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Abstract

We propose and analyse methods to efficiently register
point clouds based on plane correspondences. This is rel-
evant in man-made environments, where most objects are
bounded by planar surfaces. Based on a segmentation of
the point clouds into planar regions and matches of planes
in different point clouds, we (1) optimally estimate the rel-
ative pose(s); (2) provide three direct solutions, of which
two take the uncertainty of the given planes into account;
and (3) analyse the loss in accuracy of the direct solutions
as compared to the optimal solution. The paper presents
the different solutions, derives their uncertainty especially
of the suboptimal direct solutions, and compares their ac-
curacy based on simulated and real data. We show that
the direct methods that exploit the uncertainty of the planes
lead to a maximum loss of 2.76 in accuracy of the estimated
motion parameters in terms of the achieved standard devi-
ations compared to the optimal estimates. We also show
that the results are more accurate than the classical itera-
tive closest point and iterative closest plane method, but the
estimation procedures have a significantly lower computa-
tional complexity. We finally show how to generalize the
estimation scheme to simultaneously register multiple point
clouds.1

1The second author currently is with the Lyles School of Civil Engi-
neering, Purdue University, West Lafayette, USA

1. Introduction
Registering 3D point clouds captured by various range

cameras and laser scanners is an imprtant task in mapping
natural and man-made environments. The registration in-
volves finding corresponding elements in two point clouds
and estimating a rigid motion using the correspondences.
This process is often expensive and inefficient, particularly
for large point clouds containing billions of points. In addi-
tion, existing methods for estimating the motion do not fully
exploit the uncertainty of the points, resulting in suboptimal
estimates of the motion parameters.

Figure 1: Segmented point clouds captured by a terrestrial
laser scanner (TLS), containing 4.431 million points in 269
planar segments (left), and a Zeb sensor, containing 1.525
million points in 261 planar segments (right). The ceilings
have been removed for better visualization of the interior. We
propose and analyse efficient optimal and suboptimal meth-
ods for determining the relative motion between the two data
sets based on plane-to-plane correspondences

Existing methods for point cloud registration can be clas-
sified according to the type of correspondences used for mo-
tion estimation. Point-to-point correspondences are by far
the most common. The classical iterative closest point al-
gorithm (ICP) [2] estimates the motion parameters by mini-
mizing Euclidean distances between point correspondences.
The motion estimation is, however, suboptimal, as corre-
sponding points in the two sets usually do not refer to the
same scene point. Maier-Hein et al. [18] and Bilings et al.
[3] propose methods for improving the ICP by incorporat-
ing the measurement noise in the motion estimation.

The well known point-to-plane ICP [5] estimates the mo-
tion parameters by minimizing the orthogonal distance be-
tween the points in one point cloud and the correspond-
ing local planes in the other. It does not require that the
points, which carry the tangent plane, correspond to a point
in the other data set. The motion estimation in the original
ICP and other similar methods that use point-to-plane cor-
respondences [19, 17, 23, 14] do not involve the uncertainty
of the points and local planes, and is therefore suboptimal.
The generalized ICP proposed by Segal et al. [26] allows
for the inclusion of arbitrary covariance matrices in both
point-to-point and point-to-plane variants of ICP.

A general drawback of the point-to-point and point-
to-plane ICP algorithm is the expensiveness of the iter-
ative search for correspondences. Unlike the point-to-



point and point-to-plane correspondences, motion estima-
tion from plane-to-plane correspondences is very efficient
[11, 4, 13]. This approach is relevant in man-made envi-
ronments, where structures with large planar surfaces are
abundant. Point cloud segmentation into planar segments
can be done very efficiently [30, 29], even in real time [12],
and once the corresponding planes are found, which can be
supported by matched 3D lines [1], motion parameters can
be estimated efficiently without needing to update the corre-
spondences [22]. Pathak et al. [21, 20] propose methods for
the estimation of plane uncertainties based on a radial noise
model, which is applicable to only a few types of range sen-
sors. The challenge in plane-to-plane registration, which
has not been properly addressed before, is to exploit the un-
certainty to obtain an optimal estimate of the motion based
on an appropriate representation of uncertain planes.

In this paper, we present an optimal solution and three
direct solutions for efficient motion estimation from plane-
to-plane correspondences. We provide an analysis of the
accuracy of the solutions, and compare their performance
with the classical iterative closest point (ICP) algorithm. We
show that our solutions yield motion estimates that are more
accurate than the ICP method, but at the same time have a
significantly lower computational complexity.

The paper proceeds with the representation of uncertain
planes and the method for optimal motion estimation from
uncertain plane pairs in Section 2. The three direct solutions
are derived in Section 3, and the results of emprirical evalu-
ation are presented in Section 4. Extending the methods to
registeration of multiple point clouds is discussed in Section
5, followed by outlook and future research in Section 6.

2. The Task
We address the following task: Given are two 3D point

clouds represented in two frames which are related by a mo-
tion M (R,T ). We assume the point clouds are segmented
into two sets of planar patches, see Figure 1, and a set of
I corresponding planar patches {A ,A ′}i, i = 1, ..., I has
been identified. The task is to find a best estimate M̂{R̂, T̂ }
for the motion between the two frames. We first present a
maximum likelihood (ML) estimate for the motion param-
eters, and then three different direct solutions with different
degrees of approximation.

The optimal solution assumes we have information about
the uncertainty of the planes observed in the two frames. We
specifically assume the plane pairs are mutually indepen-
dent, a condition which can be relaxed, see Section 5, and
the covariance matrix of the plane parameters is sufficient to
describe their uncertainty. We will first provide the differ-
ent representations for the uncertain planes, and how they
are derived from the point cloud: based on the constraints
between the plane pairs and the unknown motion we derive
maximum likelihood estimates for the motion parameters.

2.1. Representing uncertain planes and motions

A plane has three degrees of uncertainty: two referring
to the direction of the normal N and one referring to the
position of the plane in the direction of the normal. We use
two different representations, which are useful for different
purposes.
Uncertain planes from 3D points. We start from the cen-
troid representation, which evolves, when estimating the pa-
rameters A of plane A form 3D points Xj , j = 1, ..., J .2

Assuming the coordinates of the points are mutually in-
dependent and have a common standard deviation σ, we
can optimally estimate the plane parameters. We use the
weighted centroid X0 =

∑
iXj/J and the scatter matrix∑

j(Xj −X0)(Xj −X0)T with its eigenvalue decompo-

sition QΛQT. The eigenvector belonging to the smallest
eigenvalue (λ3) is an estimate for the normal of the plane
and the plane passes through the centroid.3 We then obtain
the variance σ2

q of the position of the plane along the nor-
mal, and the principal variances σ2

φ and σ2
ψ of the direction

of the normal from the eigenvalues λ1 ≥ λ2 ≥ λ3 via the
estimated variance of the 3D points σ̂2 = λ3/J and thus

σ̂2
q = σ̂2/J σ̂2

φ = σ̂2/λ1 σ̂2
ψ = σ̂2/λ2 . (1)

Hence we generally can represent an uncertain plane by the
tuple

A : {X0,Q;σφ, σψ, σq} , (2)

where estimates of the parameters are used in practical
cases. Planes derived from 3D points with arbitrary co-
variance matrix also can be represented this way, see [9,
(10.62)].

We now can easily determine the homogeneous coordi-
nates Ae = [NT,−S]T of the uncertain plane A in general
position, with its normalN and its distance S to the origin.4

We start from the uncertain plane with its mean at A0(A0),
its centroid at 0, its axes Q = I3, hence A0 = [0, 0, 1, 0]T,
and its covariance matrix ΣA0A0

= Diag([σ2
φ, σ

2
ψ, 0, σ

2
q ]).

We move this plane A0 to A via M−T(Q,X0)A0 and nor-
malize it thus Ae = Ne(A) := A/

√
A2

1 +A2
2 +A2

3. By
variance propagation we first obtain the covariance matrix
ΣAA = M−TΣA0A0M−1 of the homogeneous coordinates
of the moved plane M−T(Q,X0)A0. The covariance ma-
trix of the normalized plane coordinates Ae = [NT,−S]T

is ΣAe,Ae = Je(A)ΣAAJT
e (A) with the Jacobian

Je(A) =
∂Ae

∂A
=

1√
A2

1 +A2
2 +A2

3

[
I3 −NNT 0

SNT 1

]
.

(3)
2We reserve the index i for planes.
3If the points have different weight wj = 1/σ2

j , this can be taken
into account by weighting. Only if the uncertainty of the 3D points is not
isotropic, the estimation of the optimal plane is more involving.

4The superscript e stands for Euclidean normalization.



In the following we simplify notation, and assume ho-
mogeneous plane coordinates A are normalized such that
A2

1 +A2
2 +A2

3 = 1, thus omit the superscript e.

Uncertain motions. Following [6], an uncertain motion
M is represented by {µM,Σξξ},5 thus its mean and the co-
variance matrix of the random twist vector ξ = [rT, tT]T,
where

M = exp(K (ξ))µM ≈ (I4 + K (ξ))µM (4)

or M = M(R(r), t)µM(µR ,µT ). The random twist vector
ξ, thus collects the small rotation vector r and the small
translation vector t. Then we have for small r

exp (K (ξ)) = exp

([
S(r) t
0T 1

])
≈ 6

[
R(r) t
0T 1

]
,

(5)
where the rotation matrix can be determined from Ro-
driguez’ form R(r) = ((4+||r||2)I+4S(r)+2S2(r))/(4+
||r||2), with the skew matrix S(r) of the 3-vector r.

2.2. The constraints

If points with homogeneous coordinates X are trans-
formed according to X′ = MX then the 3D planes with
homogeneous coordinates A are transformed according to
A′ = M−TA, thus we have the back projection A =
MTA′.7 Assuming the planes are not at infinity we there-
fore can use the constraint between the observed plane pair
(A,A′) and the motion (R,T )

0 = RN −N ′ and 0 = N ′
T
T − S + S′ . (6)

Only three of these four constraints are independent,
since the identity of two normals, in the first expression,
only requires two constraints. We only need to compare
their direction. This can be achieved by comparing the po-
sition of RN and N ′ on the unit sphere S2, by projecting
the normals to the tangent space at N ′, spanned by a basis
of the nullspace of N ′T see the minimal representation of
the normal in the Supplement and [9, Sect. 10.2.2]. Thus
the we have the two constraints

JT
r (µN ′)(RN̂ − N̂

′
) = 0 with Jr(N ′) = null(N ′T)

(7)
for the normal. The three necessary constraints for two
planes A and A matching after motion M finally are

0 = g(M; A,A′) :=

[
JT
r (µN ′)(RN̂ − N̂

′
)

N̂ ′
T
T − Ŝ + Ŝ′

]
. (8)

5Random variables are underscored.
6We have the upper right element V (r) of exp(K (ξ)) generally:

V (r) = I3 +
∑∞

n=1 Sn(r)/(n + 1)!, which simplifies to t for small
r, see [6]

7Equality relations for homogeneous entities hold up to scale.

2.3. The ML-estimation

The plane parameters A and A′ are observed, therefore
the constraints will not be fulfilled. Taking their uncertainty
into account we perform a maximum-likelihood estimation
leading to best estimates Â and Â′ for the planes and M̂
for the motion. Hence, we assume the constraints g hold
for these estimated values. Since the motion M is unknown,
and the constraints are nonlinear we assume to have approx-
imate values Âa, B̂a, and M̂

a
for the final estimates. This

estimation needs to take into account the special structures
of the plane parameters, namely that the normals are unit
vectors, and of the motion matrix, namely that it contains a
rotation matrix. This we realize by estimating a minimal set
of parameters for the planes and the motion.

Using the minimal representation for the normal we have
the following relations, for the plane A

Â =

[
N(N̂a + Jr(N̂aT)∆̂N r)

−(Sa + ∆̂S)

]
(9)

=

[
N(N̂a + Jr(N̂aT)(N r + v̂Nr

))
−(S + v̂S)

]
. (10)

Here, using the estimated residuals v̂Ar
and the corrections

∆̂Ar for the reduced plane parameters

v̂Ar
=

[
v̂Nr

v̂S

]
and ∆̂Ar =

[
∆̂N r

∆̂S

]
, (11)

we exploited the two expressions for the fitted observa-
tions Âr = Ar + v̂Ar = Â

a

r + ∆̂Ar, taking into ac-
count N̂

a

r = 0. The expressions for the plane A′ are
similar. For the motion we have up to first order terms
M = M̂

a
+ K (∆̂ξ)M̂

a
, see (4). Hence, taking all plane

pairs into account, the goal is to find the minimum of the
weighted Mahalanobis distance of all residuals

Ω
(

∆̂ξ;
{

∆̂Ari, ∆̂A
′
ri

})
=

∑
B∈{A,A′}

∑
i

||v̂Bri
||2ΣBriBri

(12)
such that the constraints (8) for the fitted values are fulfilled,
see [9, Sect. 10.6.1].

The weighting of the residuals, e.g. by ||v̂Ari
||2ΣAriAri

=

v̂T
Ari

Σ−1AriAri
v̂Ari by the inverse covariance matrix allows

to exploit the information of the plane generation process,
see Section 2.1, by tracking the uncertainty ΣXjXj

from the
given 3D points Xj through the uncertainty of the planes
ΣAiAi

to the uncertainty Σξ̂ξ̂ of the estimated motion. We
assume the observations are given together with the covari-
ance matrix of their reduced coordinates:

yi =

[
Ari

A′ri

]
with Σyiyi = σ2

0

[
ΣAriAri

ΣA′
riA

′
ri

]
.

(13)



Thus the uncertainty is known up to an unknown variance
factor σ2

0 which can be estimated from the data.
The iterative solution starts from approximate values for

the fitted planes and the motion and performs updates for
the motion parameters derived from the normal equations
N∆ξ = n, and updates for the plane parameters Â and Â′

following (9). After convergence we obtain the theoretical
covariance matrix

Σξ̂ξ̂(g,Σyy) = N−1 , (14)

which is the Cramer-Rao bound. This covariance matrix is
close to the empirical uncertainty of the estimated parame-
ters, if the model is fulfilled, i.e. the plane correspondences
hold and their uncertainty is reflected in the covariances,
and the noise is not too large, such that the applied first or-
der approximations are acceptable. Using simulated data,
we therefore can check whether the simulation of the data
and the estimation procedure are consistent. The covari-
ance matrix only depends on the assumptions about the con-
straints g and the uncertainty Σyy of the observations, not
on the actual observations. The estimated variance factor

σ̂0
2 = Ω/R ∼ F (R,∞) with R = G− U (15)

can be used for checking the consistency of data and model.
The number of degrees of freedom is identical to the redun-
dancy R = G− U = 3I − 6 of the estimation problem.

In case the percentage of wrong plane-plane correspon-
dences is not too large, using maximum-likelihood type ro-
bust estimation allows to find to eliminate the outliers and
reach the correct (global) optimum, see [8, 31]. Applying a
gradient non-convexity iteration scheme, as in [31], speeds
up the procedure.

3. Direct solutions
The maximum likelihood estimation procedure is itera-

tive and requires approximate values, especially for the mo-
tion. We therefore need a direct solution for determining
the motion parameters. Usually direct solutions are accurate
enough for guaranteeing convergence, however, are statisti-
cally suboptimal. We discuss three direct solutions. Two of
them take the uncertainty of the given plane parameters into
account and, as will be shown, lead to results very close to
the maximum likelihood solution:

(1) an algebraic solution proposed by [14]. This solution
estimates rotation and translation separately and does not
exploit the uncertainty of the given plane pairs. We will
refer to this solution as ALG.

Two two-step procedures which use the algebraic solu-
tion as first step and exploit the uncertainty of the given
plane pairs in the second step:

(2) a whitened version of the algebraic solution, together
with the algebraic solution indicated with ALGW. This so-
lution still estimates rotation and translation separately, and

(3) the first iteration of an ML solution, together with the
algebraic solution indicated with ML-1. This solution de-
termines the Jacobians at the observed, instead of the fitted
values.

We expect the three solutions to yield results which are
increasingly closer to the optimal ML estimation.

We derive covariance matrices for the first two solutions.

3.1. The direct algebraic solution

The direct solution, proposed by [14], observes, that the
two sets of constraints in (8) allow to separately estimate
the rotation and the translation.

The first expression contains two linearly independent
constraints and only relates to the rotation. It refers to the
estimated parameters and fitted observations. If we use the
observed normalsN ′i instead of their mean value for deter-
mining the Jacobian, we arrive at the residual vector

gi,r = JT
r (N ′i)RN i = (NT

i ⊗ JT
r ((N ′i))) vecR (16)

The estimate, R̂ = argminR ||gr||2, for the rotation which
minimizes the algebraic error ||gr|| = ||[gi,r]|| can be found
as the right singular vector of the matrix [(NT

i ⊗JT
r ((N ′i)))]

belonging to the smallest singular value vec(R̂) = V (:, 9)

with [(NT
i ⊗ JT

r ((N ′i)))] = UDV T. Since the orthogo-
nality of R̂ is not enforced we finally obtain the estimate
from

R̂
ALG

= UV T with R̂ = UDV T . (17)

The translation can directly be derived by minimizing
the residuals gt = [gi,t] = [N i

′TT − Si + S′i], hence by

T̂
ALG

= argminT ||gt||2. Since the unknown parameters T
occur quadratically in the minimization function we obtain
them from the linear equation system

T̂
ALG

= (X TX )−1X Ty . (18)

with X = [N i
′T] and y = [Si − S′i]

The Covariance Matrix of the Solution
The solution is suboptimal. Still, we can derive its co-

variance matrix by implicit variance propagation.
Let the constraint between the non-reduced observations

yT
i

1×8
:= [AT

i ,Ai
′T] = [NT

i −Si,N i
′T−S′i] (19)

with their 8 × 8 covariance matrix Diag([ΣAiAi ,ΣA′
iA

′
i
]),

and the parameters β = {R,T } have the form 0 =

g(β̂, ŷ) = [gi(β̂, ŷi)]. We linearize with ∆β := ξ =
[rT, tT]T

∆g(β,y) = Xξ + Z T∆y = 0 . (20)



Therefore the (corrections to the) unknown parameters are
ξ̂ = −X+Z T∆y. This leads to the covariance matrix

Σξ̂ξ̂ = X+Z TΣyyZX+ (21)

In our special case we have the Jacobians X
3I×6

= [X T
i ] and

Z T

3I×8I
= Diag([Z T

i ]) with

X T

3×6
=

[
−JT

r (N ′)S(RaN) 0

0T N ′
T

]
(22)

Z T

3×8
=

[
JT
r (N ′)Ra 0 −Jr(N ′) 0

0T −1 T aT 1

]
(23)

With S =
∑
i X iX T

i we therefore have

ΣALG
ξ̂ξ̂

= S−1
(∑

i

X iZ T
i ΣyiyiZ iX T

i

)
S−1 . (24)

3.2. The direct whitened algebraic solution

The algebraic solution is suboptimal for two reasons: (1)
the uncertainty of the given planes is not exploited, (2) the
solution depends on the observed, not on the fitted observa-
tions.

We can exploit the uncertainty of the observed planes
in the following manner, which can be applied to all alge-
braic solutions and is a generalization of the method of [27],
here including the different uncertainties of the given ob-
servations. The algebraic errors gi(R,T ;yi) depend on the
observations and do not have the same covariance matrix,
when assuming the motion parameters are fixed. Instead
of minimizing the algebraic error we minimize the Maha-
lanobis distance of these errors g = [gi] to 0:

{R̂
ALGw

, T̂
ALGw
} = argminR,T g

TΣ−1gg g . (25)

For this we use the covariance matrix of the algebraic errors
Σgigi = Z T

i Σyiy:iZ i with Z T
i = ∂gi/∂yi.

The direct algebraic solution in our case performs a sep-
arate estimation of rotation and translation. If we whiten the
rotation and the translation constraint separately, we use the
covariance matrix of the rotation constraints

Σgi,rgi,r
2×2

= Z T
i,rΣyiyiZ i,r , (26)

with Z T
i,r being the first two rows of Z i in (23). The

whitened rotation constraint therefore reads

JT
ri

(
RN̂

′
i − N̂ i

)
= 0 with Jri = Jr(µNi

)Σ−1/2gi,rgi,r .

(27)
Similarly, we have the variance of the translation constraint

σ2
gi,t = Z T

i,tΣyiyiZ i,t with Z T
i,t = [01×3,−1, T̂

ALG,T
, 1] .
(28)

and hence the whitened constraint for the translation(
N̂ i
′TT − Ŝi + Ŝ′i

)
/σgi,t = 0 . (29)

The Covariance Matrix of the Whitened Algebraic So-
lution. Using the whitened constraints we can derive the
covariance matrix ΣALGw

ξ̂ξ̂
in the same manner as for the un-

whitened constraints. We just have to take the Jacobians of
these constraints; they result from (22) and (23) by substi-
tuting Jr by Jrw from (27) and Ra by RALG, and multiply-
ing the last row of Z T

i by 1/σgi,t .

3.3. Single-iteration ML-solution

Instead of whitening the direct solution, we can arrive at
a better approximate solution using the first iteration of an
ML estimation taking the algebraically determined motion
parameters as approximate values.

Starting from approximate values ξ̂
ALG

we obtain correc-
tions ξ̂ from the normal equations N ξ̂ = n with the residu-
als of the constraints (8)

c′g = −g(β̂
ALG

,y) := −[gi(M̂
ALG

,yi)] . (30)

evaluated at the approximate values M̂
ALG

of the algebraic
solution and the observations yi = [AT

i ,Ai
′T]T, instead of

the fitted observations (see [9, Eq. (4.444) ]). These are not
needed in this approximation and simplify the procedure.

Unfortunately, without knowing the rate of convergence
no theoretical covariance matrix can be given. We how-
ever will see, that this second step often outperforms the
whitened solution ALGW.

4. Empirical evaluation
We perform several empirical tests. First, we show,

that the implemented estimation procedures yield the results
they should, by performing decisive tests. Second, we com-
pare the loss in accuracy of the suboptimal methods, when
compared to the maximum likelihood estimates.

4.1. Correctness of the accuracy predictions

The maximum likelihood estimation procedure yields
three results: the estimated parameters ξ̂, their theoretical
covariance matrix Σξ̂ξ̂, and the estimated variance factor
σ̂2
0 . The approximate methods do not yield a variance fac-

tor, and partly no covariance matrix. All three results can
be tested statistically, see [9, Sect. 4.6.8]. If the test fires,
there is an indication, that the simulation or the estimation
method does not yield the desired results.

The tests are based on K repeated estimates, assuming
the same true data and covariance matrices for the observa-
tions and adding noise to the observations, here the plane



pairs. In order to avoid second order effects, the tests are
primarily performed with small standard deviations, e.g. be-
low 0.01% of the average distance between the centroids of
the planes. We will show, that for larger noise variances
the statistical tests will fire, due to the neglection of higher
order terms within the variance propagation.

The following tests refer to I = 50 planes pairs, with
centroids randomly chosen in the cube [−1,+1]3 and co-
variance matrices randomly chosen as ΣAriAri

= σ2
A(I3 +

UUT), where U are random 3 × 3 matrices with Ukl ∼
N (0, 1). The variances σ2

A of the planes A are assumed to
be 9 times smaller than the variances σ2

A′ of the planes A ′.
The plots refer to the larger standard deviation.

Checking the correctness of the estimated noise level for
ML-estimates. The estimated variance factor should be
close to 1, if the generated observational data and the es-
timation model are consistent, i.e. their nominal values fol-
low the constraints and the noise follows the assumed distri-
bution, which is the null hypothesis. For testing we use the
distribution σ̂0

2|H0 ∼ F (R,∞) of the estimated variance
factor, whereR is the redundancy of the estimation process,
namely R = G− U = 3I − 6.

Figure 2, left, shows the histogram of K = 300 sam-
ples σ̂2

0,k of the variance factor, assuming σA = 0.0003:
It visually fits the theoretical Fisher-distribution F (R,∞)

with R = 3 × 50 − 6 = 144. The mean value σ̂2
0 =∑

k σ̂
2
0,k/K = 0.99935 is well in the 99.9% acceptance

interval [0.974, 1.027]. Figure 2, right, shows the depen-
dency of the estiamted variance factor as a function of the
noise level: For noise levels below 1% the estimated vari-
ance factor does not significantly deviate from 1; for larger
values the variance factor no longer follows a Fisher distri-
bution with a suffient accuracy due to the nonlinearity of the
model.

Figure 2: Evaluation of estimated variance factor. Left:
Histogram ofK = 300 estimated variance factors with theo-
retical distribution F (144,∞) overlayed, showing good cor-
respondence. Right: Mean estimated variance factor as a
function of the noise level. For large noise levels the nonlin-
earity of the model becomes slightly visible

Checking the correctness of the theoretical covariance
matrix. The theoretical covariance matrix Σξ̂ξ̂ should re-
flect the empirical accuracy, i.e. E(Σemp

ξ̂ξ̂
|H0) = Σtheor

ξ̂ξ̂
. This

can be tested using a sample of simulated data leading to
an empirical covariance matrix Σemp

ξ̂ξ̂
derived from the de-

viations of the estimates from their true value, see the test
statisticX2(CovM) which is χ2

15 distributed, involving, and
given in [15], Sects. 2.8.7, 4.1.212.

Figure 3: Test statistics for checking the covariance matrix
and the mean, shown as a function of the noise level σA,
together with the confidence regions (dashed). Left: Test
statistic X2(CovM) ∼ χ2

15 for checking the consistency of
the empirical and the theoretical covariance matrix. Right:
Test statistic X2(bias) ∼ χ2

6 for checking the unbiased-
ness of the estimated parameters. For low relative accuracy,
namely above 0.01 the test statistic is far outside the toler-
ance band

Figure 3, left, shows the test statistic X2(CovM) for the
covariance matrices of the maximum likelihood estimates
(ML) and two of the direct solutions for a series of noise lev-
els (ALG and ALGW). For small noise levels, below 0.3%
relative precision, the hypothesis that the expected empiri-
cal covariance matrix is identical to the theoretical covari-
ance matrix is not rejected. This also can be interpreted as
follows: the theoretical covariance matrices can safely be
used to predict the expected precision of the three estima-
tion methods. Hence, also the precision of the suboptimal
direct solutions can be predicted. Again, for larger noise
levels, the statistical tests fire, due to the nonlinearity of the
model.

Using this test for checking the correctness of the imple-
mentation (of the simulation and the estimation) turns out
to be very useful, as it is a very sensitive test.

Checking the unbiasedness of the estimates. Finally, the
estimation should yield values ξ̂ close to the true value ξ̃.
Therefore we test the hypothesis E(ξ̂|H0) = ξ̃. Given the
covariance matrix Σξ̂ξ̂, the estimated mean m̂ξ̂ of the K

samples ξ̂k of estimates should be close to ξ̃. Under the
null-hypothesis, the test statistic

X2(bias) = K(m̂ξ̂ − ξ̃)TΣ−1
ξ̂ξ̂

(m̂ξ̂ − ξ̃) ∼ χ2
U (31)

follows a χ2
6 distribution.

Figure 3, right, shows the test statistic for a range of
noise levels. Obviously, the maximum likelihood solution
ML and the whitened algebraic solution ALGW, which also



takes the uncertainty of the observed planes into account,
yield unbiased results over the whole range of noise levels,
in contrast to the algebraic solution ALG, which for larger
noise levels can be expected to be biased.

4.2. Loss in accuracy of the suboptimal solutions

We evaluate the loss in accuracy of the direct solutions
using a dataset with realistic distribution of planes. The
dataset consists of two point clouds captured in a lecture
room, one by a Faro terrestrial laser scanner and the other
by a Zeb-1 sensor. The point clouds, hereafter referred to
as TLS and Zeb, were segmented into planar segments us-
ing the region growing method of Vosselman [28], result-
ing in 269 segments containing 4.431 million points for the
TLS point cloud, and 261 segments containing 1.525 mil-
lion points for the Zeb point cloud. Correspondences were
found using a greedy search described in [13], yielding 57
pairs of corresponding planar segments representing 81.7%
of all points. Figure 1 shows the segmented point clouds.

To evaluate the loss in accuracy of the estimation meth-
ods, we first fit planes to the segments in each point cloud
and estimate the plane uncertainties using the nominal pre-
cision of the points. Based on sensor specifications, we set
a nominal precision of 1.2 mm for the TLS point cloud [7]
and 25 mm for the Zeb point cloud [10]. Once plane un-
certainties are estimated, we find an approximate motion
between the two sets of planes and treat this as the true
motion. Using this true motion, the plane parameters are
transformed from the Zeb frame to the TLS frame, and the
covariance matrices in the TLS frame are adapted to their
corresponding new plane parameters. The original and the
transformed planes and their corresponding covariance ma-
trices are treated as true observations for the estimation of
motion. Then in K iterations, we perturb the planes in both
sets according to their covariance matrices and estimate the
motion. From the resulting discrepancies between the true
motion and the estimated motion we obtain the empirical
covariance matrix of the motion parameters for each solu-
tion, and evaluate the loss in accuracy of the direct solutions
as compared to the optimal ML solution.

We evaluate the loss in accuracy, referring to the stan-
dard deviations of the motion parameters, namely using the
following measures:

• Average loss:
√

tr
(

Σ
(a)

ξ̂ξ̂
Σ

(ML),−1
ξ̂ξ̂

)
/6,

• Maximum loss:
√

maxλ(Σ
(a)

ξ̂ξ̂
Σ

(ML),−1
ξ̂ξ̂

),

where Σ
(a)

ξ̂ξ̂
and Σ

(ML)

ξ̂ξ̂
denote the empricial covariance ma-

trix of the motion estimated by the direct solution and the
maximum likelihood solution, respectively.

Figure 4 shows the measures of loss in accuracy of the
direct solutions for different numbers of randomly chosen

plane pairs over K = 100 iterations. The average loss
shown on the left indicates a consistently superior perfor-
mance for the single-iteration ML solution (ML-1) and the
whitened algebraic solution (ALGw) across different num-
bers of plane pairs as compared to the algebraic solution
(ALG). Both solutions, ML-1 and ALGw, which exploit
the uncertainty of the given plane pairs have a significantly
smaller loss of accuracy as compared to ALG.

Figure 4: Loss in accuracy of the three direct solutions
shown as a function of the number of plane pairs, realistic
configuration, K = 100 iterations. Left: Average loss.
Right: Maximum loss. The single iteration ML solution
(ML-1) and the whitened algebraic solution (ALGw) have
a significantly smaller loss of accuracy as compared to the
algebraic solution (ALG) in terms of both measures

4.3. Comparison with ICP

We compare the performance of the plane-to-plane es-
timation methods with the classical iterative closest point
(ICP) algorithm. Two variants of the ICP implemented
in MATLAB R©R2016 are tested: the point-to-point ICP, re-
ferred to as ICP-pt, and the point-to-plane ICP, referred to
as ICP-pl, see [24]. The extrapolation-option, described
in [2] is applied. To evaluate the ICP variants, we take the
true plane pairs from the previous experiment and project
the points in each point cloud to their corresponding true
planes. Then within K = 100 iterations, we distort the
points according to the nominal precision of the points, and
apply ICP to estimate the motion. To ensure convergence,
we use all 57 plane pairs, and provide as input to the ICP an
initial approximation of the solution within 5 degrees and
0.1 m of the true motion. From the discrepancies between
the estimated motion and the true motion over K = 100
iterations, we obtain the empirical covariance of the esti-
mated motion, and compute the loss of accuracy with re-
spect to the optimal ML solution.

Table 1 shows the result of the comparison between the
direct plane-to-plane methods and the ICP variants in terms
of loss of accuracy with respect to the optimal ML solu-
tion. While ICP-pl performs better than ICP-pt, both ICP
variants have a significantly larger loss of accuracy as com-
pared to ML-1 and ALGw which exploit the uncertainty of
the planes.



Method Average loss Maximum loss
ML-1 1.24 2.04
ALGw 1.61 2.76
ALG 45.15 104.80
ICP-pl 3.66 6.09
ICP-pt 5.82 12.11

Table 1: Comparison of direct plane-to-plane methods with
the point-to-point ICP (ICP-pt) and point-to-plane ICP (ICP-
pl) in terms of loss of accuracy with respect to the optimal
ML solution (realistic configuration, 57 plane pairs, K =
100 iterations)

4.4. Computation times

The estimation procedures were implemented in MAT-
LAB. The average computation times on an Intel i7 proces-
sor with 2.70 GHz speed and 8 GB memory for different
estimation methods using plane-to-plane correspondences
are given in Table 2. The computation times for 1000
(randomly generated) plane pairs shows that the estimation
methods can be scaled up to larger scenes with more planes
and perform in real time. However, – out of the scope of
this paper – the prerequisite steps, segmentation and search
for plane correspondences, are expensive processes. The
segmentation process took 352 seconds for the TLS point
cloud with 4.4 million points and 106 seconds for the Zeb
point cloud with 1.5 million points using the software by G.
Vosselman [28].

The search for correspondences took 225 seconds to find
57 plane pairs. This indicates that for practical plane-to-
plane registration of point clouds more efficient segmen-
tation and correspondence search methods should be used.
Also, the ICP registration of the two point clouds with the
used MATLAB-tools are comparably slow, and took on av-
erage 299 and 934 seconds respectively for the ICP-pl and
ICP-pt variants.

# pairs ML ML-1 ALGw ALG
57 0.085 0.012 0.021 0.010

1000 1.6247 0.1331 0.3088 0.0653

Table 2: CPU times (in seconds) for the optimal and direct
motion estimation methods for 57 and 1000 plane pairs

5. Registering multiple point clouds
The registration of multiple point clouds based on pair-

wise matches of planes can exploit the derived constraints
to advantage. Assume, we have F frames, i.e. motions Mf ,
one of them acting as reference frame. Let the scene have
P planes Ap, which are unknown and serve as link between
the frames via Q observed planar regions Aq := Af

p with

q = (p, f). Finally we assume we have found C corre-
spondences c = (p, f, p′, f ′) between planes Af

p and Af ′

p′ .
Then, starting from approximate values for the motions and
the scene planes, the task is to find estimates for the cor-
rections ∆ξf of the unknown motions and the corrections
∆Arp to the unknown planes such that

Ω
(
{∆̂ξf}; {∆̂Arp}

)
=
∑
q||v̂Af

rp
||2Σ

A
f
rpA

f
rp

(32)

is minimized under the constraints gc(Mff ′ ; Af
p ,A

f ′

p′ ) = 0
for all c = 1, ..., C. Observe, in contrast to the setup in (12),
where each constraint refers to exactly one plane in both
frames, here we allow for arbitrary matches, i.e. each ob-
seved plane in one frame may match several planes in other
frames. Therefore, the classical optimization criterion used
in SLAM, see [16] or [31], which minimizes the alternative
objective function

Ω′
(
{∆̂ξf}

)
=
∑
c||gc(Mff ′ ; Af

p ,A
f ′

p′ )||
2
Σgcgc

(33)

with respect to the unknown motions, is suboptimal, for two
reasons: (1) since observed planes correspond to several
planes, the constraint residuals gc are not mutually inde-
pendent, which is not taken into account in (33); (2) the
observed plane parameters are fixed and not corrected, to
achieve fitted plane parameters. Following the investiga-
tions in [25], case C, the loss in precision can be expected
to be below a factor 1.5, which however needs to be verified.

Again, the method can be made robust w.r.t. wrong
correspondences, as e.g. in [31], namely, by itera-
tively reweighting the residual, hence to replace the
weighted sum of squares by a robust minimization function∑
q ρ

(
||v̂Af

rp
||Σ

A
f
rpA

f
rp

)
.

6. Outlook
The paper presents new optimal and suboptimal direct

solutions for determining the relative motion of point clouds
based on plane-to-plane correspondences. The estimates are
computationally efficient, allowing real time performance.
The new direct methods, which take the uncertainty of the
given plane pairs into account only show a small loss, be-
low a factor 3 compared to the statistically optimal esti-
mate. The whitened algebraic solution allows to predict
the precision of the estimated motion which can be used
within a SLAM procedure. The proposed methods are faster
and more precise than classical ICP methods. Future work
refers to exploiting the uncertainty of the extracted planes
for efficiently establishing correspondences and investigat-
ing the performance of multi-frame estimates.

Acknowledgments: We appreciate the use of the soft-
ware for point cloud segmentation of G. Vosselman [28].
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