) surface description, the interpretation of this three dimensional model, an
application based selection of representative object features, a precise location of the
selected feature in three dimensions and finally a computer match exploiting the per-
spective geometry. Automation has to start from the digitized images and in principle
must follow these steps. As the derivation of a dense three dimensional model, the
interpretation of the model with respect to the definition of a “topographic surface™ and
its definition under general conditions are unsolved problems up to now, only sim-
plified solutions for DEM generation have been realized. However, they cover quite a
large percentage of applications.

In cases when the visible surface is piecewise smooth and can be assumed to be
identical to the topographic surface almost everywhere, powerful matching algorithms
are available. Algorithms based on features have proved to be more robust and efficient
in contrast to intensity based matching procedures. The Match-T system (Krzystek and
Wild, 1992; Krzystek, 1991 and 1992) contains the feature based matching procedure
specifically designed to exploit the knowledge of the relative orientation. Also a coarse-
to-fine strategy is used to gradually refine a finite element description of the
topographic surface (Ackermann and Hahn, 1991). Depending on the image content
some 1 million to 3 million points per image are selected, yielding some 0-3 million to
0-8 million matched three dimensional points which finally result in a very dense DEM
with some 50 000 to 80 000 grid points. The high redundancy of about 10 points per
grid mesh, in conjunction with a grid which is a factor 3 to 5 times finer than available
with manual methods, is the reason for the high precision and reliability of the system.

The results in extensive controlled tests showed mean deviations of less than 0-1%o
of the flying height. Due to the robust procedure incorporated in the algorithm, single
trees or houses do not disturb the shape of the topographic surface (Krzystek, 1992).
The computing times of 30 minutes to 1 hour per model on a Silicon Graphics work-
station (4D35) demonstrate the feasibility of the use of automatic feature extraction
procedures for an important photogrammetric task.

Absolute Orientation using Line Segments

Point transfer, DEM mensuration as well as relative orientation are based on the
matching of features derived from data sources which have the same representation,
namely a raster. This simplifies the procedures as systematic effects of the feature
extraction disappear. For example, features detected in one image are likely to be
detectable in the other image. Absolute orientation, locating control points and more
general object location require the matching of features derived from data sources of
different representation in general. In cases when one is able to find a representation
structure which is common to image and object features, a matching procedure may
enable correspondence to be established. However, it has to cope with the generally
large amount of background features which do not belong to the object to be detected
and located.

Schickler (1992) developed a system for automating the exterior orientation of a
single image. It is based on control “points” which consist of a list of straight three
dimensional line segments, whose co-ordinates are known in an object centred
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FIG. 5. The graph of the relational description derived from the hue component (a) of an aerial image,
originally in colour, the road structure (b) manually derived from a map (c) and the result of the relational
matching (d) (from Haala and Vosselman, 1992).

co-ordinate system and which mostly represent buildings. Using approximate values
for the orientation parameters in order to increase the efficiency, the system matches the
images of the object lines with straight line segments, as features, extracted from the
image. This is done in several steps for all available control points. The final spatial
resection is performed with the straight line segments and evaluated with respect to
precision and reliability. An extensive test with 52 images shows the procedure, which
takes 3 minutes to 5 minutes for the orientation of one aerial image on a Sun Sparc 1,
to be successful in about 94 per cent of cases.

Relational Descriptions

Single features often do not carry enough information to be decisive for invoking
specific hypotheses. Relations between the features result in richer attributes of the
individual features (for example, a point being a node of a certain degree within a
graph) and in information itself (such as a set of lines forming a closed polygon).
Relational image descriptions are the necessary prerequisite for image interpretation
where they are matched to the relational appearance models derived from the image
models. The two following examples show that relational descriptions may also be
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FIG. 6. The section of an aerial image (a) and the semi-automatically extracted sketch of the building (b).
The three dimensional reconstruction (c) is automatically derived using rules of inverse perspective (from
Braun, 1992).

helpful for location and reconstruction tasks and thus for geometrically related tasks of
photogrammetry.

Image to Map Registration. Relational matching (Shapiro and Haralick, 1981:
Vosselman, 1992) establishes correspondence between individual features (points,
lines and areas) by taking into account both the feature attributes as well as attributed
relations between the features, such as angles between edges. Thus they use the full
perceptual structure derived from an image.

This is especially useful for matching images and maps which reveal quite differ-
ent appearance. An example is given in Fig. 5 taken from the work of Haala and
Vosselman (1992). The structure of the road crossings can be derived from both a map
and a colour image, by taking the skeleton of the hue component. The attributes of the
point and line features are chosen to be rotation and, to a certain extent, are scale
invariant. This allows the location of the road crossing without knowing the orientation
or the exact scale of the image. The procedure is very robust with respect to spurious
and missing image features, such as those resulting from occlusions or additional image
detail, and to geometric distortions.

In spite of the high computation time of approximately 3-5 minutes on a VAX
3200 for this example (language POP-11), the procedure may be used very satisfac-
torily as a “boot strap” method for exterior orientation when complemented by a more
appropriate method.
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Reconstruction of Polyhedra from Single Images. The last example is taken from
current work on building extraction (Braun, 1992). It seeks to demonstrate that exploit-
ing geometrical and relational information extracted from a single image may be
sufficient for reconstructing the form of objects, provided that a rich enough object
model is available.

Fig. 6(a) shows a subsection of an aerial image with a building which is not too
complex. Semi-automatic extraction of the lines and their incidence relations yields the
sketch (Fig. 6(b)). Using knowledge of the object to be approximately a polyhedron and
the sketch derived from an aerial image with known interior and exterior orientation,
the three dimensional form of the object can be derived automatically (Fig. 6(c)). The
reconstruction process uses well known facts from perspective geometry. A set of
parallel three dimensional lines leads to a set of lines in the image intersection in a
vanishing point which is given by the intersection of the image plane with a line
through the projection centre being parallel to the set of three dimensional lines.
Knowing the orientation of two lines of a plane allows derivation of its orientation and,
assuming an arbitrary scale, enables derivation of all other three dimensional points or
lines in that plane. The incidence relations between points and lines, which are derived
from the image, are decisive for this kind of spatial reasoning. The result of the partial
reconstruction of the building may be fused with other partial reconstructions leading
to a full description of the object in three dimensions. :

CONCLUSIONS

The paper attempts to show the role of feature extraction in digital photogram-
metry. The feature extraction process itself may be based on an image model derived
from a simple object model, but being general enough for many purposes. The
examples from production systems and recent research all refer to classical photogram-
metric or geometric tasks: point determination, orientation and reconstruction. The last

example, of recovering the three dimensional form of polyhedra from single images,
is at the border of image interpretation as a generic object model is assumed. The
examples already show the great possibilities which digital systems may have for
solving photogrammetric tasks.

" The framework discussed for image interpretation and feature extraction has to be
developed further and is not yet exploited. It will be the task of photogrammetric
research to develop the theoretical and conceptual basis for extracting semantic features
which may then be used in photogrammetric inspection systems or for topographic

mapping.
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Résumeé

L’extraction automatique de silhouettes est la premiére étape fonda-
mentale dans tout procédé d’analyse d’images.

Ces silhouettes constituent, en méme temps que leurs relations
mutuelles, des structures identifiables a partir desquelles on peut établir des
hypothéses et procéder a la reconstitution. On donne dans cet article un
cadre général pour ['extraction de silhouettes dans un systéme
d’interprétation et l’on y discute d"une modélisation possible de I'image et de
I"objet pour obtenir des structures identifiables. On fournit enfin des exem-
ples sur l'emploi de diverses silhouettes d’objets dans les travaux
photogrammeétriques courants.

Zusammenfassung

Die Kantenextraktion stellt den 1. wesentlichen Schritt aller Bild-
analyseverfahren dar. Gemeinsam mit ihren wechselseitigen Beziehungen
bilden die Kanten wahrnehmbare Strukturen, auf denen Hypothesen und
Rekonstruktionsprozesse aufgebaut werden konnen. Im Artikel werden ein
Grundgeriist zur Kantenextraktion angegeben, mogliche Objekt- und Bild-
modelle zur Entwicklung von Wahrnehmungsstrukturen diskutiert und
Beispiele zur Nutzung verschiedener Kanten fiir photogrammetrische
Standardaufgaben angegeben.

DISCUSSION

Chairman (Mr. J. E. Farrow): We have a few minutes left after that masterly
exposition for anyone who has some searching questions.
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Non-Observable Parts
of Segmentation

FiG. 7. As a result of illumination by the two light sources, L, and L., parts of the edge AD between B and
C are not visible.

Professor Muller: I'd like to ask you about pyramidal feature based stereomatch-
ing. There has been a great deal of work done in manual photogrammetry with
progressive sampling techniques. Is this meant to try to replace that work with an
automatic system?

Professor Forstner: Yes, fully.

Professor Muller: If that is the case, how reliable are the interest operator based
features that you are going to acquire as being representative of the underlying surface?
In other words, you're sometimes going to capture the tops of roofs, sometimes going
to capture the tops of trees; how representative of the surface is it going to be?

Professor Forstner: There are two points to make here which are similar to some
extent. The progressive sampling in its original set-up is not able to catch features
which fall between the grid. So if the initial grid looks very smooth and there is
something in between this first grid, it will not be found. Of course the operator might
see it, but that is a different matter. On the other hand, automatic systems assume a
certain smoothness, at least piecewise, and that means it will work well in open terrain.
It will even work well if there are single trees because it includes a robust estimation
which cancels out wrong correspondences which come from the points on top of trees.
If there are single houses, they are also cancelled because the higher level matching
results are smoothed to a certain degree. If suddenly, there is a house at the next level,
it’s rejected. But in the case of a wood, of course, you obtain the top of the wood and
if there is a group of houses, you obtain the top of this group. The problem is that you
don’t know whether it is one or the other. So the system can not decide automatically
whether this is the real surface which is high or whether the true surface is below. So
the system is silly in the sense that it does not interpret the features and has no idea what
are houses or what are trees. It just says that these are feature points and there are no
more characteristics. Of course, this is a weakness, but on the other hand if you want
to do that at the same time, ten times larger computing times are required and an
interactive process is still required. If you really want to have a full DEM for a whole
area, you have to exclude the residential areas or places where you might expect that
the system will produce failures, not in the sense that you don’t obtain correlation
because a surface will always be produced. It doesn’t fail in that sense. But it would fail
to give the right surface for the topography.

Dr. Gugan: Could you briefly define your use of the phrase segmentation? Exactly
what do you mean by segmenting the image?

Professor Forsmer: 1don’t like the word segmentation. I use it because it is a word
which has a certain tradition. It reflects the model for idealised images. The image is
partitioned into regions which are not overlapping. But reality is more difficult. You
may miss features if you force the system to carry out segmentation. I can give you a
simple example where the segmentation notion is not good as a basis for feature
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extraction. If you take a block (Fig. 7) which is illuminated from the upper left side and
the lower right side, you will find an edge at the top and an edge at the bottom. You will
also have some point where the illumination is the same from right and left of the
vertical edge. Therefore segmentation, in the sense that you have boundaries and no
lines which intrude into areas, which is the classical definition of a segmentation, is not
present here. Therefore I would rather derive a relational description of the image and
then these effects are allowed.

Mr. Nwosu: 1f this DEM system is automatic, how are you going to exclude these
problematical areas? Does the matching algorithm offer interactive possibilities or is it
always automatic?

Professor Forstner: There are two possibilities. You assume that the system is
good enough whatever it does. This means that, even if you have residential areas, you
accept the result. On the other hand, if you really want to have contour lines which refer
to the topographic surface in residential areas, you have to do it yourself, possibly
supported by some local matching procedure measuring the heights. To make a mean-
ingful DEM of the London area you really have to exclude buildings or use a different
technique. But in open areas outside of cities, I think it will work reasonably well.
Moreover, if you want to make orthophotomaps, it’s good to have the DEM passing
over the trees because then you don’t have the wrong geometry at these places. So it’s
even better than if you were to take the DEM from maps.

Chairman: With no more burning questions, I think that you’d like to join in
thanking Professor Forstner for a stimulating and interesting talk.
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