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Abstract—Deriving semantic 3D models of man-made envi-
ronments hitherto has not reached the desired maturity which
makes human interaction obsolete. Man-made environments play
a central role in navigation, city planning, building management
systems, disaster management or augmented reality. They are
characterised by rich geometric and semantic structures. These
cause conceptual problems when learning generic models or when
developing automatic acquisition systems. The problems appear
to be caused by (1) the incoherence of the models for signal
analysis, (2) the type of interplay between discrete and continuous
geometric representations, (3) the inefficiency of the interaction
between crisp models, such as partonomies and taxonomies,
and soft models, mostly having a probabilistic nature, and (4)
the vagueness of the used notions in the envisaged application
domains. The paper wants to encourage the development and
learning of generative models, specifically for man-made objects,
to be able to understand, reason about, and explain interpreta-
tions.

I. INTRODUCTION

Deriving semantic 3D models of man-made environments
has gained interest since the beginning of image analysis, see
(Brooks, 1983; Herman and Kanade, 1986) and the surveys for
outdoor and indoor environments in (Musialski et al., 2013;
Fidler and Urtasun, 2015). Man-made environments play a
central role in navigation, city planning, building management
systems, disaster management or augmented reality.

Automatic methods for semantic building reconstruction
hitherto have not reached the desired maturity which makes
human interaction obsolete. In spite of great success in auto-
matically reconstructing the geometry of buildings it appears
that the rich geometric and semantic structures, which char-
acterize man-made objects, slows down progress. The paper
identifies successes and difficulties in using explicit models
for supporting the geometric and semantic reconstruction of
buildings. We want to encourage the development and learning
of generative models, specifically for man-made objects, be
able to understand, reason about, and explain interpretations
of man-made scenes, quite in the spirit of (Lake et al., 2016).

Based on experiences in our research group, we will discuss
typical tasks which we solved using structural descriptions
(image orientation, building reconstruction, and façade inter-
pretation), and embed the used methods in the stream of
concurrent solutions. We try to identify the attempts to learn
the underlying models and the achievements in object recog-
nition which on one had promise to support future methods
for interpreting images of man-made scenes. However, these
models – in our view – still contain conceptual problems when

learning generative models or when developing automatic
acquisition systems. The problems appear to be caused by
(1) the incoherence of the models for signal analysis, (2) the
type of interplay between discrete and continuous geometric
representations, (3) the inefficiency of the interaction between
crisp models, such as partonomies and taxonomies, and soft
models, mostly having a probabilistic nature, and (4) the
vagueness of the used notions in the envisaged application
domains. A goal for future research should be to learn building
models, i.e., to learn geometric, structural and semantic models
which help understanding images of man-made scenes, and
to further develop methods to learn these highly structured
models.

We start with experiences with structural descriptions for
solving tasks related to man-made objects.

II. USING STRUCTURAL DESCRIPTIONS

In the following we discuss three basic problems, pose de-
termination, building reconstruction, and image interpretation
in the context of man-made scenes. Pose determination is rep-
resentative for the large class of parameter estimation problems
based on correspondences, where – depending on the number
of available image features – structural descriptions may be
of advantage. Building reconstruction is a representative for
the large class of problems where, besides a large number of
parameters, also the structure of the solution, especially the
number of parameters and possibly the constraints between
the parameters, is not known from the beginning. Finally,
image interpretation aims at a semantic description, thus
above parameters and structure also aims at finding the class
memberships of the objects and possibly the semantic relations
between the objects shown in the images. The discussion of
these tasks is triggered by own research and the solutions
known before and achieved later and gives insight into the
development during the last three decades w.r.t. the used
representations and reasoning methods.

A. Relational Matching using Edges for Pose Determination

Pose estimation requires correspondences between images
and a 3D model, which, when performed automatically, re-
quires adequate matching techniques. Matching a given model
with an image is based on a common representation. Thirty
years ago, due to limited computer power, representations
based on point or line type features dominated. Keypoints were



mainly used for image-to-image matching whereas model-to-
image matching mainly use image edges, even only straight
edge segments, see e.g., (Brooks et al., 1979; Lowe, 1987)
and Fig. 1. The search for correspondences was done incre-

Fig. 1. Pose estimation based on straight line segments. Left Image edges.
Mid: One of the models given as 3D line segments. Right: Image with
projected model; from (Lowe, 1987). The matching is based on triplets of
corresponding lines, which allow to directly derive the pose parameters, which
then are checked for consistency with the other edges

mentally, formalized as interpretation tree by (Grimson and
Lozano-Perez, 1987).

Based on work on the consistent labelling problem (Haralick
and Shapiro, 1979, 1980) and relation matching (Shapiro and
Haralick, 1987), we in the late nineteen eighties explored
model-to-image matching for finding buildings (roofs) in aerial
images (Förstner, 1988; Schickler, 1992), and more general
relational descriptions for pose estimation (Vosselman, 1992)
or map-to-image matching based on road networks (Haala and
Vosselman, 1992; Vosselman and Haala, 1992), see Fig. 2.

Given a wire frame model of the object and line segments
together with their mutual relations, such as connectivity
or parallelity, the task was to derive the six parameters of
the pose. Matching of the two relational descriptions using
heuristic search (A∗) was based on a probabilistic model of the
projection. The matching costs were based on the mutual self-
information I(x; y) = − log(P (x)/P (x|y)).1 The goal of the
search was to maximize the sum of the mutual self-information
of all matches and relations. The probabilities were learned
from training data. This simplifies the evaluation of missing
correspondences – often called wild cards in matching – by
setting I(x; y) = 0, since the missing match has no influence.
An example for detecting a road junction in an aerial image
is given in Fig. 2

Fig. 2. Image-to-model matching. Left: Road map as planar graph. Mid:
Search tree for image orientation. Right: Match with aerial image; from
(Vosselman and Haala, 1992). The model has 25 units (junctions, edges)
(only the region around the road intersection), the image has 21 units, the
search tree has 52 nodes, determining the orientation was tried six times, the
software was written in POP-11, the computing time was 227 seconds on a
VAX 3200

1The mutual self-information I(x; y) ∈ (−∞,∞) depends on the prob-
abilities. The mutual entropy H(x; y) = Ep(x,y)(I(x; y)) ≥ 0 is its
expectation and often called mutual information.

Progress in pose estimation is based on more informative
features (Brachmann et al., 2016) or first estimating viewpoints
using a regression convolutional neural network and then using
key points for fine matching (Tulsiani and Malik, 2015). While
both directions do not use an explicit model of the scene,
exploiting a hierarchical object model for efficient detection
(Mottaghi et al., 2015), see Fig. 3 and generalizations to
articulated objects are indispensable for locating persons in
general pose, see e.g., (Kar et al., 2014). Progress is triggered
by a 3D recognition challenge (Xiang et al., 2014).

Fig. 3. Hierarchical model for object detection, including a step for determin-
ing the orientation of the object. Left: Hierarchical model with three layers.
Mid: Given image. Right: Bounding box, class, and projected coarse model;
from (Mottaghi et al., 2015)

B. Generic Building Models from Multiple Images using Con-
straint Programming

Reconstructing generic building models from images re-
quires an adequate representation of the structure. Structure
refers to the number of building parts, their relations w.r.t.
neighbourhood and geometry, and to constraints between the
parts, especially among parameters of the individual parts. In
a first step the reconstruction only aims at a rich geometric
description, and does not include an interpretation. This may
be fruitful in a later step, see (Malik et al., 2015).

Early work (Brooks et al., 1979) fixed the structure and only
allowed variations for parameters for parameter. The first work
assuming buildings to be represented as polyhedra is (Herman
and Kanade, 1986; Huertas and Nevatia, 1988). Explicitely
deriving neighbourhood relations between building parts was
addressed by (Fua and Hanson, 1987), see Fig. 4.

Fig. 4. Deriving the topology of a complex building. Left: Aerial image. Mid:
Result of data driven segmentation. Right: Automatically derived symbolic
image description; from (Fua and Hanson, 1987)

Based on these stimulating results and motivated by the
Avenches building extraction benchmark (Mason et al., 1994)
we addressed the reconstruction of complex buildings from
multiple images, see (Braun et al., 1995; Fischer et al., 1998).
Buildings are assumed to be hierarchically decomposed, to
consist of building parts and its projection into the image yield
corners, each being an aggregates of a point and its neighbour-
ing edges and faces. The building parts are parametrized wire



Fig. 5. 3D reconstruction of complex buildings from multiple images.
Left: Four image sections. Mid left: Reconstructed 3D corners. Mid right:
Triggered building parts: five terminals, one connector with three faces (be-
longing to the blue junction). Right: Reconstructed building (roof) fulfilling
topological and geometrical constraints; from (Fischer et al., 1998)

frames. The reconstruction method employees the integration
of a data-driven trigger phase and a model-driven verification
phase. In a first step, mutually oriented images 3D vertices
were reconstructed (see Fig. 5), based on keypoints and
neighbouring 3D edges in an prespecified area of interest,
see (Fuchs and Förstner, 1995; Lang and Förstner, 1996).
Based on the 3D vertices, building parts were hypothesized
and mutual topological and geometrical constraints were ex-
ploited to reconstruct the complete building. The method was
implemented as constraint satisfaction program (in constraint
logic programming, see (Kolbe et al., 2000; Fischer, 2000)),
and allowed for occlusions (wild cards, see above) and incre-
mentally for the prediction of new corners. The verification
step included a prior on the different buildings and viewing
directions, which exploited the shortest coding of the expected
feature adjacency graph, see (Heuel and Kolbe, 2001; Kolbe,
2000).

Generating highly structured city models requires a quite
generic building model, with a variable number of parts. The
models we used are limited. They use restricted prespecified
parametrized building parts, and thus cannot be used for larger
areas. Though constraint logic programming appeared to be
useful, the statistical knowledge only influenced the heuristics
of the search and in a prespecified manner was used in the
final evaluation. The parts need to be learned together with
their relations and the reconstruction should exploit the learned
statistics: Neither was the likelihood of the extracted features
exploited as e.g., in (Arbelaez et al., 2011), nor was any
knowledge about illumination (sun angle, albedo) used. This
would allow an integration of forward and backward modelling
using computer graphics, see the example in Fig. 3.

There is a dichotomy: whether it is more favourable to aim
at less simple parts with complex relations or to try to find
more expressive complex parts with more restricted relations,
with the inherent question how to deal with curved surfaces
then. The extreme, representing the surface as mesh up to now
appears to be the most flexible and successful approach. This
circumvents the problem of structuring, which then needs to
be addressed in a second step, see the next section.

Later work on building reconstruction exploited regularities
of roof tops based on the straight skeleton (Brenner, 2000)
or aimed at watertight reconstruction for outdoor (Zhou and
Neumann, 2010) or indoor scenes from LiDAR data (Oesau
et al., 2013). We can observe intensive research in recon-

structing large city areas based on terrestrial and aerial images
using classical pipelines, which are developed in the context of
reconstructing scenes from publically available images. This
research is motivated by the difficulty in defining building parts
as basic units, which are useful for larger areas, the high costs
for directly acquiring terrestrial and aerial LiDAR data, and
the need to provide textured scenes and hence avoids semantic
structural descriptions; for pose estimation techniques for very
large number of images see (Snavely et al., 2006; Frahm
et al., 2010); for dense surface reconstruction see (Furukawa
and Ponce, 2010; Jancosek and Pajdla, 2011; Langguth et al.,
2016). 3D surfaces of high fidelity and sufficient density,
however, are an ideal basis for deriving semantically rich
building descriptions, the topic of the next section.

C. Image Interpretation with Graphical Models

Deriving maps from images (including range images, e.g.,
LiDAR measurements) – a central task of photogrammetric
research – by means of automatic image interpretation tech-
niques still is in a premature state.

We addressed the problem of image interpretation for gen-
erating structured scene descriptions using building façades
as exemplary domain. Façades show a wide variety in parts
(doors, windows, balconies), structure (repetitions, symmetry,
alignment) and appearance (local shadows, reflections, vegeta-
tion). Due to their mostly two-dimensional character modelling
regularities is simpler than when dealing with general 3D
building structures. We investigated two approaches: data
driven semantic image segmentation using graphical models,
especially conditional random fields (CRFs) (Korč, 2012;
Yang, 2011), and model driven façade reconstruction using
marked point processes (MPPs) (Wenzel, 2016; Wenzel and
Förstner, 2016). We only discuss the model-driven approach.

The model driven reconstruction (Wenzel, 2016; Wenzel
and Förstner, 2016) starts from rectified images, assuming the
scale to be known. The model is a marked point process where
façades consist of façade elements (doors, windows, balconies)
represented as rectangles. The interpretation uses a reversible
jump Markov chain Monte Carlo (rjMCMC) hypothesis and
test paradigm. The geometric properties of the elements and
their spatial relations are learned from training data. The data
term of the energy function depends on a probabilistic object
related classification; see Fig. 6. For the bottom example,
observe the wrong heights of the windows, the confusion
of windows and balconies and the detection of windows,
where the ground truth does not indicate them; these errors
can be explained by a too weak prior on the neighbourhood
relations and the lack of long range interactions between
the façade elements. The empirical evaluation of the method
leads to confusion tables, which contain estimated conditional
probabilities, for which confidence intervals can be given. In
order to arrive at reasonable intervals in case the empirical
probability is 0 or 1, a weak Dirichlet prior for the multinomial
distribution of these empirical probabilities can be used, see
Table I.



Fig. 6. Façade reconstruction based on a marked point process for façade
elements (image, ground truth, reconstruction), CPU-time appr. one hour. from
(Wenzel, 2016)

TABLE I
Top: Confusion matrix for the façade type ‘city houses’ (with classes,

background, window and balcony); Bottom: Corresponding 99%-confidence
regions in % for the probabilities using a weak Dirichlet prior D(α) with,

e.g., α = [1, 0.01, 0.01] for the first row. This yields more reasonable
intervals for cases where the empirical probability is 0 or 1; from (Wenzel,

2016)

prediction
bg win balc

tr
ut

h bg 0 5 0
win 6 146 0
balc 0 3 40

background window balcony
0.11 < 16.7 < 65.3 34.5 < 83.1 < 99.9 0.00 < 0.17 < 9.56
1.03 < 3.93 < 9.04 90.9 < 96.1 < 99.0 0.00 < 0.01 < 0.36
0.00 < 0.02 < 1.27 0.81 < 6.84 < 19.8 80.1 < 93.1 < 99.2

We observed the typical strengths and weaknesses of data
driven and model driven methods. Data driven methods are
fast, can adapt locally to the image information and are
versatile. This refers not only to locally connected Markov
random fields (MRF), which, latest since grab-cut (Rother
et al., 2004), pushed research in semantic segmentation, see
the review (Zhu et al., 2015). This also holds for (1) fully
connected MRFs, e.g., (Krähenbühl and Koltun, 2011; Ris-
tovski et al., 2013; Li and Yang, 2016), which, due to their
special assumption on the potentials, easily achieve real time
(Cheng et al., 2015) while still being competitive, (2) for
autocontext models, which aim at sequentially gathering new
context by using features of previous interpretations, see e.g.,
(Tu, 2008; Jampani et al., 2015; Gadde et al., 2016), but
even more also (3) for convolutional neural networks, e.g.,
(Farabet et al., 2013; Long et al., 2014; Marmanisa et al.,
2016). The techniques have also been applied successfully to
semantically segmenting point clouds, e.g., (Adan et al., 2011;
Tamke et al., 2014; Ochmann et al., 2016). Graphical models
may be linked to logical programming via Markov logical
networks (Richardson and Domingos, 2006). They allow for a

mixture of crisp and soft formulas Fierens et al. (2014). They
are used for event and face recognition in image sequence
analysis (Tran and Davis, 2008; Chechetka et al., 2010),
for text understanding (Poon, 2011), for the interpretation of
images of chemical structures (Frasconi et al., 2014), and for
scene interpretation (Xu and Petrou, 2010).

Model driven methods allow to explicitly model long range
constraints. This in a first place holds for models based
on grammars (Zhu and Mumford, 2006) and marked point
processes (Ortner et al., 2007). Grammars are regularly for city
modeling (Dick et al., 2002; Talton et al., 2011; Martinović
and Gool, 2013; Liu et al., 2014; Schwarz and Müller, 2015) or
for roof extraction (Huang et al., 2011). They allow learning,
as for indoor scenes (Liu et al., 2014), for façades (Ripperda
and Brenner, 2009; Fan et al., 2014; Wu et al., 2014), for
building layouts (Bao et al., 2013), or for architectural styles
(Talton et al., 2012). In image interpretation marked point
processes are used for building extraction (Ortner et al.,
2007), for road network extraction (Chai et al., 2013), or
more geometric feature extraction (Lafarge et al., 2008). The
generality of these models requires costly sampling methods
for (approximately) finding optimal interpretations, which,
however, allow for parallelization (Wilkinson, 2006).

The integration of data and model driven methods has
always been the key to successful interpretations. Early ap-
proaches, such as (Mohan and Nevatia, 1989), used perceptual
grouping techniques for providing candidate regions for object
detection, here detecting buildings in aerial images. The same
flavour can be found in recent work on simultaneous segmen-
tation and detection (Hariharan et al., 2014), where the region
proposals are refined after classification in order to obtain more
accurate region boundaries.

A probably first integration of Markov logical networks
and stochastical grammars for interpreting façades from point
clouds is described in (Dehbi et al., 2016), see Fig. 7. The

Groundfloor Floor

FloorArray

Facadepart Facadepart

Facadepart

Facade

Facade

Fig. 7. Façade model with stochastical grammar and Markov logical network.
Upper left: An instance of the grammar. Upper right: Some probabilistic
rules of the grammar. Lower left: Some probabilistic relations of the Markov
logic network; from (Dehbi et al., 2016)
partonomy of the façade is represented in stochastic attributed
grammatical rules, which capture the geometric properties and
relations between the parts, see Fig. 7, upper right. Additional
constraints are represented as predicates, which due to the



Fig. 8. Interpretation of point clouds of façades with stochastic grammars and
Markov logical networks. Top row: Image of façade. Second row: Point cloud
with holes. Third row: Data driven interpretation of point cloud; windows:
green), doors: pink, façade: white. Last row: Model driven interpretation.
Observe the predictive power of the model; from (Dehbi et al., 2016)

diversity of the training data are give a probability. Relations
between these predicates establish the Markov logic network,
see Fig. 7, lower left. The interpretation of the point cloud
starts with detecting basic parts of the façade. Deficiencies
such as missing parts, or wrong alignments are then corrected
using the prior mode, see Fig. 8.

III. SOME CURRENT PROBLEMS

This section discusses a few problems which regularly
appear when developing methods for automatic interpretation
of man made scenes. They address the choices we have when
modelling the imaging process with the goal to solve the
inverse problem, namely to recover scene information from
images. Specifically, they refer to the model of the image
signal, the relation between discrete and continuous geometry,
the integration of crisp and soft prior knowledge, and the type
of uncertainty of events and their meaning.

A. Physical and Phenomenological Signal Models

The basic steps for image orientation and building recon-
struction, as the examples showed, often use methods for
edge and contour detection, which essentially depend on the
assumed image model. A classical model for the observed
intensities g(i) in an image starts from the photon counts N(i)
at each pixel in k channels: the two k-vectors g(i) ∝ N(i).
This basic assumption leads to several problems, when fol-
lowing classical image processing procedures:

• How to exploit colour theory for non-RGB imagery?
Colour theory models are a phenomenological and model
visual perception of colours and its peculiarities, such
as colour definition or colour constancy, or it models
colour printing. For the majority of images available it
may be useful: however, the analysis of images with
more than three colours, even of hyperspectral images, the
basic physical model appears to be the appropriate start.

Improvements of classifiers using other than the original
RGB signal result from reduced correlations, which are
preferred by models which treat features as uncorrelated.
Models, which take the – in principle arbitrary – distri-
bution of the three colours into account, would not gain
from colour transformations.

• Image intensities, being proportional to photon counts,
are positive values. Representing a spatial intensity g(i)
as a sum of basis functions which are not non-negative, as
when applying Fourier or Wavelet analysis, appears to be
physically meaningless. Nevertheless, spectral methods
have shown to be very successful.

• Since perception is logarithmic, a simple way out would
be to work with the logarithms of the intensities, as
proposed by (Koenderink and Doorn, 2002), who mo-
tivates it by the logarithmic perception of intensity.2

The representation of the positive function then would
be similar to the exponential family of densities, see
(Borwein and Huang, 1995) and the generalisation in
(Fasino, 2002), e.g., when assuming a continuous image
domain, fl(x) = log(g(x)) =

∫
G(u) exp(2πixu)du,

where G(u) is the Fourier transform of g(x).
• The statistical model of the observed intensities, being

proportional to the photon counts, is a Poisson dis-
tribution. Then the variance of the intensity increases
linearly with the intensity, omitting thermal noise and
non-linearities of the sensor. Using a simple box-filter for
smoothing implicitly assumes the intensities to have the
same variance in the chosen neighbourhood, which does
not hold. Checking the gradient magnitude for detecting
edges, which is a classification task, should take the
variance, i.e., the intensity level into account. Alterna-
tively, the signal could be variance normalized, in the
most simple case using a square root point transformation
fs(x) =

√
g(x), since the normalized signal fs(x) then

has constant noise variance, see (Förstner, 2000; Jähne
and Schwarzbauer, 2016). Many algorithms for keypoint
detection could gain from such a transformation, leading
to less keypoints in bright and more keypoints in dark
areas of the image. This type of transformation also is
motivated by the sensitivity of visual perception to image
coding, see (Mannos and Sakrison, 1974).

It would be desirable to have an integrating model for intensity
signals in order to allow for efficient statistical, physical and
(spatial) spectral analysis. A scale analysis of the factors
resulting from non-negative signal factorization may play a
guiding role.

B. Discrete and Continuous Geometry

Recovering man-made objects aims at some geometric de-
scription of the object’s boundary, which usually is represented
as an aggregation of continuous surface regions in 3D. The
expected image of such a piecewise surface is a partitioning

2(Koenderink and Doorn, 2002) in addition allow for affine transformations
of the logarithm of the intensity.



of the image region with piecewise boundaries, where not all
intensity edges necessarily need to have two distinct regions
as neighbours. The observed image grid as observed 3D point
clouds are discrete. Hence, the reconstruction of the continu-
ous 3D surface regions and their boundaries consists (1) of the
topologically consistent identification of these boundaries and
(2) the geometrically consistent determination of the form of
the surfaces and the boundaries. An example where boundaries
may not be detectable due to lighting conditions and may lead
to violations of the image model as is given in Fig. 9.
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Fig. 9. Topological relations for polyhedra and their ideal and real (extracted)
images. Left: Image of a vertical edge appearing with zero gradient (St.
Michaelis church, Hamburg). The following: Example image and entity
relation diagram with range of multiplicities. Mid left: Polyhedral boundary;
edges (E) may must have two neighbouring regions (R) in 3D. Mid: Ideal
image of polyhedral boundary, admitting zero gradient edges; edges may
have 1 to 2 neighbouring regions in the ideal image. Right: Real image
from partitioning; edges (E) must have two neighbouring regions (R) in
the partitioning. In all cases edges have two neighbouring (end) points (P).
Obviously, the ideal image does not follow the winged-edge representation

The recovery of a consistent boundary description is under-
constrained, unless the point density (of the grid or the point
cloud) is sufficiently high and the boundary lines fulfil certain
regularities, see e.g., the sampling theorem for recovering
region boundaries (Meine et al., 2009), architectural models
(Pottmann et al., 2015), not necessarily based on triangular
meshes (Liu et al., 2006; Kovacs et al., 2011).

Moreover, grid-based methods, such as Markov random
fields, do not allow to include prior knowledge about the
straightness of boundaries. Therefore, algorithms for finding
consistent polygonal boundaries mostly contain ad hoc rules,
cannot include statistical prior information about the observed
points, and – due to the occurrence of structural errors – are
difficult to be evaluated.

This touches the integration of bottom-up and top-down
procedures, discussed above: geometric entities, such as poly-
gons or polygon networks, being mid-level structures, require
a statistically coherent modelling of both, their appearance –
for bottom-up hypothesis building – as well as their geomet-
ric and neighbourhood relations – for top-down prediction;
this appears like bi-directional search in the solution space.
Reducing the costs for sampling from large energy models,
such as with MCMC, is described in (Papandreou and Yuille,
2011).

C. Crisp and Soft Prior Knowledge

Handling both, crisp and soft prior knowledge, as prior
is essential (not only) for interpreting images of man-made

scenes. Taxonomies and partonomies of objects and spatial
relations, such as parallelity, play a central role in semantic
modelling, see the discussion of the role of semantics for
games in (Tutenel et al., 2008). The uncertainty of observa-
tions and models and the success of probabilistic models is
ubiquitous.

It is less clear how those parts of the model, which are
certain (in a probabilistic sense), are handled in a principled
manner: i.e., explicitly. Geometric relations in multi-view
analysis usually are hard coded; algebraic methods, such as
Gröbner bases, though a research topic on its own, increasingly
are used to derive solutions, but are not integrated into systems,
where the task is not fixed. Attempts to use algebraic methods
for more generic tasks, have been intensively discussed in the
late eighties, see (Kapur and Mundy, 1989; Mundy et al.,
1998). Methods which detect regularities and use them for
the enhancement of 2D and 3D objects, such as in (Brenner,
2005; Meidow et al., 2016), have to face the inconsistency of
individual hypothesis tests or the explosion of computational
complexity – prior to finding bases for the constraints, which
then can be applied.

Partonomies and taxonomies are increasingly used for im-
proving categorization (Marszalek and Schmid, 2007; Griffin
and Perona, 2008). Following (Zweig and Weinshall, 2007),
the simultaneous classification of a category and a subcategory
is significantly better than the individual classification. Explic-
itly classifying image galleries, i.e., ensembles of images, into
a given taxonomy (derived from Wikipedia) is adressed by
(Kramer et al., 2012). The images in the data base IMAGENET
(Deng et al., 2009) are organized in a semantic hierarchy
(WordNet), supporting benchmarking of classifiers which can
exploit this knowledge. Since ImageNet is based on the on-
tology of WordNet it would be desirable to have the concepts
around ‘building’ for interpreting outdoor and indoor images
included in ImageNet. Since WordNet is focussed on function
of notions and does not include any concepts for geometric or
material the link between semantic, geometric, and radiometric
models still remains to be established, e.g., for the domains
‘building’ and ‘road’, possibly exploiting grammars, marked
point processes, or Markov logic networks, see the example
above.

In this context two questions arise. First, what are the
adequate methods to learn the models, i.e., the geometric and
semantic relations? Learning the structure and the parameters
of probabilistic logic, where clauses are attached with a prob-
ability, may be based on measuring the success of data base
queries Gutmann et al. (2008); Fierens et al. (2014). Learning
structures can use the development in kernel methods, which
allow to address all types of structures: multi-label, with
taxonomies, label-sequence-learning, sequence of operations
alignment, natural language parsing, see (Tsochantaridis et al.,
2004).

Second, what are efficient interpretation processes? There
exist several methods to derive statistically interpretations
based on crisp and uncertain information, e.g., using prob-
abilistic logic programming, statistical relational learning, or



Markov logic, see the overview in (Fierens et al., 2014) and
the Dagstuhl Seminar on Logic and Probability for Scene
Interpretation; see (Neumann et al., 2008). Attempts to in-
crease efficiency use a reduced language e.g., (Domingos and
Webb, 2012), or apply sampling techniques, e.g., (Poon and
Domingos, 2006; Beltagy and Mooney, 2014). Except for a
few examples, e.g., (Zhu et al., 2015; Dehbi et al., 2016),
see above, the techniques are not yet exploited for analysing
images, especially of man-made objects.

D. Uncertainty and Vagueness

Decision making using classifiers always has assumed that
data, models, and decisions are uncertain. However, the pro-
cess and the result of classifiers often do not reflect this
uncertainty.

First, many classifiers only report the most likely class for
each object in a ‘winner takes all’ habit. This does not support
the need of a user to know the uncertainty of the decision.
Even giving a confusion matrix, often is not sufficient, as the
estimated conditional probabilities are estimates, and hence are
uncertain. Giving confidence regions as in Table I, would be a
first remedy. Results of (Roscher, 2012; Roscher et al., 2012)
indicate, that import vector machines (Zhu and Hastie, 2001)
yield more reliable posterior probabilities than the output of
support vector machines, when transforming their output into
probabilities (Platt, 1999). Since the output of classifiers often
is used for generating the potentials of Markov random fields,
their quality may have a decisive impact.

The uncertainty of semantic segmentation cannot be repre-
sented with confusion tables, as the space of segmentations is
far too large, why indicating the uncertainty of the boundaries
appears a reasonable approach, see e.g., (Kendall et al., 2015;
Kampffmeyer et al., 2016) both using deep convolutional
network.

Second, many classifiers assume that each object belongs to
one of the presumed classes, possibly a rejection class. This
has been found to be over-simplistic. Images with complex
content may belong to different classes, e.g., a natural scene
may simultaneously be classified as mountain area and beach
area, if ingredients (key features) for both classes can be
detected, and the designer of the classifier intends such an
overlap of classes, see (Arbelaez et al., 2011; Roth and Fischer,
2007) and the review (Sorower, 2010).

Third, the classes themselves are difficult to separate, e.g.,
the two classes low vegetation and high vegetation in the
‘Large Scale Point Cloud Classification benchmark’.3 This
type of uncertainty in the definition of classes was the mo-
tivation for developing fuzzy models (Zadeh, 1965, 1975),
where each object may belong to a class according to some
membership value. The heavy debate on the relation between
fuzzy theory and probability theory is reflected and resolved in
the key paper by Dubois and Prade (Dubois and Prade, 1993):
The semantic distinction between the vagueness/fuzziness of
the notion of an event and the uncertainty/likelihood of the

3See http://www.semantic3d.net

existence or appearance of an event indicates the two notions
to be orthogonal; integrating both concepts, while keeping
their key properties, such as (Zadeh, 1968, 1975; Navara,
2005), still seems to have no canonical solution.

Anyhow, when taking into account the necessity to handle
non-unique ground truth in benchmarks (Martin et al., 2001),
to deal with occlusions,4, and to take vaguely defined classes
into account, when evaluating classifiers (see (Everingham
et al., 2015)), then the number of papers addressing fuzzy
logic on international conferences such as ICPR, ECCV, and
ICCV, being below 0.5 % on an average, appears to be very
low.

IV. A FUTURE FOR LEARNING BUILDING MODELS

The paper has addressed various aspects of interpreting
images of man-made structures, especially of buildings. It
focused on methods, which reflect the underlying models of
the imaging, analysis and interpretation processes and which
hence allow the user of such a system to make decisions, thus
to understand the image content in an appropriate manner.
The problems, mentioned in the last section, all are caused by
insufficiencies or incompatibilities of simultaneously applied
models. The tools to solve or overcome these problems appear
to be available.

We discussed the dichotomy of discriminative and gener-
ative models, both having their advantages. Discriminative
models are efficient in obtaining quantitatively good results,
while generative models are powerful in elucidating structured
semantics. The dichotomy is best seen in semantic segmenta-
tion: The partitioning of image into relevant regions requires a
process which is at the same time data and model driven. This
motivates the structuring of the interpretation/understanding
task as in Fig. 10.

structure

ML

data semantic grammar, MPP

segmentation

classification interpretation

MRF, CRF, MLNMRF, CRF, MLN
prediction

Fig. 10. Metamodel for interpretion and understanding of image data (left
ellipse). Preknowledge (right ellipse), e.g., in the form of grammars or marked
point processes (MPP), are necessary, in order to capture the envisaged
meaning of the interpretation. Intermediate structures (mid ellipse) may be
represented and analysed e.g., by Markov random fields (MRF), conditional
random fields (CRF) or Markov logic networks (MLN). These structures
are simultaneously predicted from the preknowledge and from the data by –
possibly semantic – segmentation. The parameters of all processes (indicated
with upright letters and arrows) are trained using techniques from machine
learning (ML). The control of the complete process is an open problem

All processes can gain from the interaction of recognition,
reconstruction and re-organization, proposed in (Malik et al.,
2015). Generative models also are directly amenable to in-
cremental learning. On the other hand the speed of current
neural network classification and regression tools, which does

4See e.g., the annotation rules in the PASCAL http://host.robots.ox.ac.uk/
pascal/VOC/voc2008/guidelines.html.

http://www.semantic3d.net
http://host.robots.ox.ac.uk/pascal/VOC/voc2008/guidelines.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2008/guidelines.html


in no way correspond to the generally long training times,
contrasts to the fast training times of explicit semantic models,
such as grammars of marked point processes, which are often
much slower in reasoning. Attempts to use neural network
priors for one-shot learning, such as (Fu et al., 2015), are
promising. The flexibility of multi-layer neural networks also
needs to be compared with the rich representation of the
scattering transform (Bruna and Mallat, 2012; Mallat, 2016),
which code higher moments of the underlying signal, and have
been applied in face recognition (Chang et al., 2012), used for
graphs (Chen et al., 2014), and enriched by rotation invariant
kernels (Tolias et al., 2015).

The trend to have very large and rich bodies of image data
for benchmarking can be interpreted as extensionally defining
what an image is, instead of intentionally modelling images by
power spectra, higher order characteristics, or random fields.

A future for learning highly structured models may be based
on the available basic technology which not yet is exploited
for establishing rich geometric and semantic building models.
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Korč, F. (2012). Tractable Learning for a Class of Global Discrim-
inative Models for Context Sensitive Image Interpretation. Ph.
D. thesis, Department of Photogrammetry, University of Bonn,
http://hss.ulb.uni-bonn.de/2012/3010/3010.htm.

Kovacs, D., A. Myles, and D. Zorin (2011). Anisotropic quadrangu-
lation. Computer Aided Geometric Design 28(8), 449 – 462.

Krähenbühl, P. and V. Koltun (2011). Efficient Inference in Fully
Connected CRFs with Gaussian Edge Potentials. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger
(Eds.), Advances in Neural Information Processing Systems 24, pp.
109–117. Curran Associates, Inc.

Kramer, G., G. Bouma, D. Hendriksen, and M. Homminga (2012).
Classifying Image Galleries into a Taxonomy Using Metadata and
Wikipedia. In Proceedings of the 17th International Conference
on Applications of Natural Language Processing and Information
Systems, NLDB’12, Berlin, Heidelberg, pp. 191–196. Springer-
Verlag.

Lafarge, F., G. Gimel’farb, and X. Descombes (2008). Geometric
Feature Extraction by a Multi-Marked Point Process. Transaction
on Pattern Analysis and Machine Intelligence 32, 1597–1609.

Lake, B. M., T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman
(2016). Building Machines That Learn and Think Like People.
CoRR abs/1604.00289.

Lang, F. and W. Förstner (1996). Surface Reconstruction of Man-
Made Objects using Polymorphic Mid-Level Features and Generic
Scene Knowledge. Zeitschrift für Photogrammetrie und Fern-
erkundung 6, 193–201.

Langguth, F., K. Sunkavalli, and M. G. Sunil Hada and (2016).
Shading-aware Multi-view Stereo. In Proc. of European Confer-
ence on Computer Vision.

Li, W. and M. Y. Yang (2016). Efficient semantic segmentation of
man-made scenes using fully-connected conditional random fields.
In Archives of ISPRS.

Liu, T., S. Chaudhuri, V. G. Kim, Q. Huang, N. J. Mitra, and
T. Funkhouser (2014, November). Creating Consistent Scene
Graphs Using a Probabilistic Grammar. ACM Trans. Graph. 33(6),
211:1–211:12.

Liu, Y., H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang (2006,
July). Geometric Modeling with Conical Meshes and Developable
Surfaces. ACM Trans. Graph. 25(3), 681–689.

Long, J., E. Shelhamer, and T. Darrell (2014). Fully Convolutional
Networks for Semantic Segmentation. CoRR abs/1411.4038.

Lowe, D. G. (1987). Three-Dimensional Object Recognition from
Single Two-Dimensional Images. Artificial Intelligence 31, 355–
395.



Malik, J., P. Arbelez, J. Carreira, K. Fragkiadaki, R. Girshick,
G. Gkioxari, S. Gupta, B. Hariharan, A. Kar, and S. Tulsiani
(2015). The Three R’s of Computer Vision: Recognition, Re-
construction and Reorganization. Pattern Recognition Letters 72,
4–14.

Mallat, S. (2016). Understanding deep convolutional networks.
Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 374(2065).

Mannos, J. L. and D. J. Sakrison (1974, July). The Effects of a Visual
Fidelity Criterion on the Encoding of Images. IEEE Transactions
on Information Theory IT-20(4), 525–536.

Marmanisa, D., J. D. Wegner, K. S. S. Gallian and, M. Datcu, and
U. Stilla (2016). Semantic segmentation of aerial images with an
essemble of CNNs. In Archives of ISPRS.

Marszalek, M. and C. Schmid (2007). Semantic Hierarchies for
Visual Object Recognition. In Proc. of Conf. on Computer Vision
and Pattern Recognition.

Martin, D., C. Fowlkes, D. Tal, and J. Malik (2001, July). A
Database of Human Segmented Natural Images and its Application
to Evaluating Segmentation Algorithms and Measuring Ecological
Statistics. In Proc. 8th Int’l Conf. Computer Vision, Volume 2, pp.
416–423.
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