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Zusammenfassung

Roboter können unterschiedlichste Aufgaben ausführen, z.B. in Such-
und Rettungsszenarien eingesetzt werden, Waren ausliefern oder Per-
sonen transportieren. Roboter, die in der realen Welt eingesetzt wer-
den, müssen viele Herausforderungen auf dem Weg zur Vollendung

ihrer Mission meistern. Zentrale Fähigkeiten, die für den Betrieb solcher Roboter
erforderlich sind, sind Kartierung, Lokalisierung und Navigation. Die robuste
Lösung dieser Aufgaben ist eine nicht-triviale Aufgabe, da unter anderem die
Komponenten typischerweise voneinander abhängig sind. So muss beispielsweise
ein Roboter gleichzeitig eine Karte aufbauen, sich darin lokalisieren, die Umge-
bung bzgl. möglichen Kollisionen analysieren und einen geeigneten Weg planen,
um eine unbekannte Umgebung effizient zu erkunden.

Die Lösungen dieser Aufgaben hängen meist von den verwendeten Sensoren
und von der Art der Einsatzumgebung ab. Eine RGB-Kamera kann zum Beispiel
in einer Außenszene zum Berechnen einer visuellen Odometrie oder zur Erken-
nung dynamischer Objekte verwendet werden. Im Gegensatz dazu ist sie weniger
nützlich in Umgebungen, die nicht genug Licht für den Betrieb von Kameras zur
Verfügung stellen. Des Weiteren sollte die Software, die das Verhalten des Robot-
ers steuert, alle Daten der verschiedenen Sensoren verarbeiten und integrieren.
Dies führt oft zu technischen Systemen, die nur mit einem bestimmten Robotertyp
und einem bestimmten Satz von Sensoren funktionieren. In dieser Doktorarbeit
fokussieren wir uns auf Systeme und implementieren Methoden für Roboternavi-
gationssysteme, die nahtlos mit verschiedenen Sensoren arbeiten können, sowohl
im Innen- als auch im Außenbereich. Speziell mit der kürzlichen Entwicklung
neuer distanzmessender RGBD und LiDAR Sensoren sehen wir die Möglichkeit
Systeme zu bauen, die sowohl im Innen- als auch im Außenbereich robust arbeiten
können und erweitern, damit die Einsatzgebiete von mobilen Robotern.

Die in dieser Arbeit vorgestellten Techniken zielen darauf ab, sowohl mit
RGBD als auch mit LiDAR Sensoren – ohne Anpassungen für einzelne Sensor-
modelle – Methoden für Navigation und Szeneninterpretation in statischen sowie
dynamischen Umgebungen zu realisieren. Für statische Umgebungen präsen-
tieren wir eine Reihe von Ansätzen, welche die Kernkomponenten einer typischen
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Roboter-Navigationspipeline adressieren. Ein Fokus ist die Erstellung einer kon-
sistenten Karte der Umgebung mittels Punktwolkenregistrieung. Zu diesem Zweck
präsentieren wir eine neue Methode zur photometrischen Punktwolkenregistrie-
ung, die RGBD und LiDAR Sensoren in identischer Art und Weise behandelt
und in der Lage ist Punktwolken genau und in Echtzeit zu registrieren, d.h. mit
der Frequenz des Sensors. Unsere Methode dient als Baustein für den weit-
eren Navigationsprozess. Zusätzlich zu diesem Verfahren präsentieren wir eine
Methode für Traversierbarkeitsanalyse des aktuell beobachteten Geländes. Eine
Gefahrenquelle beim Navigieren von schwer zugänglichen oder komplexen Or-
ten ist die Tatsache, dass der Roboter beim Erstellen einer konsistenten Umge-
bungskarte scheitern kann. Dies hat typischerweise dramatische Auswirkungen
auf die Fähigkeit eines autonomen Roboters erfolgreich sein Ziel anzusteuern.
Daher ist es wichtig, dass Roboter eine solche Situation erkennen und mit dieser
umgehen kann, beispielsweise sicher zum Startpunkt seiner Mission zurückzu-
fahren. Um diese Herausforderung anzugehen, haben wir eine Methode zur Ana-
lyse der Qualität der Karte, die der Roboter gebaut hat, entwickelt und können
den Roboter sicher zum Ausgangspunkt der Mission zurückbringen, auch wenn
die Umgebungskarte sich in einem inkonsistenten Zustand befindet.

Szenen in dynamischen und statischen Umgebungen unterscheiden sich für
einen Roboter erheblich von einander. In einer dynamischen Einstellung können
sich Objekte bewegen und daher ist die Schätzung der statischen Traversierbarkeit
nicht ausreichend. Mit den entwickelten Ansätzen dieser Arbeit zielen wir darauf
ab, einzelne Objekte zu identifizieren und sie virtuell zu verfolgen. Wir begegnen
diesen Herausforderungen mit einer Methode zum Clustering einer Szene, welche
mit einem LiDAR Scanner abgenommen wurde. Diese benötigt nur einen einzigen
Parameter, der beschreibt, wann zwei Cluster ähnliche Objekte repräsentieren.
Dieser Verfahren kann mit hoher Frequenz ausgeführt werden und die Tracking-
Leistung unterstützen.

Alle in dieser Arbeit vorgestellten Methoden sind in der Lage Roboter mit
Echtzeitsteuerung im Betrieb zu unterstützen. Sie basieren auf RGBD oder
LiDAR Sensoren und wurden auf realen Robotern in reale Umgebungen und
auf Basis verschiedener Datensätze getestet. Alle Ansätze waren in Konferenzpa-
pieren und Zeitschriftenartikeln mit Peer-Review-Verfahren veröffentlicht. Darüber
hinaus wurden die meisten der vorgestellten Beiträge als Open Source Software
der Öffentlichkeit zur Verfügung gestellt.
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Abstract

Robots can perform various tasks, such as mapping hazardous sites,
taking part in search-and-rescue scenarios, or delivering goods and
people. Robots operating in the real world face many challenges on
the way to the completion of their mission. Essential capabilities re-

quired for the operation of such robots are mapping, localization and navigation.
Solving all of these tasks robustly presents a substantial difficulty as these compo-
nents are usually interconnected, i.e., a robot that starts without any knowledge
about the environment must simultaneously build a map, localize itself in it,
analyze the surroundings and plan a path to efficiently explore an unknown en-
vironment. In addition to the interconnections between these tasks, they highly
depend on the sensors used by the robot and on the type of the environment
in which the robot operates. For example, an RGB camera can be used in an
outdoor scene for computing visual odometry, or to detect dynamic objects but
becomes less useful in an environment that does not have enough light for cameras
to operate. The software that controls the behavior of the robot must seamlessly
process all the data coming from different sensors. This often leads to systems
that are tailored to a particular robot and a particular set of sensors. In this
thesis, we challenge this concept by developing and implementing methods for a
typical robot navigation pipeline that can work with different types of the sen-
sors seamlessly both, in indoor and outdoor environments. With the emergence of
new range-sensing RGBD and LiDAR sensors, there is an opportunity to build a
single system that can operate robustly both in indoor and outdoor environments
equally well and, thus, extends the application areas of mobile robots.

The techniques presented in this thesis aim to be used with both RGBD and
LiDAR sensors without adaptations for individual sensor models by using range
image representation and aim to provide methods for navigation and scene in-
terpretation in both static and dynamic environments. For a static world, we
present a number of approaches that address the core components of a typical
robot navigation pipeline. At the core of building a consistent map of the envi-
ronment using a mobile robot lies point cloud matching. To this end, we present a
method for photometric point cloud matching that treats RGBD and LiDAR sen-
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sors in a uniform fashion and is able to accurately register point clouds at the
frame rate of the sensor. This method serves as a building block for the further
mapping pipeline. In addition to the matching algorithm, we present a method
for traversability analysis of the currently observed terrain in order to guide an
autonomous robot to the safe parts of the surrounding environment. A source
of danger when navigating difficult to access sites is the fact that the robot may
fail in building a correct map of the environment. This dramatically impacts the
ability of an autonomous robot to navigate towards its goal in a robust way, thus,
it is important for the robot to be able to detect these situations and to find its
way home not relying on any kind of map. To address this challenge, we present
a method for analyzing the quality of the map that the robot has built to date,
and safely returning the robot to the starting point in case the map is found to
be in an inconsistent state.

The scenes in dynamic environments are vastly different from the ones expe-
rienced in static ones. In a dynamic setting, objects can be moving, thus making
static traversability estimates not enough. With the approaches developed in this
thesis, we aim at identifying distinct objects and tracking them to aid naviga-
tion and scene understanding. We target these challenges by providing a method
for clustering a scene taken with a LiDAR scanner and a measure that can be
used to determine if two clustered objects are similar that can aid the tracking
performance.

All methods presented in this thesis are capable of supporting real-time robot
operation, rely on RGBD or LiDAR sensors and have been tested on real robots
in real-world environments and on real-world datasets. All approaches have been
published in peer-reviewed conference papers and journal articles. In addition
to that, most of the presented contributions have been released publicly as open
source software.
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Chapter 1

Introduction

1.1 General software for robot operation

There are many tasks that are mundane, repetitive, or dangerous that
humans do on a regular basis. Typical examples of such tasks range
from surveying a particular potentially dangerous area to delivering
goods and people. Mobile robots have the potential to aid or even

substitute humans in these tasks. In order to carry out such tasks, the robots
have to solve a number of challenges such as dealing with complex surroundings,
performing mapping, localization, and navigation in static and dynamic environ-
ments.

Diverse environments put tight constraints on the methods and sensors that
can be used by the robots. For example, while a robot that navigates in an
urban environment can rely on RGB cameras for detecting objects around it,
these cameras have less value in an underground site where there is no light
apart from the one that the robot carries itself. To circumvent this problem,
sensors like Microsoft Kinect or Asus Xtion can be used as they provide 3D data
in the absence of light. However, using these sensors in an outdoor environment
is complicated as they provide much less information when their infrared emitter
is overwhelmed by the light from the sun. Because of these and other similar
constraints, the robots are usually designed with a particular environment in
mind and rely on different sensors.

Having different sensors onboard leads to additional complexity in designing
the software that can work with the data coming from these sensors. A typical
approach is to design custom algorithms that make use of specific sensors. This,
however, leads to low code reusability forcing the methods to be reimplemented
for every new robot configuration. To avoid these issues, it might be beneficial to
invest more time into the design of the software to make it more sensor agnostic,
i.e., making the same software work well with multiple types of sensors.
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1.2. FOCUS ON ROBOTS OPERATING IN REAL WORLD

Figure 1.1: Robots targeted in this thesis. Left: ROVINA robot in the Roman catacombs of
Priscilla. Middle: Clearpath Robotics Husky robot with custom sensor setup at Bonn University
campus. Right AnnieWAY self driving car, image courtesy of [43].

In addition to the challenges presented above, robots navigating in real-world
environments must make precise estimations about the surrounding world fast.
Furthermore, these computations must be performed on an onboard processing
unit, and as the amount of power the robot can carry with it is limited, expen-
sive computations drain it quickly. The robots, thus, face a complex trade-off
between how many computations they must make to understand the surround-
ings, build a map, and localize themselves in it, how much they must move to
gather new knowledge about the environment, and how much power these ac-
tions take. Therefore, one of the cornerstones of developing robust algorithms
for robots operating in the real world is efficiency. Robots require information at
framerate or even faster and, at the same time, the quality of this information
cannot be compromised, as any mistake potentially has a high cost.

In this thesis, we focus on developing robust and efficient algorithms that
aid different parts of the robot operation pipeline. We present contributions to
mapping, perception and navigation stacks of a robot navigating in real-world
environments. The data that we work with come from various sensors, and we
are able to process it at framerate on a mobile robot platform. All the methods
presented in this thesis have been published at peer-reviewed international con-
ferences and journals, and some of them have been made available as open source
software.

This thesis is organized as follows. In Part I, we focus on the challenges
associated with navigating in static environments, and present our solutions to
typical problems that arise in these environments like incremental pose matching,
traversability analysis, dealing with broken maps and navigation with or without
a valid map. In Part II, we show how these methods can be adapted and extended
to work in the environments with dynamic objects.
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CHAPTER 1. INTRODUCTION

1.2 Focus on robots operating in real world
Our work is partially motivated by a project for autonomous exploration and dig-
ital preservation of hard-to-access archaeological sites such as catacombs. Cata-
combs are old Roman burying places used between the 2nd and 5th century in
Italy. Even today, they are partially unexplored due to the high risk of entering
them. First, most sites are unstable and can collapse. Second, most of the (non-
ventilated) catacombs yield a high concentration of radioactive radon gas so that
humans are only allowed to stay in these sites for 15min-30min to prevent serious
health issues. Thus, robots are an excellent tool for the exploration, mapping,
and digital preservation of such sites. To achieve that, the robots have to operate
and explore the space in a completely autonomous fashion. As part of a joint
effort in the ROVINA project, we have developed a robot depicted on the left of
Figure 1.1, that is able to navigate and map catacombs of Priscilla in Rome.

Even though catacombs are challenging environments, they have one trait
that simplifies robot operation: they are static. The static assumption holds for
most underground environments but rarely for urban ones. Therefore, we have
implemented a number of extensions to the methods required for static environ-
ment navigation to aid the robot in dealing with the changing environments. The
presence of dynamic obstacles in an environment has a significant impact on the
reasoning behind the actions of the robot. When targeting dynamic environ-
ments, we target mobile robots such as one depicted in the middle of Figure 1.1,
navigating the campus at the University of Bonn, as well as robots tailored for
autonomous driving, such as the AnnieWAY car from the University of Karlsruhe
shown on the right of Figure 1.1.

We focus on designing algorithms that work at least at the frame rate of
the sensors mounted on real robots with constrained computational power while
being generic and applicable to different indoor and outdoor environments. While
a single Ph.D. thesis is, probably, not enough to completely solve perception,
mapping, localization, and navigation of mobile robots in static and dynamic
environments, we focus on providing the implementations for a number of crucial
parts of these tasks. The contributions of this thesis are solutions to different
aspects of the robot perception and navigation tasks that use a depth sensor
as the source of information about the surrounding world. Depth sensors have
been popularized by the introduction of the Microsoft Kinect sensor in 2010 and
the consequent introduction of the Asus Xtion in 2011, as well as the Velodyne
PUCK LiDAR in 2014. These sensors made it possible to obtain 3D information
about the environment on a cheap mobile robot. We treat the data coming from
Microsoft Kinect, Asus Xtion and LiDARs uniformly and represent it in the form
of range images, as this representation allows for efficient processing of the sensor
data. For more information on range images, we refer the reader to Section 2.2.

3



1.2. FOCUS ON ROBOTS OPERATING IN REAL WORLD

We envision that a robot that carries various sensors such as Microsoft Kinect,
Asus Xtion or a LiDAR navigating an environment autonomously, must address
a number of challenges in order to carry out its mission safely. We assume that
the robot starts without any knowledge about the environment, and its goal is
to explore this environment fully. To do this, the robot must be able to localize
itself in an unknown environment. A typical approach to solving this problem
is simultaneous localization and mapping (SLAM) as the robot must build its
map and localize itself in it. SLAM is a relatively well-studied problem [119]
and relies on a number of techniques. In this thesis, we only consider the graph-
based variant of SLAM, where all the poses where the robot takes measurements
are organized into a pose-graph representation that allows for integrating in-
formation from different sensor measurements taken at various positions, and
optimizing the resulting graph based on this. We refer the reader to a tutorial
by Grisetti et al. [47] for more details on pose-graph construction and typical
optimization techniques. Building such a graph usually consists of incrementally
matching the point clouds while moving in an environment adding the edges with
relative constraints to the graph, detecting so-called loop closure edges to avoid
incremental error accumulation and an optimization algorithm that is able to op-
timize this graph. In this thesis, we specifically address the point cloud matching
by implementing our own generic point cloud matching algorithm, which takes
advantage of the information provided by multiple cues available from the sensor
data by optimizing the photometric error. To support incremental matching, this
component must run at the frame rate of the sensor and work reliably utilizing
all available information, such as color, depth and surface normals.

Having a consistent map of the currently observed environment allows the
robot to plan paths through it in order to discover more about it. While this is
not the main contribution of this thesis, we have also created a method that allows
exploring an unknown environment efficiently. However, being able to plan a path
is not enough to guarantee safe navigation in an unknown environment along this
path. The robot must know, which parts of the surrounding environment are
traversable and if the map that it has built so far is reliable for navigation. We
contribute solutions to both of these challenges. We analyze the traversability of
the currently seen environment, and integrate it into a single consistent map while
continuously monitoring the consistency of this resulting map. If, at any point
in time, a map inconsistency is detected, the robot must be able to recover itself
not relying on this inconsistent map. Such a method for robust robot recovery is
also one of the main contributions of this thesis.

A robot equipped with the functionality described above is capable to au-
tonomously explore a static environment, i.e., the one that does not change with
time. This assumption holds for caves, catacombs, warehouses, and some search-
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CHAPTER 1. INTRODUCTION

and-rescue scenarios, but is not valid for outdoor navigation in typical urban
scenarios. To account for this, we extend the set of methods described above
by further methods for scene analysis to detect objects that might be moving in
the scene. In particular, we developed a method that clusters the data observed
by the robot into meaningful objects in an unsupervised fashion. These objects
can then be tracked with any tracking algorithm to find out if they are dynamic
or static. To this end, we also implemented a robust measure that provides the
information if two objects match each other using the notion of the shape of
the objects. While these contributions do not solve navigation in dynamic en-
vironments, we believe they are an important cornerstone to implementing such
algorithms.

1.3 Main contributions
This thesis presents novel solutions to several relevant problems in the context of
mobile robots operating with depth sensors. It provides contributions to multiple
aspects of robot perception and navigation in the real world under computational
constraints stemming from the fact that all these algorithms are capable of run-
ning on board of a mobile robot platform. This section provides a short summary
of the central achievements and methods that contribute to the state of the art
in robotics.

The first contribution presented in this work is in the context of point cloud
matching. Our method for photometric point cloud matching [26] pushes the
state of the art forward by incorporating additional modalities into the standard
photometric matching, presented by the dense visual odometry [67] (DVO) ap-
proach. Our method allows for matching point clouds originating from various
sensors, such as Microsoft Kinect or LiDARs at the frame rate of the used sensor.
It builds upon DVO but allows using additional cues to aid the matching pro-
cedure. Running it on real-world data shows that we can maintain a very good
matching performance under various conditions using different sensors while us-
ing the exact same code base, which we have also made available as an open
source library. The method is presented in-depth in Section 3.1.

The second contribution of this thesis targets the scene analysis that can be
performed on the range data perceived by the robot at real time. It is a method
for performing scene traversability analysis [14]. This information is crucial for
a robot when navigating in complex environments. This method has been de-
veloped as part of the EC-funded ROVINA project, where we have deployed a
robot to explore the Roman catacombs for the tasks of cultural heritage preser-
vation. The method analyzes if the surroundings are traversable by the robot,
which is the prerequisite for collision-free, autonomous navigation. The method
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is strictly geometrical, running at the frame rate of the sensor on computationally
constrained hardware using input data from cheap and rather noisy sensors. The
software developed for this method has formed the basis for navigation in real
underground sites in Rome and has been used by multiple components running
on the robot such as the navigation and exploration stacks, proving it to be a
viable method for analyzing traversability of static environments. This method
is presented in-depth in Section 4.1.

The third contribution of this thesis builds upon the same input data and
targets the navigation stack of the robot operating in an unknown environment.
We have developed systems that allow the robot to navigate the environment
autonomously, but the main contribution of this part of this work is a method
that focuses on detecting if the map constructed by the robot driving through a
static environment is in an inconsistent state, and on handling the safe return of
the robot to the starting point by unwinding the recorded odometry trajectory [10,
96]. This method continuously retracts over the odometry data taken on the way
up to the place where the mapping system failed, and corrects its position using
point cloud matching. The main contribution of this method is not as much in
a single state-of-the-art method, but in a combination of the above mentioned
methods into a single system that has been successfully used within ROVINA
project on a real robot platform in real underground environments. It is presented
in Section 4.3 of this thesis.

The fourth contribution of this work is a robust and efficient clustering algo-
rithm for point clouds that uses a novel cluster separation criterion defined on
range images [11, 13]. The performance of this algorithm is guided by a single
bounded threshold value and has performance as good as the classical Euclidean
clustering while being orders of magnitude faster. It has been tested on real
world data acquired with various Velodyne LiDARs and delivers state-of-the-art
performance much faster than the frame rate of the sensor that provides data to
it. More details on this method can be found in Section 5.1.

Lastly, our fifth contribution is a method to analyze the quality of the align-
ment between the objects clustered with a clustering algorithm in a scenario
where the objects have to be tracked [12]. We again make use of the range image
data representation and use free space surrounding the objects as an additional
criterion for providing a single score for quantifying the quality of a match of
pairs of objects. For more details on this method, please refer to Section 5.2.

Overall this thesis presents five contributions, each of which target an im-
portant part of the robot mapping, navigation, or scene analysis pipeline. All
methods presented here are tested on real-world data and on real robots navigat-
ing challenging environments. These methods share the fact that they work on
range data and on their range image representation. Most of the contributions
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presented here have been published as open source software, either as part of the
ROVINA open source software suite or standalone.

1.4 Publications
Parts of this thesis have been published in the following peer-reviewed conference
and journal articles:

• I. Bogoslavskyi, O. Vysotska, J. Serafin, G. Grisetti, and C. Stachniss. Ef-
ficient traversability analysis for mobile robots using the kinect sensor. In
Proc. of the Europ. Conf. on Mobile Robotics (ECMR), 2013

• I. Bogoslavskyi and C. Stachniss. Fast range image-based segmentation
of sparse 3d laser scans for online operation. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2016

• I. Bogoslavskyi, M. Mazuran, and C. Stachniss. Robust Homing for Au-
tonomous Robots. In Proc. of the IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), 2016

• D. Perea-Ström, I. Bogoslavskyi, and C. Stachniss. Robust exploration and
homing for autonomous robots. In Journal on Robotics and Autonomous
Systems (RAS), volume 90, pages 125–135, 2017

• I. Bogoslavskyi and C. Stachniss. Analyzing the quality of matched 3d
point clouds of objects. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2017

• I. Bogoslavskyi and C. Stachniss. Efficient online segmentation for sparse
3d laser scans. In Photogrammetrie – Fernerkundung – Geoinformation
(PFG), volume 85, pages 41–52, 2017

• B. Della Corte*, I. Bogoslavskyi*, C. Stachniss, and G. Grisetti. A general
framework for flexible multi-cue photometric point cloud registration. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2018.
* authors have contributed equally
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1.5 Collaborations
Some work included in the publications presented above has been done in collab-
oration with other people. The work “Efficient Traversability Analysis for Mobile
Robots using the Kinect Sensor” [14] has been carried out at the University of
Freiburg along with Olga Vysotska and Jacopo Serafin under the supervision of
Giorgio Grisetti and Cyrill Stachniss. Olga has been helping in implementing the
traversability algorithm, while Jacopo has provided his help in initial adaptation
of the algorithm to the robot platform that was in the initial stage of development
in Rome at the time.

The work “Robust Homing for Autonomous Robots” [10] has been carried
out in collaboration with Mladen Mazuran. Mladen has provided his advice on
adapting the method from his earlier work [80] to a new sensor.

We further collaborated with Daniel Perea-Ström on the paper “Robust ex-
ploration and homing for autonomous robots” [96]. This paper focuses on imple-
menting a robust and fail-safe system for robot exploration that is able not only
to use the geometry of the environment to explore the environment efficiently,
but is also able to detect when the underlying map of the environment is broken
and in this case returns the robot safely to the initial position. In this work,
Daniel was mostly focusing on exploration, while my focus has been the robust
homing and integration of the components into a single system.

Finally, our last collaboration has been carried out along with Bartolomeo
Della Corte, who is a student at the lab of Giorgio Grisetti. Bartolomeo and I
have put equal efforts into developing the proposed algorithm and therefore share
the first authorship of the paper.
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Chapter 2

Basic techniques

2.1 Least Squares

Multiple problems in robotics can be addressed by local minimiza-
tion of squared errors. This type of minimization problems maps
directly to the least squares formulation. The idea behind the
least squares method is that if we can define a function that con-

sists of a sum of squares of values that we have some control over, we can use
efficient iterative techniques to find such a configuration that minimizes the re-
sulting sum. It is used in many robotics applications, e.g., using iterative closest
point algorithms for point cloud registration or in various graph optimization
techniques for simultaneous localization and mapping. In this section we will
outline the general least squares formulation and method as well as the typi-
cal assumptions made in order to solve the underlying non-linear least squares
problems efficiently.

2.1.1 Least squares formulation

Let x = [x1, x2, . . . ]
⊤ ∈ IRn be a vector of values xi. Then we can talk about

minimizing the function F (x) that is defined as a sum of squares of functions fi
applied to x:

F (x) = 1

2

m∑
i=1

(fi(x))2, (2.1)

where fi : IRn → IR, i = 1, . . . ,m are given functions, and m ≥ n. We want to
find a local minimizer x∗ for the function F (x):

x∗ = argmin
x

F (x). (2.2)
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We assume that the cost function F is differentiable and so smooth that the
following Taylor expansion holds:

F (x+ h) = F (x) + h⊤g+
1

2
h⊤Hh+O(∥h∥3), (2.3)

where g is the gradient:

g ≡ F′(x) =

 ∂F
∂x1

(x)
. . .

∂F
∂xn

(x)

 , (2.4)

and H is the Hessian:
H ≡ F′′(x) =

[
∂2F
∂xi∂xj

(x)
]
. (2.5)

2.1.2 Necessary and sufficient conditions for a local mini-
mizer

If x∗ is a local minimizer, then:

g∗ ≡ F′(x∗) = 0. (2.6)

This condition is a necessary condition, but not a sufficient one, as such a
solution can also be a saddle point, i.e., a point which is a local minimum in
one direction and a local maximum in another direction. To determine if a given
stationary point xs is a local minimizer we can use the second order term in the
Taylor series:

F (xs + h) = F (xs) +
1

2
h⊤Hsh+O(∥h∥3), (2.7)

where Hs = F′′(xs). From the fact that F (xs + h) must be bigger than F (xs)
for any h we can formulate a sufficient condition for a local minimizer: if xs is a
stationary point and F′′(xs) is positive definite then xs is a local minimizer.

2.1.3 Descent methods
It is usually impossible to find the minimum of F (x) directly, therefore a variety
of iterative methods are used in order to descent into the minimum. We can
search for the solution x∗ by iteratively moving in the direction towards a local
minimizer. The direction towards the local minimizer has to be determined at
each iteration. Roughly speaking, we can describe the procedure as one consisting
of the following steps:

1. Search for the direction of descent h.

2. Make a step of some size αh in that direction.

3. Repeat the procedure until convergence.
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By making a step we mean evaluating the function F for the argument x + αh.
From the Taylor expansion in Equation (2.3):

F (x+ αh) ≃ F (x) + αh⊤F′(x). (2.8)

We say, that h is a descent direction if F (x + αh) is a decreasing function of α
at α = 0.

2.1.3.1 Steepest descent

When performing the optimization procedure we can pick both h and α. Usually
we want to minimize the number of steps we need to make in order to reach the
minimum of the function F (x). We can say that we perform a step αh, where α
is positive. Then, using Equation (2.8), we can write the relative gain in function
value:

lim
α→0

F (x)− F (x+ αh)
α ∥h∥ = lim

α→0

F (x)− (F (x) + αh⊤F′(x))
α ∥h∥

= lim
α→0

−αh⊤F′(x)
α ∥h∥

= − 1

∥h∥h
⊤F′(x)

dot product
= −∥F′(x)∥ cos θ, (2.9)

where, θ is an angle between h and F′(x). Therefore, we see that the biggest
change in function is reached if θ = π, i.e., h = −F′(x). This choice of α and
h is called “steepest descent” but it comes at a cost. The final convergence of
this method is slow as the derivative F′(x) approaches zero at the final stages
of the optimization. To mitigate this behavior other methods, like the Newton’s
method, are commonly used.

2.1.3.2 Newton’s method

To have good convergence in the final stage we must pick the step h better than
when using the steepest descent method. We can derive the Newton’s method
from the fact that x∗ is a stationary point, i.e., F′(x∗) = 0. This is a non-linear
system of equation. To solve it we consider its Taylor expansion:

F′(x+ h) = F′(x) + F′′(x)h+O(∥h∥2)
≃ F′(x) + F′′(x)h
= F′(x) +Hh. (2.10)

Setting the term F′(x+ h) to zero following the logic described above we search
for the best direction vector h as a solution to

Hh = −F′(x). (2.11)
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Solving this equation allows us to find the current best direction vector h and
iterate by

x→ x+ h. (2.12)

2.1.4 Non-linear least squares
In the case when the functions fi are non-linear, more efficient methods are usually
used in order to find the minimum of F (x). These methods avoid computing
the second derivatives of function F (x). More formally, we want to find x∗ =

argminx F (x), where

F (x) = 1

2

m∑
i=1

(fi(x))2 =
1

2
f(x)⊤f(x). (2.13)

Provided, that f has continuous second partial derivatives, we can write its Taylor
expansion:

f(x+ h) = f(x) + J(x)h+O(∥h∥2), (2.14)

where J is the Jacobian. Making use of Equation (2.1), the partial derivatives of
F are:

∂F

∂xj
(x) =

∂(1
2

∑m
i=1(fi(x))2)
∂xj

=
m∑
i=1

fi(x)
∂fi
∂xj

(x). (2.15)

Thus the gradient is
F′(x) = J(x)⊤f(x). (2.16)

Following the same logic, we can also estimate the Hessian:

F′′(x) = J(x)⊤J(x) +
m∑
i=1

fi(x)fi′′(x). (2.17)

Such Hessian can be complicated to compute as it involves the second derivatives
of functions fi. In order to avoid computing them, approximations are used that
allow simplifying these equations. The most commonly used method to avoid
computing the Hessian is the Gauss-Newton method presented in the section
below.

2.1.4.1 Gauss-Newton method

The Gauss-Newton method approximates the functions f by linearizing f in the
neighborhood of x, i.e., for small ∥h∥, the Taylor expansion of f is:

f(x+ h) ≃ l(h) ≡ f(x) + J(x)h = f+ Jh. (2.18)
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The same operation can be applied to the sum of all functions f, i.e, to the F
function:

F (x+ h) ≃ L(h) ≡ 1

2
l(h)⊤l(h)

=
1

2
f⊤f+ h⊤J⊤f+ 1

2
h⊤J⊤Jh

= F (x) + h⊤J⊤f+ 1

2
h⊤J⊤Jh. (2.19)

From this it is easy to derive that the gradient and the Hessian of L are:

L′(h) = J⊤f+ J⊤Jh (2.20)
L′′(h) = J⊤J. (2.21)

Now we can find a unique minimizer by solving for h:

(J⊤J)h = −J⊤f. (2.22)

And the typical next step is then: x → x + αh. The classical Gauss-Newton
method uses α = 1.

2.1.4.2 Levenberg-Marquardt method

Levenberg and Marquardt suggested to use a damped Gauss-Newton method,
where the step h is defined by solving the damped version of Equation (2.22):

(J⊤J+ αI)h = −J⊤f, (2.23)

where I is an identity matrix.
For all α > 0 the coefficient matrix is positive definite which ensures that the

step h, picked in such a way, is always taken towards the descent direction, which
is not the case for Gauss-Newton algorithm, e.g., in the case of “overshooting”
the correct solution. For large values of α the step is inverse proportional to
α itself and is oriented in the steepest descent direction. This is good if the
current iteration is far from the local optimum. If, however, α is very small the
method converges to a standard Gauss-Newton method, which ensures good final
convergence. Usually it is a good idea to start with larger values of α related to
the Jacobian:

αo = τ ·max
i
{a(0)ii }, (2.24)

where a(0)ii are the elements of matrix A0 = J(x0)
⊤J(x0), and τ is the parameter

chosen by the user. The values of α can be reduced with iterations depending on
the gain ratio

ϱ =
F (x)− F (x+ h)
L(0)− L(h) . (2.25)
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This way, at the start of the minimization, we use the steepest gradient de-
scent, and towards the end of the minimization procedure we switch to the
Gauss-Newton method. Overall, using Levenberg-Marquardt algorithm in place
of Gauss-Newton method results in a more robust solution less sensitive to a bad
initial guess.

2.1.5 Use cases in robotics
Non-linear least-squares techniques have multiple typical use cases in robotics.
In this thesis they are used for point cloud registration and pose graph optimiza-
tion. Most of the time the observations are correlated and we need to extend
the formulation to account for this and the measurement uncertainty. In this
case, functions fi(x) represent errors between the estimated constraint and the
measured one. We will denote these errors as

ei(x, zi) = hi(x)− zi, (2.26)

where, hi(x) is a function that maps x to a predicted measurement, while zi is
the actual observation.

If the additional information on the reliability of these measurements is avail-
able, we can incorporate it into the squared error terms. We can therefore
rewrite Equation (2.13) for the error term defined in Equation (2.26) in a matrix
form as

E(x, z) = 1

2
e(x, z)⊤Λ e(x, z), (2.27)

where Λ is the so-called information matrix. In this thesis, we assume our mea-
surements to be uncorrelated so the information matrix only has diagonal values
that depict our certainty in a particular sensor. This matrix propagates naturally
through all the equations presented above, resulting in Equation (2.22) to have
the form

(J⊤Λ J)h = −J⊤Λ e(x, z). (2.28)

2.1.6 Relation to adjustment theory
The least-squares formulation presented above, maps to well-known adjustment
models [38, 88]. In this theory we have a vector of observations L, a vector of
initial values X0 and a vector of adjustments x̂. Combining these vectors yields
a vector of balanced parameters X̂:

X̂ = X0 + x̂. (2.29)

We can further define a vector of the observation estimates L0 that depends on
the current state X0 and some observation function

L0 = f(X0), (2.30)

14
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which leads to the observations to be formally defined as

L = L0 + l, (2.31)

where, l is the shortened observation vector

l = L− L0. (2.32)

It is common to think of a vector v as a vector of improvements that, combined
with the shortened observation vector l, allows to define a functional model in
the following matrix form:

l+ v = Ax̂, (2.33)

where A is the matrix of partial derivatives that maps to the Jacobian J in
the previous sections. The goal of our optimization procedure is to minimize the
needed improvements v by minimizing the expression v⊤v, from Equation (2.33).
This results in the final equation

A⊤Ax̂ = A⊤l, (2.34)

that we can solve with respect to x̂ to minimize the needed improvements.
To account for the uncertainty of the measurements, we use the Gauss-Markov

model. The covariance matrix Σll of this model is defined through a variance σ2
o

that represents an absolute precision with which we can measure a particular
modality, and the cofactor matrix Qll, such that

Σll = σ2
oQll. (2.35)

Here, the inverse of the cofactor matrix corresponds to the information matrix
presented in the previous sections

Q−1
ll = Λ. (2.36)

In adjustment models, this matrix is usually called the weighting matrix P of the
observations vector. This matrix consists of diagonal elements, each of which is
a variance of a particular modality σ2

o/σ
2
i and can be homogenized as

Λ = P = P 1
2P 1

2 . (2.37)

Multiplying the Equation (2.33) by the matrix P 1
2 from both sides, and minimiz-

ing the value of v⊤v using the resulting equation, allows us to rewrite the Equa-
tion (2.34) in the following form:

A⊤PAx̂ = A⊤Pl, (2.38)

which directly maps onto Equation (2.28). Therefore, without the loss of gener-
ality, we can follow the notation presented in Section 2.1.4 in the remainder of
this thesis for all problems that require a least-squares solution.
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Figure 2.1: Left: Microsoft Kinect (image courtesy of Microsoft), Right: Asus Xtion (image
courtesy of Asus)

2.2 Depth and range images
In our work we heavily rely on range images. These images can be obtained in
two ways. They can be provided by a sensor directly or can be generated as a
projection of a 3D point cloud. There is also a way to generate a depth image
from a stereo RGB image pair but this is not considered in this thesis.

2.2.1 Sensors that produce range data
Typical sensors that provide a range image out of the box are Microsoft Kinect
and Asus Xtion as shown in Figure 2.1. These sensors generate depth data by
emitting an infrared pattern and perceiving the distortion of this pattern.

Example images that are produced by such sensors can be seen in Figure 2.2.
Every pixel of a range image contains a distance to the object in the real world.
Because the image has rigid pixel structure and a depth value for each pixel,
it allows to reconstruct 3D representation of the environment measured by the
sensor.

A slightly less common case is to reconstruct a range image from a 3D scene
or from a LiDAR sensor. A spherical or a cylindrical projection can be used in
order to project the 3D points onto an image plane to generate a (virtual) range
image. In this thesis, we use Velodyne and Ocular LiDARs shown in Figure 2.3.
The main method for generating a range image from these LiDARs is to fix
the angular resolution of the horizontal and the vertical viewport, thus mapping

Figure 2.2: Data from a Microsoft Kinect sensor. Left: RGB, Right: Depth
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Figure 2.3: Left: 16-beam Velodyne PUCK LiDAR (image courtesy of Velodyne), Middle:
64-beam Velodyne HDL-64E LiDAR (image courtesy of Velodyne) Right: Ocular Robotics
RobotEye RE05 3D LiDAR (image courtesy of Ocular Robotics).

range readings to discrete pixels of a range image. Using the angular resolution
of the laser beams provided by the sensor manufacturer, we can minimize beam
overlapping, thus generating a nearly perfect mapping from beams to a range
image.

This results in images that look as presented in Figure 2.4. Note, that the
range images generated from a Velodyne sensor span full view of 360 degrees
around the sensor and wrap on the border, i.e., an object on the right border of
an image can also appear on the left of the image. In this particular example the
wall that goes out of the image on the left continues on the right.

Figure 2.4: Top: 3D representation of a single LiDAR scan, Bottom: range image constructed
from the same data. The part of the image that corresponds to the floor is removed for clarity.
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2.2.2 Efficient data representation

Range images are useful to perform efficient computations on 3D data. Note,
that usually range images are considered to be 2.5D data representation, as the
3D points that fall into the same pixel under a projection operation, have to be
discretized into the pixel coordinates, and each pixel has a single range value
stored in it. However, in the case of Velodyne LiDARs, we can guarantee that
the range image contains all data from the 3D scene as we have control over how
these data are generated. The Velodyne sensor rotates a vertical array of 16, 32,
64 or 128 beams to produce the full spherical scene representation. The angular
resolution of the placement of the beams and the speed of rotation are given as
parameters of the sensor, thus, we can tailor the size of the range image to match
the number of beams up to a negligible error in the laser firing timings.

Range images are a useful representation of the 3D data as they allow for
an extremely efficient neighbor search with O(1) complexity. We are making use
of this property in multiple parts of this thesis. First, we propose a generalized
framework for photometric matching of point clouds. The proposed method runs
at the frame rate of the sensor partially due to the fact that we can avoid searching
for neighbors of each point in 3D, which is a typical step in point cloud registration
methods. This simplification is only possible because we are using the image
representation of the 3D data. Additionally we make use of range images in
the clustering section of this thesis, where we process the data received from
a Velodyne sensor to find clusters of objects of interest in the vicinity of the
robot. We achieve performance comparable to a standard Euclidean clustering
while having the runtime performance orders of magnitude faster. This speed up
comes from the fact that we analyze the neighbors of a point on a grid defined
by the range image. As the neighbor search runs in constant time, it allows us
to process all data coming from the sensor at up to 667Hz. Lastly, we extend
our clustering method by adding a fast quality assessment method to detect if
the clouds of two objects match. We also make extensive use of range images
in this part of this work. Range image representation is again responsible for
quick execution of our algorithm on data from a real world dataset, and for quick
estimation of the free space around the object.

2.2.3 Fast normal computation

Range image representation allows for fast and effective normal direction com-
putation. Classically, to compute a normal vector of a point, a plane is fitted to
the 3D points within some neighborhood of the query point. The normal is then
computed as a direction of the normal vector to this plane. This mathematically
sound approach, however, comes at a cost as it requires searching for neighbors for
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every point. This algorithm, at best, has an asymptotic complexity of O(n logn),
where n is the number of the points in the whole point cloud. When working
on 3D data and the number of points is high, the runtime of algorithms that
rely on searching for neighbors in 3D is doomed to deteriorate. As the mobile
robots are usually computationally constrained, it is a desirable feature to avoid
the potentially costly operations.

The range image representation outlined in the previous section is strictly
structured as opposed to the unordered 3D point cloud representation. The
points that lie close in the real world get projected to the nearby pixels in the
range image representation. This allows us to perform the neighbor search in the
image plane. Because the image has a rigid grid structure, neighborhood search
has the complexity of O(1) which has a desirable property of being independent
from the number of points in the point cloud.

Our approaches exploit information about the surface normals of the perceived
environment. Thus, the first operation we perform is to compute a normal vector
for each 3D point using the depth image. For a point p, we can compute its
normal by considering a Gaussian distribution with parameters µ and Σ, which
models the distribution of the neighboring points of p. The eigenvector of Σ,
which corresponds to the smallest of the three eigenvalues, provides the direction
of the normal.

We apply a fast method for normal extraction that exploits the structure of the
input similar to Holzer et al. [61], and take advantage of the underlying hardware.
We can rewrite the computation of the mean and the covariance matrix as:

µ =
1

N

∑
i

pi︸ ︷︷ ︸
P

=
1

N
P (2.39)

Σ =
1

N

∑
i

pipi⊤︸ ︷︷ ︸
S

−µµ⊤ =
1

N
S− µµ⊤, (2.40)

where N is the number of neighbors of the point p. If we know the terms P
and S, we can compute the covariance matrix and thus the normals in constant
time. By exploiting the fact that we are using a depth image as the input, we
can realize the computation of P and S in constant time too through the use of
integral images.

The integral image I(i, j)→ (Pij,Sij) maps the pixel coordinates (i, j) to the
tuple (Pij,Sij) such that

Pij =
i∑

k=1

j∑
l=1

pkl Sij =
i∑

k=1

j∑
l=1

pklpkl⊤, (2.41)
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Figure 2.5: Left: an image filled with integer pixel values. Right: an integral image computed
from the image on the left. The value stored in the pixel labeled A on the right is the sum of
all pixels in a red rectangle on the left. The sum of all elements in a blue rectangle from the
original image is computed by the provided formula.

where pkl corresponds to the 3D point, which is observed by the pixel (k, l).
Thus, this integral image is a 2D array where the position (i, j) contains the sum
Pij and the squared sum Sij of all other points visible in the rectangular area
between (1, 1) and (i, j). Exploiting the fact that the terms S and P support
addition and subtraction, we can determine S and P for any rectangular region
(i1, j1) to (i2, j2) in the integral image by

I(i1, j1, i2, j2) = I(i2, j2) + I(i1, j1)− I(i1, j2)− I(i2, j1). (2.42)

By processing the depth image from the top left to the lower right corner, each
computation exploits the result of the previous step leading to a constant time
computation of Pij and Sij for each pixel. Figure 2.5 depicts an integral image
computed from a toy example image filled with integer values.

Note that the computation of the normals through the integral image is an
approximation. The reason is that only rectangular image regions can be queried
with Equation (2.42) and the queries are performed in image coordinates and not
in world coordinates. The appropriate size of the region, however, can easily be
determined given the distance of the query point to the camera.

The implementation of the algorithm described above can furthermore exploit
the SSE extensions of Intel CPUs by operating on packed structures of four floats.
The points are stored as homogeneous vectors p = [x y z 1]⊤. The terms P and
S are stored as a 4-dimensional vector and as a 4×4 matrix respectively. Adding
points to an accumulator P using this representation, results in a homogeneous
component that contains the number of points. This has the effect of removing
conditional instructions and of performing the evaluation almost entirely in the
SSE subsystem of the CPU. This provides a speed up of a factor of 3 compared
to an implementation of the same algorithm without SSE instructions.

20



CHAPTER 2. BASIC TECHNIQUES

Figure 2.6: This image illustrates an occupancy grid map of an environment. Left: a CAD
rendering of a floor plan, Right: an occupancy grid map of the same environment build with
a 2D LiDAR. Cyan shows parts of the map that have never been updated, and the occu-
pancy probability in each cell scales from occupied (black) to free (white). Image courtesy of
Thrun et al. [128].

2.3 Grid maps

There are different ways to represent a map of an environment, for example, maps
can be represented as either feature maps or grid maps. Each of the representa-
tions has its own advantages and best use cases.

Feature maps store the features detected in the environment and match these
features for localization and map updates. A typical source of features range from
lines and corners for pure 3D features to other invariant features detected from
images in case a camera is used in adjacency, or instead of a 3D sensor.

Feature maps are the standard for bundle adjustment and are useful for lo-
calization, but are generally less useful for constructing and viewing the map in
a format that is easy to perceive by a human. In addition to that, the features
from which the map is constructed must be computed while a robot navigates in
an environment, which can take time especially in a computationally constrained
system. Therefore, in this thesis, we focus explicitly on the grid maps to repre-
sent the environment. Grid maps are a popular representation of an environment
used in both static and dynamic environments. A particular variant of grid maps
are the so-called occupancy grid maps. These maps were originally constructed
in 2D, but can also be trivially extended to 3D world. In this thesis we mostly
will use the 2D version of occupancy grids.

Occupancy grid maps store a single value per cell. This value represents the
probability of the particular cell to be occupied by an obstacle. The map then
gets updated with the new incoming measurements. An example of such a map
can be found in Figure 2.6. In this map shown on the right of the figure, white
stands for free space, black for occupied and cyan depicts parts of the map that
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have never been observed. In this section we will present the original formulation
of the occupancy grid maps as presented by Moravec and Elfes [84]. We will then
refer to this section from the other parts of this thesis that either use or extend
this formulation.

In this thesis we use the occupancy grid maps in their classical formulation for
navigation and exploration tasks described in Section 4.2 as well as for checking
the consistency of the map constructed by the robot described in Section 4.3.
In addition to the classical formulation of occupancy used within the cells of the
grid maps, we extend these maps to hold additional information like traversability.
We refer the reader to Section 4.1 for more details on our traversability analysis
method.

Occupancy grid maps are used to create a grid map given known poses and
sensor measurements in those poses. The main idea is to categorize the environ-
ment into the empty space and into that occupied by obstacles. Grid maps store
a single value p(c) for each cell c which denotes the probability of this particular
cell to be occupied by an obstacle. The algorithm developed by Moravec and
Elfes takes into account a sequence of observations z1:t obtained by the robot at
poses x1:t. The subscripted notation xt denotes that the robot had the pose xt at
time t and notation x1:t denotes a sequence of such poses. It seeks to maximize
the occupancy probability for the grid map. A single most important assumption
that Moravec and Elfes rely on, is that the map cells are independent. This is
not entirely true, and in reality it is likely more probable for cells neighboring
occupied cells to also be occupied, but this assumption is necessary in order to be
able to compute the posterior of the occupancy probability, as can be seen in the
remainder of this section. The assumption of independence allows us to formulate
the probability of the map m to be given by the product over all probabilities of
individual cells

p(m) =
∏
c∈m

p(c). (2.43)

This formulation allows us to focus on estimating the occupancy probability
of the individual cells c ∈ m given the measurements z1:t performed by the robot
at poses x1:t. This probability is hard to measure directly, but it can be rewritten
making use of the Bayes’ rule

p(c | x1:t, z1:t) =
p(zt | c, x1:t, z1:t−1) p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (2.44)

Assuming that zt is independent from x1:t−1 and z1:t−1 leads to

p(c | x1:t, z1:t) =
p(zt | c, xt) p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (2.45)
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We apply Bayes’ rule for the term p(zt | c, xt) in Equation (2.45) and obtain

p(zt | c, xt) =
p(c | xt, zt) p(zt | xt)

p(c | xt)
. (2.46)

We can combine Equation (2.45) and Equation (2.46). In addition to that we
can assume assume that xt does not carry any information about c if there is
no observation zt. We can safely make this assumption as we can only gain new
information about the environment if we make a measurement in a given position.
Just residing in a specific part of an environment making no observation adds no
information about the state of the map. Following this assumption, we can write

p(c | x1:t, z1:t) =
p(c | xt, zt) p(zt | xt) p(c | x1:t−1, z1:t−1)

p(c) p(zt | x1:t, z1:t−1)
. (2.47)

Each cell of the environment is assumed to be in only one of two possible states:
free or occupied. We therefore make use of the logical negation and estimate
the probability of cell c being in an opposite state to the one estimated in Equa-
tion (2.47)

p(¬c | x1:t, z1:t) =
p(¬c | xt, zt) p(zt | xt) p(¬c | x1:t−1, z1:t−1)

p(¬c) p(zt | x1:t, z1:t−1)
. (2.48)

At this point we can make use of a trick and divide Equation (2.47) by Equa-
tion (2.48) and we obtain

p(c | x1:t, z1:t)
p(¬c | x1:t, z1:t)

=
p(c | xt, zt) p(¬c) p(zt | x1:t, z1:t−1)

p(¬c | xt, zt) p(c) p(zt | x1:t, z1:t−1)
. (2.49)

Finally, we use the fact that p(¬c) = 1− p(c) which yields

p(c | x1:t, z1:t)
1− p(c | x1:t, z1:t)

=

p(c | xt, zt)
1− p(c | xt, zt)

· 1− p(c)
p(c)

· p(c | x1:t−1, z1:t−1)

1− p(c | x1:t−1, z1:t−1)
. (2.50)

Given all of the above equations, we can specify the full occupancy update formula
as follows:

p(c | x1:t, z1:t) =[
1 +

1− p(c | xt, zt)
p(c | xt, zt)

· p(c)

1− p(c)
· 1− p(c | x1:t−1, z1:t−1)

p(c | x1:t−1, z1:t−1)

]−1

. (2.51)

Equation (2.51) tells us how to update our belief p(c | x1:t, z1:t) about the occu-
pancy probability of a grid cell given sensory input. In practice, one often assumes
that the occupancy prior is 0.5 for all cells, so that p(c)

1−p(c) can be removed from
the equation.
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Figure 2.7: Neighborhoods defined on a grid. Left: 4-neighborhood (N4), Right: 8-neighborhood
(N8).

In this section, we will skip the computation of the occupancy probability
p(c | xt, zt) of a grid cell given a single observation zt and the corresponding pose
xt of the robot. This quantity depends on the sensor of the robot and has to be
defined manually for each type of sensor. For more information on grid maps we
refer the reader to the original version of the Moravec and Elfes paper [84]. In
Section 4.1 we specify a modification of the standard occupancy grid estimation
technique to store traversability information of the environment.

2.4 Graph algorithms on a grid
When using grid maps as presented in Section 2.3 or range images from Section 2.2
it is often helpful to define a graph over the cells of the grid. In case of grid maps
these graphs can be used for robot navigation while in case of range images these
graphs can be used in various image processing techniques.

The vertices of such graphs are the cells of the grid and the edges are defined
based on the neighborhood that is of interest for a particular problem. In this
thesis we will be mostly using 4-neighborhoods and 8-neighborhoods shown in
Figure 2.7. Defining a graph over a given grid allows to move onto a more abstract
layer of reasoning about the problem by substituting problems like searching for
the closest path between two cells or detecting connected components in an image
with well-studied problems on the graphs.

In this thesis, we use two different grid representations. One is used for
planning a route of the robot and is defined over a traversability grid, presented
in detail in Section 4.1, while the other is defined on the pixels of the image
and is used for clustering the scene into distinct objects by finding connected
components on a specifically defined image-based grid. The clustering approach
is presented in detail in Section 5.1.

In this section we introduce the basic algorithms that are used in this the-
sis. We base all path planning capabilities of our system on the A* algorithm
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Algorithm 1 Breadth-First Graph Traversal
1: procedure BFS(N0)
2: Queue: Q← N0

3: Open set: O ← {N0}
4: Visited set: V ← ∅
5: Parent map: P ← ∅
6: while Queue Q is not empty do
7: Ncurrent ← Q.top()
8: V ← [V,Ncurrent]

9: for Nneighbor ∈ neighborhood(Ncurrent) do
10: if Nneighbor /∈ V and Nneighbor /∈ O then
11: O ← [O,Nneighbor]

12: Q.push(Nneighbor)

13: P [Nneighbor]← Ncurrent

14: Q.pop()
15: return V, P

16: procedure GetPath(P,N0,Ntarget)
17: Path← ∅
18: Ncurrent ← Ntarget

19: while Ncurrent ̸= N0 do
20: Path← [Path,Ncurrent]

21: Ncurrent ← P [Ncurrent]

22: return Path

as presented below in Section 2.4.3 and our algorithm for searching connected
components on the breadth-first search algorithm outlined in Section 2.4.1.

2.4.1 Breadth-first search
A typical approach to traversing an unweighted graph is the breadth-first search
(BFS) algorithm. This algorithm is most commonly used to either find a shortest
path between two nodes on an unweighted graph or to efficiently traverse con-
nected components of the graph. Algorithm 1 shows an approximate sequence of
actions to perform the breadth-first search on an arbitrary unweighted graph. It
can be briefly summarized by the following sequence of actions. The algorithm
makes use of a queue Q, i.e., a first in first out (FIFO) data structure to store the
nodes. It starts in an initial node N0 being the only node in the queue Q. Firstly,
the current node is removed from the queue and stored in the visited set, then,
depending on the connectivity of the graph, the neighbors of the current node are
added to the queue. The same approach is then repeated for the next node in the
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queue until it becomes empty. This detects a single connected component of the
graph given the connectivity rules between the grid cells. If the closest path is
needed, in addition to the visited set we must maintain the “parent” from which
each node is reached for the first time. This way when the target node has been
added to the queue we can stop the execution of the algorithm, and backtrack
the shortest path from the initial node to the target node.

2.4.2 Dijkstra’s algorithm

The breadth-first search algorithm, as described in Section 2.4.1, works well for
unweighted graph, however, there is no way to determine the shortest path using
the presented formulation of BFS for a weighted graph. In the path planning
tasks that we deal with in this thesis, we usually have a graph defined over
an occupancy or traversability grid. We take traversability of the environment
into account in order to find the most suitable path for the robot to take. The
traversability information can be seen as weights added to a 2D grid representing
our environment. The most basic solution to searching the shortest path from the
root to the goal in a weighted graph is the Dijkstra’s algorithm. It can be seen
as an extension of the BFS algorithm. The original implementation [29] focused
on the shortest path between two nodes in the graph, while later extensions have
focused on producing a shortest-path tree.

The performance of this algorithm is very similar to the BFS and is outlined
in Algorithm 2. The main difference is in the data structure that is being used at
the core of the algorithm to store the nodes of the graph prior to their opening.
Instead of using a simple FIFO queue as in BFS, Dijkstra’s algorithm can be
implemented using a priority queue. The priority queue is a data structure that
stores the elements in a sorted manner, guaranteeing that an element with the
best score is the first one to be popped from the queue. This allows to seamlessly
incorporate the distance to a particular cell or additional traversability infor-
mation into the existing BFS algorithm. Instead of simply putting a new node
into the queue, the cell is now put into the priority queue with the correspond-
ing weight being the distance to this node. This guarantees that the queue is
being emptied with respect to the distance to the nodes that are stored within
it, guaranteeing that the first time we visit a particular node we reach it with
the shortest path. Therefore, Dijkstra’s algorithm has been a default choice for
searching the shortest path on the graph since the 1960’s until the introduction
of the A* algorithm presented in the next section.
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Algorithm 2 Dijkstra’s Graph Traversal
1: procedure Dijkstra(N0)
2: Priority queue: Q← {N0, 0}
3: Visited set: V ← ∅
4: Open set: O ← {N0}
5: Parent map: P ← ∅
6: while Queue Q is not empty do
7: Ncurrent, dcurrent ← Q.top()
8: V ← [V,Ncurrent]

9: for Nneighbor ∈ neighborhood(Ncurrent) do
10: if Nneighbor ∈ O then
11: dOneighbor ← distance to a vertex in the open set O
12: else
13: dOneighbor ←∞

14: if Nneighbor /∈ V and dOneighbor > dcurrent + dneighbor then
15: O ← [O,Nneighbor]

16: Q.push(Nneighbor, dcurrent + dneighbor)

17: P [Nneighbor]← Ncurrent

18: P [Nneighbor]← Ncurrent

19: Q.pop()
20: return V, P

2.4.3 A* algorithm
Dijkstra’s algorithms outlined in Section 2.4.2 finds the shortest path in a weighed
graph, but does so in a suboptimal way. When uncovering the nodes formed from
grid cells, Dijkstra’s algorithm tends to expand the cells in a circular fashion as
can be seen on the left side of Figure 2.8. There are multiple states that had to be
evaluated in order to find the correct shortest path, most of them in the direction
opposite to the direction of the goal node. It is therefore preferable to allow
guiding the search in a particular direction. For this purpose, Hart et al. [54]
presented the A* algorithm in 1968. A* has quickly become a popular algorithm
for path planning on a graph. This algorithm is an extension of the Dijkstra’s path
planning algorithm. It builds upon that algorithm by introducing a heuristic that
allows to guide the search in a particular direction. This algorithm uses the same
method and data structures as the Dijkstra’s algorithm but does the weighting
of the nodes stored in the priority queue in a different way.
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Figure 2.8: A comparison between the performance of two algorithms: Dijkstra’s on the left
and A* on the right. Both algorithms search for a path from a green cell to the red one. The
dark cells represent obstacles, white stand for free space, light blue cells are the nodes “visited”
by each algorithm in order to find the shortest path, the light green ones represent the open
set and the yellow line depicts the found shortest path. Images courtesy of Xu [139].

The A* algorithm makes use of the heuristic function and the weight of each
node upon adding it to the priority queue is modified with the heuristic function

f(n) = g(n) + h(n), (2.52)

where n is the node being added to the priority queue, g(n) is the cost of the
path from the start node to node n and h(n) is the heuristic that estimates the
cost of the potential cheapest path from n to the goal. For the algorithm to find
the actual shortest path, the heuristic function must be admissible, i.e. it should
never overestimate the actual cost to get to the goal node. A typical heuristic
function used for graphs defined over a grid is the Euclidean distance between
the two nodes. The A* algorithm is the same as Dijkstra’s with the difference of
using Equation (2.52) in lines 14 and 16 of Algorithm 2. A small illustration of
the difference in rate of expansion between the A* and Dijkstra’s algorithm can
be found in Figure 2.8. The A* algorithm on the right visits fewer vertices on
the grid while delivering the same shortest path.
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2.5 Coordinate frames
When talking about sensors placed on the robot that moves through the world, it
is of crucial importance to explicitly define all coordinate frames. In this thesis, we
mainly use three different coordinate frames: sensor, robot, and world reference
frames.

The sensor coordinate frame depends on the sensor being used in a particular
domain. In this thesis, we mostly focus on two types of sensors: RGBD cameras
and LiDARs. These sensors usually use different coordinate systems. Figure 2.9
showcases the two different coordinate systems that we use throughout this thesis.
All the RGBD cameras use the coordinate system depicted on the left with z

axis pointing forward from the sensor, x axis pointing right and y axis — down
from the sensor, while all the LiDARs use the one shown on the right with x

axis pointing forward, z axis pointing up and y axis pointing to the left. These
coordinate systems differ solely in orientation.

The typical robot coordinate frame is defined in the point on the floor level
below the center of mass of the robot. This coordinate frame is very similar to
the one used for LiDARs, shown on the right of Figure 2.9, i.e., the x axis points
to the front of the robot, y axis to the left and z axis points up, and differs from
the LiDAR one only in translation.

When we talk about the world coordinate frame we are not talking about the
global geo-referenced frame in this thesis, but rather about an arbitrary general
frame to which we transform all the local measurements the robot makes during
the time of its operation. Without loss of generality, we can set the world frame
to be the frame of the first robot pose, i.e., the one when the robot starts its
operation. We will refer to the world frame by this definition in this thesis.

Figure 2.9: The sensor coordinate systems we use in this thesis. Left: the classical computer
vision coordinate system with z axis pointing forward from the sensor. Right: a coordinate
system that we use for LiDARs and mapping.

29





Part I

Static environments
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Chapter 3

Registration and pose estimation

Mobile robots navigating in an unknown environment need to ana-
lyze their surroundings as well as to estimate a consistent map of
this environment in order to navigate safely. A classical approach
to estimating a consistent static map is to perform graph-based

simultaneous localization and mapping (SLAM). Here, every pose of the robot is
a node on a graph and every edge between these poses holds information about
the relative movement as well as the uncertainty of this movement. Additionally,
when the robot observes a place where it has already been, it can add a loop clos-
ing edge to the graph. These edges add inconsistencies into the pose-graph as,
usually, robot motion estimate is not as precise as the robot observation model.
Whenever these edges are added to the pose graph, the graph can be optimized
on-the-fly using any convex optimization technique outlined briefly in Section 2.1.

SLAM is a well studied topic in the robotics community and is not the main
contribution of this thesis. For a comprehensive analysis of available methods,
we refer the reader to a chapter on SLAM by Stachniss et al. [119]. In this
chapter any graph-based SLAM approach that provides a consistent map of the
environment, and can use the edges coming from point cloud matching, can be
used with equal success.

Our interest lies in the first step of the graph construction, i.e., pose estimation
through sequential point cloud registration. In order to build the initial graph the
robot must have a way of estimating a relative motion from one pose to another.
The default source of such information is the odometry information provided by
the tracks or wheels. One downside of using odometry, however, is that it lacks
precision, especially when driving over slippery terrain, and when the robot uses
tracks.

Thus, the task of registering the incoming sensor data, such as images or
point clouds, is an important building block for most autonomous systems. This
functionality is also of key importance for estimating the relative motion of a
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robot through incremental matching, often called visual odometry or laser-based
odometry, depending on the used sensing modality. In this work, we seek to
develop an approach that performs equally well in different environments and
under different circumstances, i.e., ideally it should work both underground and
above the ground level, in a broad daylight with direct sunlight, and with no
light at all. This requirement eliminates the possibility of using the RGB sensor
as the main sensor for the robot. We focus on using depth and range sensors,
such as RGBD cameras and LiDARs in this work. These sensors are all capable
of producing point clouds and range images that can be registered with generic
algorithms, thus fulfilling the requirement of being usable under different lighting
conditions.

This chapter focuses on estimating the pose of the robot incrementally through
sequential point cloud matching. Our method is designed to be sensor-agnostic
and utilizes the 2.5D range image data representation to achieve the state-of-
the-art photometric matching quality for RGBD cameras, as well as for LiDARs,
while being able to register the incoming data at the frame rate of the sensor.

3.1 Incremental point cloud matching

3.1.1 Multi-cue photometric point cloud matching

In this section of this thesis, we investigate the problem of registering data from
typical robotic sensors such as a Microsoft Kinect camera, a 3D LiDAR such as
a Velodyne laser scanner, or similar, in a general way without requiring special,
sensor-specific adaptations. More concretely, our goal is to provide a general
methodology to finding the transformation that maximizes the overlap between
two measurements taken from the same scene exploiting as much sensor informa-
tion as is being provided by the hardware.

To this extent, ICP is a popular strategy for registering point clouds. It
proceeds by iteratively alternating two steps: data association and transformation
estimation. Data association computes pairs of corresponding points in the two
clouds, while transformation estimation calculates an isometry that, applied to
one of the two clouds, minimizes the distance between corresponding points. The
weakness of ICP lies in the correspondence search as this step usually relies on
expensive 3D neighborhood search, heuristics, and may introduce biases or gross
errors.

Over time, effective variants of ICP that exploit the structure of the scene
have been proposed [107, 109]. Using the structure either by relying on a point-
to-plane or a plane to plane metric has been shown to improve the performance
of the algorithm, especially in indoor/structured environments. Kerl et al. [67]
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intensity depth normals
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Figure 3.1: Our approach implements an effective multi-cue registration without requiring
features nor an explicit data association between 3D points. Top: A 3D scene reconstructed
using point clouds registered with our method. Bottom: A grid of images showing the intensity,
depth and normals input channels for reference and current images in the first two rows of the
image grid, and showing the initial per-channel error as well as final error after registration
visulized in color in the bottom rows.
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recently proposed dense visual odometry (DVO), an approach to register RGBD
images by minimizing the photometric distance. The idea is to find the location of
a camera within a scene such that the image captured at that location is as close
as possible to the measured RGBD image. By exploiting the image gradients,
DVO does not require explicit data association, and it is able to achieve good
accuracy given a good initial guess. The main shortcoming of DVO is that it is
restricted to the use of depth/intensity image pairs. In its original formulation
DVO does not naturally incorporate additional structural cues such as normals
or curvature. The use of these cues has been shown to substantially enlarge
the basin of convergence and reduce the number of iterations needed to find a
solution.

The main contribution of this section is a general methodology to photometric
sensor data registration that works on cues such as color, depth, and normal
information in a unified way and does not require an explicit data association
between features, 3D points, or surfaces. The approach is inspired by DVO [67]
as it does not require any feature extraction, and operates directly on the image
or image-like data obtained from a sensor such as the Microsoft Kinect or a 3D
LiDAR. A key property of our approach is an easy-to-extend, mathematically
sound framework for registration that does not need to make an explicit data
association between sensor readings and the 3D model. In contrast, it solves
the registration problem as a minimization in the color, depth, and normal data
exploiting projections of the sensor data. It can be seen as a generalization of
DVO, with added ability to handle arbitrary cues and multiple sensing modalities
in a flexible way. An example of this registration is illustrated in Figure 3.1.

In sum, we make the following key claims: our approach (i) is a general
methodology for photometric registration that works transparently with different
sensor cues and avoids an explicit point-to-point or point-to-surface data associa-
tion, (ii) can accurately register typical sensor cues such as RGBD or LiDAR data
exploiting the color, depth, and normal information, (iii) robustly computes the
transformation between view points under realistic disturbances of the initial
guess, and (iv) can be executed fast enough to allow for online processing of the
sensor data without sensor-specific optimizations. These four claims are backed
up through the experimental evaluation on real-world data.

We also provide an open source C++ implementation that follows the de-
scriptions in this paper, available here:

https://gitlab.com/srrg-software/srrg_mpr
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3.1.2 Our approach to point cloud registration

Our approach seeks to register either two sensor readings with respect to each
other or a sensor reading against a 3D model. The sensor observations are as-
sumed to have an image-like representation I, such as an image from a regular
camera, a range image from a depth camera or a 3D LiDAR, or a similar type of
observation. Such a 2D measurement can be seen as an image, where each pixel
in the image plane contains one or more channels, i.e., I = {Ic} with the chan-
nel index c. Examples of such channels are light intensity, depth information, or
surface normals.

We aim at registering the current observation to a model, for which 3D infor-
mation is available in the form of a point cloud. This model can be a given 3D
model, or a point cloud estimated from the previous observation(s). We refer to
it as the model cloud M = {p}. In addition to the 3D coordinates, each point
p ∈M can also store multiple cues such as light intensity or a surface normal.

The following subsections describe the key ingredients of our approach Sec-
tion 3.1.2.1 presents the overall error minimization formulation that uses three
functions, which are sensor and/or cue-specific and must be implemented by the
user when adding a new cue or a different sensor, everything else is handled by
our framework. The outline of the components and sections where these compo-
nents are described can also be found in Figure 3.2. The following parts of the
pipeline need to be implemented by the user of the library:

• Cue mapping function mapc(. . . ) that describes if and how a cue is trans-
formed through a coordinate transformation. See Section 3.1.2.2 for details.

• Projection model proj(. . . ) of the sensor, e.g. the pinhole camera model, see
Section 3.1.2.3 for details.

• The Jacobians corresponding to the projection and mapping functions. See
Section 3.1.2.5 for details.

3.1.2.1 Photometric error minimization

As in photometric error minimization approaches, our method seeks to iteratively
minimize the pixel-wise difference between the current image I and the predicted
image Î(M,X). Here, Î(M,X) is a multi-channel image obtained by projecting
the modelM onto a virtual camera located at such a position in the world, that
a transformation matrix X transforms the points ofM from the world into the
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Jacobian
computation

least
squares

depth
buffer

Sec. 3.1.2.4Sec. 3.1.2.3

Sec. 3.1.2.5

Sec. 3.1.2.2

compute values in pixel

Figure 3.2: Key ingredients of our framework and links to the corresponding subsections. We
start by projecting a model M onto its virtual observation Î(M,X) from a sensor at posi-
tion defined by the transformation X. This projection is generated by applying the projection
proj(. . . ) and mapping mapc(. . . ) functions to each point p of the model. We then define the
error between this virtual observation and a real one I, which allows to formulate the minimiza-
tion procedure of the resuting photometric error in terms of least-squares error minimization.

local camera coordinate system. More formally, our method seeks to minimize

X∗ = argmin
X

∑
u,v,c
∥ Î

c
u,v(M,X)− Ic

u,v︸ ︷︷ ︸
ec
u,v(M,X)

∥2Λc (3.1)

= argmin
X

∑
u,v,c

ec
u,v(M,X)⊤Λc ec

u,v(M,X), (3.2)

where ec
u,v(M,X) denotes an error at a pixel location (u v)⊤ between the pre-

dicted value Î
c
u,v(M,X) and the measured one Ic

u,v for a particular channel in-
dex c. The matrix Λ = diag({Λc}) is a block diagonal information matrix used
to weight the different channels of the image.

LetMvis be the subset of points from the modelM that are visible from the
image plane of image I. In our current implementation, we construct this set
using the depth buffer as explained in details in Section 3.1.2.4. GivenMvis, we
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can rewrite the sum in Equation (3.1) using the points:

X∗ = argmin
X

∑
c∈C,p∈Mvis

∥∥ec
p(X)⊤

∥∥2

Λc . (3.3)

Each point-wise error term ec
p(X)⊤ is the difference between a predicted and a

measured channel evaluated at the pixel where the point p projects onto given
the model of the sensor. We expand the point-wise error as follows:

ec
p(X) = mapc(X,p)− Ic

proj(X p). (3.4)

The term proj(Xp) = (u v)⊤ is a function that computes the image coordinates
obtained by projecting the point p onto a camera located at PX. The func-
tion mapc(X,p) computes the value of channel Îc

(M,X) evaluated at the pixel
proj(Xp). During a first read, that may sound confusing as the default cue light
intensity is not affected by the transformation and are simply copied from the
information in the point p. Other cues, however, such as normals, or depth values
are viewpoint-dependent, and therefore change depending on the current camera
pose.

Our approach minimizes Equation (3.3) by using a regularized least squares
optimization procedure, described in Section 2.1.4. Combining Equation (3.3)
with Equation (3.4) and adding a per-point regularization weight wp, we can
rewrite Equation (3.1) in terms of points as

X∗ = argmin
X

∑
p∈Mvis

wp
∑
c∈C
∥mapc(X,p)− Ic

proj(X p)∥
2
Λc , (3.5)

where the regularization weight wp decreases with the magnitude of the channel
errors ec

p(X) and is used to reject outliers. The minimization is performed using
a local perturbation:

∆x = (∆tx,∆ty,∆tz︸ ︷︷ ︸
∆t

,∆αx,∆αy,∆αz︸ ︷︷ ︸
∆α

)⊤, (3.6)

consisting of a 3D translation vector ∆t and three Euler angles ∆α. The vec-
tor ∆x is a minimal representation for the transformation matrix X and Equa-
tion (3.3) can be reduced to a quadratic problem in ∆x by computing the Taylor
expansion of the error function around a null perturbation as follows:

ec
p(X ⊞∆x) ≃ ec

p(X) +
∂ec

p(X ⊞ x)
∂x

∣∣∣∣
x=0

∆x (3.7)

= ec
p(X)︸ ︷︷ ︸
ĕcp

+Jc
p(X)︸ ︷︷ ︸
J̆cp

∆x = ĕc
p + J̆c

p∆x. (3.8)
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The ⊞ operator is the transform composition defined as

X⊞∆x =

[
∆R ∆t

0 1

]
︸ ︷︷ ︸

∆x

[
R t
0 1

]
︸ ︷︷ ︸

X

, (3.9)

with ∆R obtained by chaining rotations along the three axes:

∆R = Rx(∆αx)Ry(∆αy)Rz(∆αz). (3.10)

Thus, the quadratic approximation of Equation (3.5) becomes

∆x∗ = argmin
∆x

∑
p∈Mvis

wp
∑
c∈C
∥ĕc

p + J̆c
p∆x∥2Λc , (3.11)

and ∆x∗ can be found by solving a linear system of the form H∆x∗ = b with
the term H and b given by

H =
∑

p∈Mvis

wp
∑
c∈C

J̆c⊤
p ΛcJ̆c

p (3.12)

b =
∑

p∈Mvis

wp
∑
c∈C

J̆c⊤
p Λcĕc

p. (3.13)

To limit the magnitude of the perturbation between iterations, thus enforcing a
smoother convergence, we solve a damped linear system of the form

(H+ λI)∆x∗ = b. (3.14)

Solving Equation (3.14) yields a perturbation ∆x∗ that minimizes the quadratic
problem. A new solution X∗ is found by applying ∆x∗ to the previous solution
X as follows:

X∗ = X⊞∆x∗. (3.15)

This subsection provided the overall minimization approach and in the re-
mainder of this section, we describe the parts of our approach in detail. These
details are the cue-specific mapping function and the projection model. Further-
more, we explain how to use the depth buffer to constructMvis and finally discuss
the structure of the Jacobians and a pyramidal approach to the optimization.

3.1.2.2 Cue mapping functions

In contrast to traditional ICP approaches but similar to DVO [67], our method
does not use an explicit point-to-point data association procedure. In addition
to that, by abstracting the cues into channels of the image, our method can be
extended to deal with an arbitrary number of cues and can benefit from all the
available information. In our current implementation, we consider the following
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cues: intensity, depth, range and normals. Note that additional cues or further
sensor information can be added easily without changing the framework.

In this subsection, we provide the mapping functions mapc(. . . ) for the used
cues intensity, depth, range, and normals that depend on X. We will use R and
t as defined in Equation (3.9) as the rotation matrix and translation vector of X.

Intensity: The intensity is not a geometric property of the point and thus it
is not affected by the transformation defined through X, therefore the intensity
value of a point ip is considered invariant under the map function, i.e.,

mapintensity(X,p) = ip. (3.16)

Depth: The depth cue of a point is the z-component of the point transformed
by X, i.e.,

mapdepth(X,p) =
[
0 0 1

]
(Rp+ t). (3.17)

Range: The range cue of a point is the norm of the point transformed by X,
i.e.,

maprange(X,p) = ∥Rp+ t∥. (3.18)

Normals: The normal cue of a point p is the normal vector specified by np

at the point rotated (but not translated) by X, i.e.,

mapnormal(X,p) = Rnp. (3.19)

3.1.2.3 Projection models

The projection function maps a 3D point from the model cloud onto a coordinate
in a 2D image. In our implementation, we provide two projective models, the
pinhole and the spherical model. The pinhole model better captures the charac-
teristics of imaging sensors such as RGBD cameras, while the spherical model is
entailed to 3D LiDARs. In this sub-section, we describe these two models but
note that the framework easily extends to other types of projection functions,
such as the cylindrical model. Only a single function needs to be overridden.

Pinhole model: Let K be the camera matrix. Then, the pinhole projection
of a point p is computed as

projpinhole(p) = π(Kp) (3.20)

K =

fx 0 cx
0 fy cy
0 0 1

 (3.21)

π(v) =
1

vz

[
vx
vy

]
, (3.22)
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with the intrinsic camera parameters for the focal length fx, fy and the principle
point cx, cy. The function π(v) is the homogeneous normalization.

Spherical model: Let K be a camera matrix in the form of Equation (3.21),
where fx and fy specify respectively the resolution of azimuth and elevation and
cx and cy their offset in pixels. Then, the spherical projection of a point is given
by

projspherical(p) = K

 atan2(py,px)
atan2

(
pz,

√
p2
x + p2

y

)
1

 (3.23)

3.1.2.4 Computing visible points using depth buffers

As stated in the beginning of Section 3.1.2, Equation (3.1) and Equation (3.3)
are equivalent if there are no occlusions or self-occlusions. This condition can
be satisfied by removing all points from the model M that would be occluded
after applying the projection. At each iteration, the estimated position X of the
cloud with respect to the sensor changes, thus before computing the projection,
we need to transform the model according to X. Subsequently, we project each
transformed point onto an image and for each pixel in the image, we preserve only
the point that is the closest one to the observer according to the chosen projective
model. The outcome of the overall procedure is a subset of the transformed points
in the model that are visible from the origin.

The reduced set of non-occluded points can be effectively computed as follows.
Let D be a 2D array of the size of the image, each cell (u v)⊤ of D contains a
depth or range value referred to as D(u, v) and a model point p̂ that generated
this depth or range reading. First, all depths D(u, v) are initialized with ∞.
Then, we iterate over all points p ∈M and perform the following computations:

• Let p′ = Rp + t be the transformed point and let (u, v) = proj(p′) be the
image coordinates of the point after the projection.

• If using the pinhole projective model, let d′ = p′
z be the z component of the

transformed point. If using the spherical model, let d′ = ∥p′∥ be its norm.

• We compare the range value D(u, v) previously stored in D with the range
computed for the current point d′. If the latter is smaller than the former,
we replace D(u, v) with d′ and p̂ with p′.

At the end of the procedure, D contains all points of the model visible from the
origin, i.e., those that are not occluded. These points form theMvis cloud.
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3.1.2.5 Structure of the Jacobian

We want to highlight the modular structure of the Jacobian Jc
p(X), which is

key for an efficient computation. By applying the chain rule to the right sum-
mand of Equation (3.7), and using the definition of the error function from Equa-
tion (3.4), we obtain the following form for the Jacobian Jc

p(X):

Jc
p(X) =

Jc
map︷ ︸︸ ︷

∂mapc(X⊞ x,p)
∂x

∣∣∣∣
x=0

(3.24)

−
∂Ic

u,v

∂u, v

∣∣∣∣
u,v=proj(Xp)︸ ︷︷ ︸
Jc

img

∂proj(p̆)
∂p̆

∣∣∣∣
p̆=Xp︸ ︷︷ ︸

Jproj

∂(X⊞ x)p
∂x

∣∣∣∣
x=0︸ ︷︷ ︸

Jtf

.

Thus, the Jacobian can be compactly written as:

Jc
p(X) = Jc

map − Jc
img Jproj Jtf (3.25)

Note that the multiplicative nature of Equation (3.25) in this formulation al-
lows us to easily compute the overall Jacobian from its individual components
Jc

map, Jc
img, Jproj and Jtf. In particular, Jtf does not depend on the channel, nor

on the projective model. Similarly, Jproj depends only on the projective model.
The image Jacobian Jc

img can be computed directly from the image through a
convolution for obtaining image gradients. Note that to increase the precision,
we recommend to compute Jc

img with subpixel precision through bilinear inter-
polation during the optimization. Only the Jacobian Jc

img of the function map(·)
depends on the specific cue.

For completeness we provide more detail on each part of the Jacobian in Equa-
tion (3.25) and specify all terms used in this equation.

3.1.2.5.1 Jacobian of transformation We are using the v2t(·) operator
to denote the conversion between X and ∆x as defined in Equation (3.6). By
applying the v2t(·) operator, we obtain the standard Jacobian:

Jtf =
∂v2t(x) p̆

∂x

∣∣∣∣
x=0

=
[
I −p̆×

]
(3.26)

where I is a 3 × 3 identity matrix and p̆× denotes the skew-symmetric matrix
formed from p̆.

3.1.2.5.2 Jacobian of the mapping function The mapping function Ja-
cobian Jc

map differs for each of the considered channels c. In this work, we use
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the following channels: intensity, depth, range and normals. In the following we
present the Jacobian derivation of each of these cues.

Intensity: The mapping function does not affect the intensity, thus we have:

∂mapintensity(X⊞ x,p)
∂x

∣∣∣∣
x=0

= 0 (3.27)

Depth: We have already computed the derivative of the transformation
function Jtf in Equation (3.26). For RGBD sensors, the depth is computed as
the z coordinate of the transformed point p. Thus, the Jacobian of the mapping
function for the depth channel is the third row of Jtf

∂mapdepth(X⊞ x,p)
∂x

∣∣∣∣
x=0

=
[
0 0 1

]
· Jtf (3.28)

Range: When using a 3D LiDAR, the range r = ∥p∥ replaces the depth.
Thus, the Jacobian Jrange

map is computed as

Jrange
map =

∂maprange(X⊞ x,p)
∂x

∣∣∣∣
x=0

=
∂ ∥v2t(x)Xp∥

∂x
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∣∣∣∣
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x=0

=
∂ ∥p̆∥
∂p̆

∣∣∣∣
p̆=Xp

Jtf

=
1

∥p∥

[
px py pz

]
· Jtf (3.29)

Normals: The mapping function applied to the normals cue depends on the
rotational part of X and the Jacobian is given by

Jnormal
map =

∂mapnormal(X⊞ x,p)
∂x

∣∣∣∣
x=0

=
[
0 −[Rnp]×

]
, (3.30)

where R denotes a rotation matrix, np the normal defined for the point p, and
[Rnp]× the skew-symmetric matrix.

3.1.2.5.3 Image Jacobian The Image Jacobian Jc
img is numerically com-

puted for each channel c with pixel-wise derivation:

∂ Ic
u,v

∂u
=

1

2

(
Ic
u+1,v − Ic

u−1,v

)
∂ Ic

u,v

∂v
=

1

2

(
Ic
u,v+1 − Ic

u,v−1

)
(3.31)
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3.1.2.5.4 Jacobian of the projection function The Jacobian of the projec-
tion depends directly on the projection function Jproj =

∂proj(p)
∂p . In the following,

we provide details for the two models given in Section 3.1.2.3.
Pinhole model: We derive the projection function Jacobian for a pinhole

camera from Equation (3.22):

Jpinhole
proj =

∂ proj(p)
∂ p (3.32)

=
∂ π(p′)

∂ p′

∣∣∣∣
p′=K p

∂Kp
∂p (3.33)

=
1

z2

[
z 0 −x
0 z −y

] ∣∣∣∣
(x,y,z)=K p

K

Spherical model: The projection function for the range sensors is defined
in Equation (3.23). We make use of the substitution a2 =

√
p2
x + p2

y, and define
the Jacobian as follows:

Jspherical
proj =

∂ proj(p)
∂ p =


1

a2
2

[
−py px 0

]
1

a2
2+p2

z

[
−px pz

a2
−py pz

a2
a2
][

0 0 0
]

 K (3.34)

3.1.2.6 Hierarchical approach to photometric minimization

A central challenge for photometric minimization approaches is the choice of the
resolution in order to optimize the trade-off between the size of the convergence
basin and the accuracy of the solution. A high image resolution has a positive
effect on the accuracy of the solution given the initial guess lies in the convergence
basin. This is due to the fact that more measurements are taken into account and
the precision of the typical sensor is exploited in a better way. A high resolution,
however, often comes at the cost of reducing the convergence basin since the
iterative minimization can get stuck more easily in a local minimum arising from
a high frequency spectral component of the image. Thus, using lower resolution,
the photometric approach exhibits an increased convergence basin at the cost of
a lower precision.

In our implementation, we leverage on these considerations by using a pyra-
midal approach. The optimization is performed at different resolutions, starting
from low to high resolutions. After convergence on one level, the optimization
switches to the next level by increasing the resolution. The optimization on the
higher resolution uses the solution from the lower level as the initial guess. Our
termination criterion for the optimization on each level of this resolution pyramid
analyzes the evolution of the value of the objective function in Equation (3.3),
normalized by the number of inliers. We stop the iterations at one level if this
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value does not decrease between two subsequent iterations or if a maximum num-
ber of iterations is reached.

3.1.3 Experimental evaluation
Our method is a general and efficient framework for multi-cue sensor data regis-
tration. We implemented and released a C++ implementation that closely follows
the description presented in this chapter as open source software. Our general
methodology works for RGBD sensors, such as the Microsoft Kinect and 3D laser
scanners using the following cues: intensity, depth, range, and surface normal.
Thus, the evaluation is done based on these sensors and cues. Note, that further
cues or similar sensors can be added easily.

The evaluation presented here is designed to support the remaining three
claims made in the introduction. To simplify comparisons, we conducted our
experiments on publicly available datasets:

• TUM benchmark suite [126], acquired with RGBD sensors in office-like
environments.

• S. Gennaro catacomb dataset [108], recorded with a RobotEye 3D LiDAR in
a catacomb environment.

• KITTI dataset [44], where we used the Velodyne HDL-64E data recorded
in urban environments in the context of autonomous driving.

Furthermore, we provide comparisons to the state-of-the art approaches DVO
and NICP. The outcomes of these comparisons highlight that our method, al-
though being general and relatively easy to implement, yields an accuracy that
is comparable to those achieved by systems dedicated to specific setups.

3.1.3.1 Registration performance and comparison

This section is designed to show that our method can accurately register typical
sensor cues such as RGBD, as provided by Microsoft Kinect, or LiDAR data
exploiting the color, depth, and normal information and that it can do so under
realistic disturbances of the initial guess. The first experiment is designed to
evaluate the accuracy of our approach. To do that, we rely on RGBD data and
provide a comparison to dense visual odometry (DVO) [67], which is the current
state-of-the-art method and the one most closely related to our work. We used
the three available channels, namely the intensity, the depth and the normals.

We performed the comparison on the four desk sequences also used in [67]
and report the relative pose error (RPE). For DVO, we used the author’s open
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Approach / setup fr1/desk2 fr1/desk fr2/desk fr2/person

[m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s]

DVO
0.0687 - 0.0491 - 0.0188 - 0.0345 -(as reported in [67])

DVO
0.0700 5.14 0.0580 3.83 0.0318 1.15 0.0360 0.99(implementation)

Our approach 0.0920 5.14 0.0614 3.32 0.0365 1.65 0.0481 1.45

DVO
- - - - - - - -(without intensity cue)

Our approach
0.1073 5.20 0.0630 3.66 0.0329 1.52 0.0411 1.27(without intensity cue)

Table 3.1: Relative Pose Error on TUM desk sequences.

source implementation1. For completeness, we report in Table 3.1 both, the re-
sults presented in the paper [67] and the ones we obtained with the open source
implementation. All values have been computed using the evaluation script pro-
vided with the TUM benchmark suite. Our approach provides slightly lower but
overall comparable performance than DVO yielding a low relative error both,
in terms of translation and rotation, respectively in the order of 10−2 m/s and
1 deg/s, see Table 3.1.

We conducted a second experiment with the TUM dataset, where we removed
the intensity channel, using only the depth images and the normals derived from
the depth image to perform the registration. By exploiting the normal cue, our
approach provides results consistent to the ones obtained when using also the
intensity, see last two rows on Table 3.1. In contrast to that, DVO was unable to
perform the registration without the intensity channel. This is coherent with the
operating conditions which DVO was designed for, and at the same time supports
the general applicability of our method to different cues.

The third experiment aims at showing the effectiveness of our algorithm when
dealing with dense 3D laser data. We used a dataset acquired in the S. Gennaro
catacomb of Naples within the EU project ROVINA. The data was recorded with
an Ocular RobotEye RE05 3D laser scanner using a maximum range of 30m.
Since the dataset does not provide ground truth, we performed a qualitative
comparison with Normal ICP (NICP) by Serafin et al. [110].

The 3D point clouds have been recorded in a stop and go fashion at an average
distance of about 1.7m between two consecutive scans. The robot has tracks and
this provides a rather poor odometry information. This odometry is used as the
initial guess for the optimization and the same guess was also used for NICP, that

1https://github.com/tum-vision/dvo_slam
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Our Approach

NICP

Inconsistency

Figure 3.3: S. Gennaro catacombs dataset, recorded with a RobotEye 3D LiDAR. Direct com-
parison of our approach with Normal ICP (NICP). The latter shows a registration inconsistency
in the middle of the trajectory, with an unexpected change of the orientation around the vertical
axis.

range normals

reference
image

current
image

final error
χ2 = 32.4

initial error
χ2 = 5904

Figure 3.4: Error reduction while registering two scans from S. Gennaro dataset (best viewed
on screen).
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range

ref.image

init error

curr.image

final error

normals

Figure 3.5: Illustration of the error before and after registering two images of the KITTI dataset.
The images are obtained by projecting the Velodyne HDL-64 clouds using a spherical projector
(best viewed on screen).
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Figure 3.6: Ground truth comparison for sequence 10 of the KITTI dataset.

is used for comparisons in this experiment. To perform the registration we use
both, range channel and normals channel computed on the range image. There
is no intensity information available for this dataset.

Figure 3.3 illustrates the two reconstructions of one of the sequences of the
S. Gennaro catacombs, while Figure 3.4 shows the error of a pairwise registration
before and after the alignment. Thanks to the abstraction provided by the map-
ping function and the projective model (see Section 3.1.2.2 and Section 3.1.2.3),
our method can deal with both RGBD data and 3D scans in a uniform manner.

To further stress the generality of our method, we conducted an additional
experiment using exactly the same code and parameters on sequence 10 of the
KITTI dataset [44]. We used the data from a Velodyne HDL-64E LiDAR, using
range and normals cues. Figure 3.5 illustrates the error reduction.

As shown in Figure 3.6, our output reflects the ground truth with an error of
the 6.1% of the trajectory length, with a rotational error of 0.023 deg/m. Albeit
reasonable, this accuracy is still below the one provided by approaches dedicated
to the sparse LiDAR such as LOAM [143]. We see the reason for this lower
performance in the quantization effects affecting the projections when the clouds
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Sensor
laptop computer desktop computer
i7-3630MQ 2.4GHz i7-7700K 4.2GHz

Microsoft Kinect 49ms ± 0.8ms ≈ 20.1Hz 28ms ± 0.2ms ≈ 35.5Hz
RobotEye 324ms ± 1.5ms ≈ 3.1Hz 189ms ± 0.9ms ≈ 5.2Hz
HDL-64E 67ms ± 0.3ms ≈ 14.8Hz 39ms ± 0.1ms ≈ 25.2Hz

Table 3.2: Average image processing runtime with std. deviation.

are sparse. We plan to address this aspect in future versions by using anisotropic
projection functions. Moreover, approaches such as LOAM take advantage from
edge and planar surface features, the use of which particularly helps in cases of
structure lack.

3.1.3.2 Runtime

The next set of experiments is designed to support the last claim, namely that our
approach can be executed fast enough to allow for online processing of the sensor
data without sensor-specific optimizations. Thus, we report in the remainder of
this section the runtime statistics. We performed all the presented experiments
on two different computers running Ubuntu 16.04. One is a laptop equipped
with a i7-3630MQ CPU with 2.40GHz and the second one is a desktop computer
equipped with a i7-7700K CPU with 4.20GHz. Our software runs on a single
core and in a single thread.

Table 3.2 summarizes the runtime results for the different configurations pre-
sented above. We provide the average results obtained in the four TUM desk
sequences for the Microsoft Kinect in RGBD and depth-only configurations, as
well as for the two LiDAR setups. As listed in the table, our method can be
executed fast and in an online fashion. On a mobile i7 CPU, we achieve average
frame rates of 20Hz with Microsoft Kinect RGBD sensor and 14Hz with the
Velodyne HDL-64E data, while we achieve average of 30Hz and 23Hz on an i7
desktop computer for the same configurations. Furthermore note, that our ap-
proach has a small memory footprint. For the whole registration procedure of the
three datasets, we always required less than 200MB (Microsoft Kinect: 178MB;
RobotEye: 140MB; HDL-64E: 198MB).

Note that recording a single RobotEye point clouds takes around 30 s, i.e. the
robot stops, records, and then moves on. Thus, this setup may not be considered
for real-time usage. In contrast, the Velodyne clouds of the KITTI dataset have
been recorded at an average frame rate of 10Hz and the data can be processed
online.

In summary, our evaluation suggests that our method provides competitive
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results in several different scenarios compared to approaches dedicated to a spe-
cific setup. At the same time, our method is fast enough for online processing and
has small memory demands, proportional to the number of channels in use. Thus,
we conclude that we supported all our four claims made in the introduction.

3.1.4 Related work

There exist a large number of different registration approaches. One general
way for aligning 3D point clouds is the ICP algorithm, which has often been
used in the context of range data. Popular approaches use ICP together with
point-to-point or point-to-plane correspondences [62] and generalized variants
such as GICP [107]. There exist approaches exploiting normal information such
as NICP [110] as well as global approaches [141] that use branch-and-bound tech-
nique coupled with standard ICP formulation. A popular and effective approach
is LOAM [142, 143] by Zhang and Singh that extracts distinct surface and cor-
ner features from the point cloud and determines plane-to-point and line-to-point
distances to a voxel-grid representation.

Traditional approaches to visual odometry track sparse features in monocular
images or stereo pair to estimate the relative orientation of the images [37, 89]. To
deal with outliers in the data association between feature points, most approaches
use RANSAC to identify inlier and outlier points, combined with tracking over
multiple frames. Other approaches rely on a prior for the motion estimate, such
as constant motion model. In presence of external sensors, such as an IMU, the
measurements can be filtered with the achieved motion estimate [9, 144].

Another group of approaches exploits the depth data from RGBD streams
to register scans and build dense models of the scene. KinectFusion by New-
combe et al. [86], for example, largely impacted the RGBD SLAM developments
over the last 6 years. Similar to Newcombe et al., the approach of Keller et al. [64]
uses projective data association for RGBD SLAM in a dense model and re-
lies on a surfel-based map [133] for tracking. Similar approaches exploit the
RGBD streams by defining signed distance fields where a direct voxel-based dif-
ference is computed to perform the motion estimation [115], making intense use
of both CPU and GPU parallelization. ICP is a frequently used approach for
RGBD data and special variants for denser depth images have been proposed [109,
110]. Recently, the team around Daniel Cremers has proposed semi-dense ap-
proaches using image data [35] to solve the visual odometry and SLAM problem
as well as dense approaches for featureless visual odometry for RGBD data [65,
66, 67].
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Figure 3.7: Part of the environment constructed by incremental point cloud matching. This
environment represents the environment in which the robot must operate. It showcases narrow
corridors, turns and uneven terrain. The poses near the ground show the poses of the robot
frame while navigating. The black and write pyramids denote the positions of the cameras on
the robot when taking each frame.

3.1.5 Conclusion
In this section, we presented a general framework for registering sensor data such
as RGBD or 3D LiDAR data. Our approach extends dense visual odometry and
operates on different available cues such as color, depth, and normal informa-
tion. Our method avoids explicit data association and operates by direct error
minimization using projections of the sensor data or model. This allows us to
successfully register data effectively without tricky, sensor-specific adaptations.
We implemented and evaluated our approach on different datasets and provided
comparisons to other existing techniques and supported all claims made in this
section. The experiments suggest that we can accurately register RGBD and 3D
data under realistic configurations and that the computations can be executed at
the sensor frame rate on a regular notebook computer using a single core.

3.2 Constructing a map of environment
By using the method outlined in the previous section, we use incremental match-
ing to produce locally consistent parts of the environment. An example of such
an incremental local map can be seen in Figure 3.7. The coordinate frame triplets
show the poses of the robot where the clouds were taken, the black and white
pyramids depict the positions of the cameras that acquired the data.

As briefly discussed in the introduction to this chapter, we use our multi-cue
photometric point cloud registration method to generate the edges of the pose
graph that we use to minimize accumulated error by solving the constraints in
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this graph in the least squares sense. We use graph-based SLAM to create a full
map of the environment that the robot navigates in. While SLAM system is not
the main contribution of this thesis, we are using a classical graph-based SLAM
system and optimize the pose graph in a least squares sense with the methods
outlined in Section 2.1.

The pose graph that we use to construct our map has three types of edges:
odometry edges, incremental matching ones and, in addition to these, we can use
any loop closing technique available to generate the loop closing edges in order
to correct any accumulated incremented matching and odometry errors. We then
optimize the produced graph in the least squares sense to produce a consistent
map, part of which can be seen in Figure 3.8.

We use this map throughout this thesis. In addition to a simple metric map
we also add additional information such as traversability to it. We analyze the
traversability of every scene observed by the robot and maintain this information
as an additional 2D map constructed from the full 3D map shown in Figure 3.8.
We use this 2D map representation for robot navigation. Having a consistent
map with traversability information is crucial for navigation of the robot. We
construct and use a 2D projection of the map in the exploration phase and actively
analyze its quality in order to be sure that the path planned on such a map can
be carried out. We also present the method to return the robot to the starting
position should the SLAM system fail to construct a consistent map. The next
chapter focuses on all these contributions extensively.
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Figure 3.8: A map of Roman catacombs viewed from above reconstructed by performing in-
cremental mapping and optimizing the full SLAM pose graph. The poses are shown with
coordinate triplets and the lines connecting them represent the nodes on the graph.

54



Chapter 4

Navigation in static environments

While the robot mapping capabilities are, without doubt, a cor-
nerstone of robot navigation in an unknown static environment,
the robot still must make decisions on where it is safe to move
and how to move there. The pipeline for moving in an unknown

environment can be briefly summarized into two distinct tasks: first, the robot
must analyze the surroundings, and, second, it must plan and execute a move-
ment. In this section we cover the components that the robot requires to safely
navigate the environment, namely (i) traversability analysis of the scene currently
perceived by the robot, (ii) navigation and exploration capabilities of the robot.
In addition to that, we (iii) provide a system that is able to detect when the map
is not reliable anymore and return the robot to the base safely not relying on any
global map.

Our first contribution in this chapter is the traversability analysis, presented
in Section 4.1. The robot navigating in an unknown environment must analyze
every scene that it captures. Our method relies on 3D data from the current scene
and analyzes if the environment is traversable given the geometric constraints of
the robot. We have tested this approach in the real Roman catacombs as part of
ROVINA project using the data coming from the Asus Xtion (Figure 2.1) depth
sensors. Even though this method was tested mostly with RGBD cameras it can
be extended to work with any other sensor that provides 3D information and we
have additionally tested it with the Ocular 3D LiDAR.

The second contribution regards the navigation and exploration stacks of the
robot and is presented in detail in Section 4.2. An autonomous robot must explore
the environment in order to construct its map. During the exploration stage it
relies on robust navigation capabilities in order to navigate to a specific place given
only a part of the map and the positions of itself and the goal in that map. The
robot must plan the best path to the goal taking traversability of the environment
into account, and carry it out. We implemented two distinct strategies for the
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Figure 4.1: Stair case observed with a Microsoft Kinect and a corresponding labeling into
traversable (green) and non-traversable (red) areas.

robot to explore the environment: a frontier exploration technique, as well as
a more sophisticated approach that relies on background knowledge, and have
integrated them into our system [96].

Despite using such a robust exploration approach that actively searches for
loop closures and improves robots localizability there is no method that guaran-
tees map consistency during robot navigation. To address this issue, we present
an algorithm to continuously monitor the quality of the map and return the robot
safely to the base in case the map cannot be used reliably anymore. This con-
tribution is presented in detail in Section 4.3. In this work, we build upon the
work of Mazuran et al. [80]. Their static map consistency analysis tool have been
proven useful to analyze the maps generated by a high-precision 2D LiDAR. We
extend that approach to work with our pipeline while using much cheaper 3D
sensors as well as to run online continuously on the robot hardware. In addition
to extending their approach for map consistency checking, we implemented an
algorithm to “unwind” the trajectory taken by the robot to return the robot to
the base without relying on any kind of consistent global map.

4.1 Traversability analysis
Autonomous outdoor navigation is an active research field in robotics. In most
scenarios, the classification of terrain into traversable and non-traversable areas
plays an important role. Failing to stay on roads or other traversable surfaces
can introduce wheel slippage, which in turn leads to errors in the odometry. It
can lead to accidents, risk of getting stuck, or even of destroying the platform.
Therefore, the ability to robustly detect traversable areas is important for safe
navigation, especially in fully autonomous settings.

The main contribution of the approach presented in this section is an accu-
rate, fast to compute, and comparably easy to implement traversability analysis
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approach for mobile robots. Our system operates on the depth images from a
Microsoft Kinect or an Asus Xtion camera and analyzes the visible area in front
of the robot at 10 fps-25 fps on a notebook computer without using the graphics
processing unit (GPU). Not relying on GPUs has the advantage of requiring less
energy, which is a relevant issue for small-scale autonomous robots. Our approach
has been implemented and evaluated in several sites including a real catacomb.
An example of a depth image labeled with the traversability information is shown
in Figure 4.1.

4.1.1 Our approach to traversability analysis
The main objective of our work is the development of an accurate and fast-
to-compute traversability analysis system for mobile robots. A central focus
lies on the online capabilities of the system on a standard notebook computer
without requiring a GPU, so that the traversability analysis can be computed
and integrated into the model on the fly. Our approach considers only the depth
image. Our motivation is that the underground environments are completely
dark (if one does not carry own light source) and RGB data is often useless.

Our approach can be split up into two main steps. After a preprocessing
step, our system first estimates the local traversability based on a single depth
image. This step takes into account the navigation capabilities of the vehicle.
Second, the integration of the single-image traversability estimates into a local
traversability map.

Note that we assume the depth images to be locally registered, i.e., the
traversability analysis does not account for any pose uncertainty of the vehicle.
We can use our incremental ICP-based matching approach from Section 3.1 or
any other that uses the point clouds and normal vectors, and can be executed on
the fly. Our approach can also be used with global methods such as graph-based
SLAM to obtain a globally consistent model. This is straight forward if the local
traversability estimates are stored in the nodes of the SLAM graph. After the
optimization, the global traversability map can be rendered from the local views
in the global frame.

4.1.1.1 What is traversable for a robot

Given a typical robotic platform such as a Pioneer 2AT or a Mesa Element plat-
form, the traversability is mainly governed by three factors. First, a maximum
step height limits the vehicle from climbing steps higher than 5 cm-15 cm (depend-
ing on the wheels/tracks and the exact setup). Second, the maximum slope the
robot can climb or descend. The exact figures depend on the weight distribution
of the platform and its sensors. In our case, the maximum slope was 15 degrees.
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The third factor, that limits the traversability is the height of the platform, which
may prevent the robot from driving into low niches or similar places. Additional
factors may impact the traversability of a platform such as mud or water — such
surfaces are, however, hard or even impossible to be identified with a depth sensor
such as the Microsoft Kinect and are therefore not considered here.

Our approach only considers the environment and not explicitly the shape of
the platform such as its width and height. The question if the robot physically fits
into an area that is labeled as traversable has to be answered by the planner itself
as the state of the robot, especially its orientation, influences that. Therefore,
also currently unreachable places can be safely classified as traversable as the
planner will not expand these states.

Based on these constraints, the tasks of estimating the traversability consists
of analyzing the environment covered by the sensor and identifying height con-
straints, steps, and slopes. Before providing further details on that, we briefly
introduce the sparse data structure that we use to store the 3D data. Such a
structure is key for fast online processing.

4.1.1.2 Sparse 3D map

We store the measured endpoints and normals, computed in the way described in
Section 2.2.3 in a 3D data structure. In theory, a raw point cloud could be used
but they have the disadvantage that finding neighboring points is expensive. As
finding neighbors is explicitly required later on, we propose to approximate the
points using a grid-like structure. As our data is sparse compared to the number
of cells of a full 3D grid, we store the data in a sparse grid that is realized via a
two-layered hash-table like structure.

First, a hash-table is used to index points in the x-y plane in world coordinates.
The key of the hash-table is the discretized (x, y) coordinate of points that can,
given the range and resolution of the Microsoft Kinect sensor, be modeled by
a single 32 bit integer. This hash table acts as a sparse 2D grid as only those
cells are instantiated for which 3D points with a corresponding (x, y) coordinate
exist. For every non-empty (x, y) grid cell, we initiate a red-black tree, i.e., a
self-balancing binary search tree that allows for quickly accessing elements and
for processing them in a sorted order. The keys of each tree are the discretized
z coordinates of the endpoints. From an implementation point of view, this may
sound complex but note that the C++ standard template library implements a
red-black tree within std::map and thus can directly be used without additional
efforts. The same holds for the hash table via std::unordered_map.

The overall data structure models a sparse 3D grid that allows us to store
discretized (x, y, z) triplets and, thanks to the red-black tree, allows for parsing
the z coordinate efficiently in an ordered way. This is used to compute steps for
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(x, y) cells and to estimate if the height constraints of the platform are violated.
In sum, the points of the point cloud that is computed from the depth image

are added to the sparse 3D grid. For each 3D cell, we compute the average
3D coordinate and normal on the fly. In our current implementation, we use
a discretization of 4 cm. As a result of that, we obtain a (deterministically)
sub-sampled point cloud that is stored in a sparse 3D grid. The following two
operations can be therefore conducted efficiently: accessing any cell including
neighboring cells and iterating over the sorted z-coordinates of all cells for a
given (x, y) coordinate.

4.1.1.3 Accounting for the vehicle height

The first criterion that impacts the traversability of the terrain is the height
constraint of the vehicle. For every (x, y) location in our sparse 3D map M , we
start from the lowest measured z value and compute the free space in z direction
to the next obstacle. Any obstacle for which the difference in the z coordinate to
the previous obstacle is larger than the height of the platform can be discarded
as it does not constrain the motion of the vehicle. All obstacles for which this
distance is smaller than the height of the platform are maintained in M and will,
in the subsequent steps, be analyzed according to their step height and slope.

4.1.1.4 Efficient step detection

Based on the sparse 3D map M , we can efficiently query the neighboring points
for any 3D coordinate. By analyzing the height differences between points stored
in neighboring cells, we can quickly check for large steps that the robot cannot
traverse. The neighbors of a point p up to a distance of d can be written as

N (p, d) = {q | q ∈M ∧ ||p− q|| ≤ d}. (4.1)

For each instantiated grid cell p ∈M , we inspect the z coordinates of the neigh-
bors

qz = {z | [x y z]⊤ ∈ N (p, d)}, (4.2)

and test if the coordinate is larger then zmax, which is the maximum step that
the vehicle can climb or descend. The decision about traversability is then done
by the following function

τ
(p)
step =

{
1 ∃ z ∈ qz : ||pz − z|| ≤ zmax

0 otherwise.
(4.3)

The expression is equal to 1 if there is any non-traversable step at p and to 0

otherwise. In our implementation, the neighbor distance d was set to 10 cm and
the maximum step height zmax that the robot can traverse was 10 cm as well.
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4.1.1.5 Robust slope detection

Besides steps, there is a second criterion that is important for deciding if terrain
is traversable or not: up to which degree can the robot climb slopes?

For computing the slope of a local area, we consider local normal vectors
which are efficiently computed as explained in Section 2.2.3. Based on the normal
vector n and the gravity vector ng, a straight forward test allows us to estimate
the traversability of a perceived surface based on the slope as

ng · n ≤ cos(αmax), (4.4)

where · is the scalar product and αmax the maximum slope the robot can handle.
In our setup, the gravity vector ng is obtained from a standard IMU. We use an
XSens MTi, which provides the gravity vector up to an error of approximately
0.5 degrees.

The test in Equation (4.4) allows us to efficiently detect normal vectors that
yield a steeper slope that exceeds the navigation capabilities of the robot. How-
ever, testing only for the slope is not enough. Consider a small step that the
robot can traverse. The vertical surface of the step creates normal vectors that
are orthogonal to the gravity vector and thus report a steep slope that cannot be
traversed. Mathematically, that surface is correctly labeled as 90 degree slope,
but it should not affect the traversability labeling as long as the step is small
enough to be traversed by the robot. Thus, we are only interested in slopes that
have a minimum extension in the x-y plane in order to be classified as slopes,
which cannot be traversed.

To achieve this, we apply a rather standard erosion-dilation filter [16] with a 5-
cross structuring element to our traversability map. Let τ (x,y)slope be the traversability
label for the position (x, y) where 0 refers to traversable and 1 to non-traversable.
The erosion step updates the estimate

τ
(x,y)
slope ← max

(
τ
(x,y)
slope , τ

(x−d,y)
slope , τ

(x+d,y)
slope , τ

(x,y−d)
slope , τ

(x,y+d)
slope

)
, (4.5)

and is followed by the dilation step

τ
(x,y)
slope ← min

(
τ
(x,y)
slope , τ

(x−d,y)
slope , τ

(x+d,y)
slope , τ

(x,y−d)
slope , τ

(x,y+d)
slope

)
. (4.6)

Here, the scalar d describes the distance in which the neighbor considered (as
in the previous subsection on step detection). As a result of the erosion-dilation
filtering, small slopes, such as steps, are filtered out while “real slopes”, i.e., larger
areas with a steep inclination angle, are maintained. This process is illustrated
in Figure 4.2.

Finally, the traversability τ (x,y) is obtained by combining the traversability
extracted from slopes τ (x,y)slopes and steps and height constraints τ (x,y)steps by

τ (x,y) = max
(
τ
(x,y)
slope , τ

(x,y)
step

)
. (4.7)
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Figure 4.2: Left: traversability estimate with both, a non-traversable slope (top red rectangle) a
traversable step (bottom red stripe) marked as non-traversable slopes. Middle: erosion shrinks
all non-traversable areas by the neighborhood distance d. Right: dilation restores a real non-
traversable slope, while leaving a step as traversable, thus, avoiding labeling a step as a small
non-traversable slope.

In sum, this approach provides a traversability estimate given a single depth
image.

4.1.1.6 Traversability map estimation

Let τt be such a traversability estimate of a local area obtained from a single
RGBD image taken at time t. As this estimate is not free of errors, we integrate
multiple of such measurements into one model. We achieve that by employing
a static state binary Bayes filter that integrates the information for every non-
empty cell i in M .

Following the work of Moravec [84], summarized in Section 2.3, we can com-
pute a recursive update formula for p(Ti | τ1:t) as

p(Ti | τ1:t) =[
1 +

1− p(Ti | τt)
p(Ti | τt)

1− p(Ti | τ1:t−1)

p(Ti | τ1:t−1)

p(Ti)

1− p(Ti)

]−1

. (4.8)

In order to gain efficiency, one can furthermore use the log-odds formulation,
so that the operations in Equation (4.8) are realized via addition and subtractions
in the log-odds space.

To apply the Bayes filter, we need to specify the inverse observation model p(Ti |
τt). As the depth resolution decreases quadratically with increasing distance from
the sensor, we use the inverse sensor model (assuming a prior of p(Ti) = 0.5)

p(Ti | τt) = 0.5 +
2Ti − 1

2 + l2
, (4.9)
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Figure 4.3: Left: An example of the pattern-based descriptor overlaid onto a depth image taken
with an Microsoft Kinect RGBD sensor. Yellow shows the query pixel in which we compute
the descriptor while the pixels outlined in blue show its neighbors. We use these descriptors
to predict traversability information directly from depth as an alternative to the approach
presented in previous sections. Right: An evaluation of traversability prediction accuracy.
Blue shows values where the predicted traversability is matching the reference traversability
information, while the red ones represent the pixels where the prediction is wrong. Black pixels
denote parts of the image with no prediction. Note, that we cut off the depth values at 4 meters
for traversability estimation here as the readings become too imprecise beyond this distance.

where l is the distance between the camera and the measured cell (0.7m-4m) and
Ti ∈ {0, 1}. With this filter, we integrate the individual traversability estimates
that are computed per depth image into one consistent model.

4.1.2 Learning traversability directly

Computing the normals over images, merging them into a hash map and per-
forming computation over the whole grid to decide if the scene before the robot
is traversable, requires many operations to be performed. These operations all
take CPU time and, therefore, energy resources that can be limited on a mobile
robot platform. While using the robot in the real-world Roman catacombs we
have acquired datasets where the range images could be mapped to the com-
puted traversability information. We can project the traversability information
from the 3D representation into the range image domain. This generates data
that consists of 2D images with traversability information stored in every pixel,
which can be treated as a mapping from depth data to traversability informa-
tion. If we use this data as training data, we can learn these mappings, which
will henceforth allow us to compute the traversability information directly from
a range image. Learning this information only makes sense if the system that
we use gives a performance boost over the standard pipeline presented in the
previous sections. We therefore explore the use of the linear SVMs to map a
simple descriptor over the range image pixels in a rigid pattern. This results in a
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method that can predict the traversability of the environment directly from the
depth values captured from the sensor with 98% precision.

In our implementation, we experimented with relatively simple descriptor
patterns. Due to our runtime constraints, we constrained our implementation to
use the descriptors consisting of a value of a center pixel as well as its N neighbors
spaced at a rigid pattern. We considered neighborhoods of sizes: 3×3, 5×5 and
9×9. An example 3×3 pattern, shown in blue, overlaid with a depth image from
the catacombs, can be seen on the left of Figure 4.3. We experimented with all
the neighborhood sized presented above, and concluded that the neighborhood of
5×5 yields the best trade-off between the runtime efficiency and accuracy. The
smaller pattern generates more errors, while using the bigger pattern makes the
prediction substantially slower than the reference method.

The right side of Figure 4.3 shows an example image that shows a comparison
between the predicted learned traversability and the actual traversability. The
blue pixels represent the values where the predicted and the actual traversability
values match, while the red pixels show the prediction errors. Black pixels are
ignored and have no traversability value predicted in them. We observe that
mainly the prediction errors happen in the areas that are expected to be hard to
predict, i.e., on the border of the walls and floor or on steps in depth.

Overall we achieved good performance, but did not achieve a substantial run-
time improvement. We think that the minor gain in runtime does not justify the
loss in accuracy in this case, especially considering that the reference algorithm is
capable of running at frame rate of the sensor even on computation-constrained
hardware. Therefore, in the remainder of this section we will focus on the ex-
periments carried out using the standard pipeline, and not using the SVM-based
approach.

4.1.3 Experiments
The experimental evaluation is designed to show the capabilities of our traversabil-
ity estimation system in different environments. Throughout all our experiments,
we used either a Microsoft Kinect (catacomb scenes) or an Asus Xtion (office and
outdoor scenes) installed on a mobile robot. We only used the depth information
for the traversability estimate, the RGB information is used solely for visualiza-
tions.

4.1.3.1 Timing experiments

The first experiment is designed to illustrate that our method runs online on
a notebook computer without GPU usage and can process the incoming depth
images at high frame rate. We tested our system on two standard notebooks,
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640×480 pixels 320×240 pixels

CPU normals trav. fps normals trav. fps

i7 38ms 55ms 10.7 18ms 22ms 25
i5 85ms 70ms 6.6 40ms 25ms 15.3

Table 4.1: Average timings of the normal computation and traversability analysis and the overall
rate for two different resolutions of the depth image.

Figure 4.4: Photos and sketches of the individual test objects. Left: a shape that is formed by
two steps of different size. The step closer to us is a small step, while the one further from us
is significantly bigger. Middle: a shape that consists of two slopes connected to each other in
the middle. The slope closer to us is shallow, while the slope further away from the camera is
much steeper. Right: a shape that consists of multiple steps that become steeper with distance
from the camera.

one equipped with a 2.3GHz Intel i7 processor and one with an Intel i5-2410M
processor. Table 4.1 illustrates the results. As can be seen, we achieve frame
rates between 10 fps and 25 fps on an i7 notebook depending on the depth image
resolution. Thus, the environment in front of the robot can be analyzed on the fly
allowing for autonomous navigation and exploration. Even on the i5 processor,
the data can be analyzed at a frame rate of 15 fps on 320×240 pixel depth images.

4.1.3.2 Ground truth comparison

The next experiment is designed to analyze the error of our traversability esti-
mate. It is non-trivial to provide a ground truth analysis outside a simulator,
but we put our best efforts to achieve a near ground truth evaluation by observ-
ing custom-made structures with known 3D geometry, shown in Figure 4.4 and
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Figure 4.5: Ground truth comparison using the objects pictured in Figure 4.4. Top: ground
truth labeling. Both steps on the left, steeper slope and final steps of the last shape are
all non-traversable given the constraints of the robot here. Middle: our approach. Bottom:
overlaid images (truth above estimate). Green cells are labeled as traversable, red refers to
non-traversable and yellow to cells for which not enough observations have been made to allow
for a confident labeling. Wrongly labeled pixels are marked black. Note that most error are
due to discretization effects.

compare the traversability estimates pixel by pixel with the geometric model.
Figure 4.5 illustrates the objects and the traversability estimates. The right im-
age shows the overlay of the ground truth (left) and estimated (middle) maps.
All errors based on a pixel-by-pixel comparison are highlighted in black. In this
experiment, 7.2% of the cells are wrongly labeled if considered independently.
However, nearly all wrongly labeled cells occur at the borders of the obstacles
and are between one and two cells sizes away from the real obstacle. Most of these
errors actually result from discretization errors or slight smoothing effects at steps
when computing the normal. In addition to that, 1.9% of the cells were not ob-
served sufficiently to allow for an appropriate labeling. This occurs if p(Ti | τ1:t)
has a value close to the prior (here 0.5). These cells are colored yellow.

This experiment shows that our approach provides an accurate labeling when
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Figure 4.6: Left: robot driving in the Priscilla catacombs. Middle: non-traversable staircase.
Right: non-traversable heap of rubble.

ignoring the discretization errors. This can typically be done on most real navi-
gation settings and the system classifies the input data well for our application—
exploring an unknown catacomb with a mobile platform.

4.1.3.3 Traversability estimates obtained in different scenes

We obtained the traversability information computed with our system in real-
world scenes. First, this includes the deployment of a prototype robot based
on a Pioneer2 AT system in the Catacombe di Priscilla in the underground of
Rome, see Figure 4.6. The robot was steered through the environment, incre-
mentally aligning the depth images from a Microsoft Kinect RGBD camera and
building the traversability map. Figure 4.7 illustrates a fraction of the traversabil-
ity map showing the traversable and non-traversable areas. This traversability

Figure 4.7: Fraction of the explored space of the Catacombe di Priscilla. This is a 2D traversabil-
ity map that resembles the same environment as shown in Figure 3.8.
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Figure 4.8: A staircase experienced during the mapping of a catacomb site that is not traversable
for the Pioneer robot. Left: RGB image from the Microsoft Kinect. The image is dark as the on-
board light was not powerful enough to appropriately illuminate the scene. Right: traversability
estimate.

Figure 4.9: A situation in which the ground level is flat and traversable but the height of the
platform prevents the robot from entering the niche. Left: RGB image from the Microsoft
Kinect. Right: traversability estimate.

Figure 4.10: Example of an outdoor scene on campus observed by a rough terrain robot. The
left image shows a photo and the right one shows the local traversability map (distorted). The
black region corresponds the area behind the obstacle that was not visible.
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map is generated from the same environment as shown in Figure 3.8. Figure 4.8
and 4.9 illustrate two selected places showing the RGB image from the Microsoft
Kinect and the local traversability map. Second, Figure 4.10 shows the results
obtained on campus outdoors on a cloudy day. As can be seen, the small rocks are
traversable for the outdoor platform but not the big rock and two steps. Finally,
the motivating example in Figure 4.1 illustrates a labeled depth image (without
the integration into a traversability map).

4.1.3.4 Limitations

We also experienced limitations of our system. There are situations in which
parts of the environment are traversable only if the robot steers in a specific
way, otherwise not. An example are track-like obstacles that are too tall to be
traversed from a side but are at the same time low enough to fit between the
wheels of the robot. Another example is a v-shaped valley in which the slopes
are traversable except a corner-shaped bottom, which is not non-traversable (it
is depended on the position of the wheels on the platform).

4.1.4 Related work
Estimating traversable areas is essential for most navigation tasks and thus has
been investigated intensively in the past. For example, Rasmussen [101] proposes
an approach to trail following for mobile cross country robots. The robot investi-
gates the local variance of depth measurements, structural texture, and contrast
to identify and follow a trail. The work closest to our approach is probably the
work of Renner et al. [103] that aims at estimating environment properties such
as positive obstacles, flexibility, shape, dimensions, slope, etc. using a camera and
a PMD depth sensor. Besides visual information such as texture, color, and vari-
ance in contrast, they also consider surface normals and steps to identify obstacles
and create a polar, robot-centric model based on which they navigate. Similar to
Renner et al., De Cubber et al. [23] address outdoor terrain traversability using
a PMD and a stereo camera. They estimate a ground plane and seek for pixels
that have a high probability of belonging to the ground plane. Then, they use
the color information of other pixels to classify all image pixels as traversable.

Other approaches perform a semantic scene analysis to support navigation [102,
121]. Ren et al. [102] propose an approach for indoor scenes using a Microsoft
Kinect. They compute a combination of color and depth features using kernel de-
scriptors and achieve a high labeling performance by combining Markov random
fields with segmentation trees.

Katramados et al. [63] present a real-time approach for traversable surface
detection using a monocular camera mounted on robot. Based on the currently
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assumed to be traversable location, the system searches similar areas in the image
given color and texture features. The approach of Maier et al. [77] combines
a monocular camera with sparse laser range data on a humanoid to identify
obstacles on the ground plane. They infer the traversability information based
on the vision data after learning a classifier from sparse laser information.

Terrain types have also been classified using vibration sensors [18, 134]. Here,
the vibration measurements are usually analyzed in the Fourier domain. Brooks
and Iagenemma [18] use a combination of PCA and LDA to classify terrain and
Weiss et al. [134] use SVMs. Vibration-based approaches typically offer highly
accurate classification results. The drawback of such methods, however, is that
only the terrain the robot is moving on can be classified and not the terrain in
front of the robot.

There exist approaches that apply self-supervised learning to classify terrain
and detect obstacles. A number of methods have been developed that exploit
local terrain knowledge to predict surface terrain in the far range. These near-
to-far approaches use color information [49, 53], 3D geometry information [79],
or texture information [2]. Self-supervised learning using laser and vision data is
also used by Dahlkamp et al. [25] in a vision-based road detection system. Finally,
traversability analysis is also the motivation for several approaches that aim at
detecting vegetation such as grass. They typically use laser remission values [137],
laser range data [56, 136], and also combinations with vision [17, 30].

4.1.5 Conclusion

Traversability information is important for autonomous mobile robots. This sec-
tion presents a system for estimating the local traversability for a mobile robot
based on RGBD images online. Our approach can process the depth data at
10 fps-25 fps on a standard laptop computer with an Intel i7 processor without a
GPU and allows for robustly identifying the areas in front of the sensor that are
safe for navigation. The component presented here is one of the building blocks
of the EU project ROVINA that aims at the exploration and digital preservation
of hazardous archaeological sites with mobile robots. As we showed in our ex-
perimental evaluation, our approach is able to reliably estimate the traversability
in different environments, ranging from the lab to outdoor scenes as well as in
a real, partially unexplored, and nearly 1700 year old Roman catacomb in the
underground of Rome.
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is the map 
consistent?

where to go?

Figure 4.11: The robot must analyze the environment and pick an exploration strategy to cover
it efficiently. If at any time of the exploration procedure the statistical map consistency tester
provides the robot with the information that the map along the chosen path is inconsistent the
robot starts rewinding the trajectory using our method.

4.2 Exploration
Exploration is the task of selecting view points so that a robot can cover the envi-
ronment with its sensors to build a map. The ability to robustly operate without
user intervention is an important capability for exploration robots, especially if
there are no means for communication between the robot and an operator. Most
robots exploring a new environment start assuming zero knowledge about this
environment and do not exploit any background knowledge about the particular
context they are in or about the typical environments in this domain. They build
a map of the environment online and make all navigation decisions based on this
map. As long as such a map is consistent, the robot can perform autonomous
navigation by planning the shortest path, for example using A*, from its current
location to its next vantage point using the map. Although recent SLAM systems
are fairly robust, there is a chance that they fail, for example, due to wrong data
associations generated by the front-end. Even current state-of-the-art SLAM ap-
proaches cannot guarantee the consistency of the resulting map. Computing a
path based on an inconsistent map, however, is likely to lead to a failure, and
possibly, to losing the robot if operating in a hazardous environment. Thus, ex-
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ploring robots should always decide where to go next, and at the same time verify
if their map is still consistent (see sketch in Figure 4.11). Considering existing
approaches, however, it is fair to say that most exploration systems follow the
paradigm that they (a) make their navigation and exploration decisions using the
current map only and (b) assume that the map is consistent and thus can be used
as the basis for path planning and navigation.

In this section we cover the typical frontier-based exploration method that we
implemented to work on our robot platform in Section 4.2.1, as well as adapt and
extend a method that utilizes the background knowledge about the environment
in order to explore it with less uncertainty and to aid loop closing performance.
This method is not the main contribution of this thesis, but it is a crucial building
block for a robust homing system that we present, and tightly integrate with the
exploration and navigation stacks of the robot, later in this section.

The key idea to our extension to the frontier-based exploration method, is to
relax the assumption that the robot performs exploration tasks with no knowledge
about the environment. Using the background knowledge about the environment
allows the robot to consider the information gained from previously conducted
exploration missions and use it to support the navigation system of the robot.
This is motivated by the fact that selecting appropriate target locations during
exploration supports the mapping process, and can increase the probability of
building a consistent map. The key idea is to use previously experienced envi-
ronments to reason about what to find in the unknown parts of the world. To
achieve this, we equip our robot with a database to store all acquired (local)
maps and exploit this knowledge when selecting target locations. Our research is
motivated by an exploration project for autonomously digitizing the Roman cata-
combs, which are complex underground environments with repetitive structures.
To predict possible geometries of the environment the robot may experience dur-
ing exploration, we exploit previously visited areas and consider the similarities
with the area around the currently planned next view point. This makes sense for
environments with repetitive structures such as catacombs but also holds for var-
ious indoor environments. Exploiting such structures allows the robot to actively
seek for loop-closures and in this way actively reduce its pose uncertainty. Our
experiments indicate that this approach is beneficiary for robots when comparing
it to a standard frontier-based exploration method.

4.2.1 Frontier-based exploration
As a baseline, we have implemented a classic frontier-based exploration technique
that loosely follows the approach of Yamauchi [140] with the difference that it
is based on the traversability maps shown in Figure 4.7. Yamauchi introduces
the concept of frontiers, which are the cells of an occupancy grid map at the
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boundary between the free and the unexplored space. In the standard setting,
this approach seeks to minimize the time that is needed to cover the environment
with the robot’s sensors and is a popular choice in mobile robotics. We analyze
the frontiers of explored map by finding all those cells of the traversability map
that have both traversable and unobserved neighbors. We pick the closest of
these candidates and plan a path towards it with A*. After carrying out this
path we repeat the process. Even though this method follows greedy logic it still
works well in practice.

A small example of a robot exploring catacomb-like environment can be seen
in Figure 4.12. Here the robot starts navigating the environment in the top left
image and different images in this figure show different stages of navigation. The
black dot with the white line shows the current position and the orientation of
the robot. Small white dots showcase the centers of the detected frontiers. We
detect the frontiers by overlaying a mask over the 8-neighborhood of a pixel in
the traversability map. The points in the map that have a minimum number of
neighbors with no traversability information are marked as frontier points. These
points are merged into unique frontiers by detecting the connected components
over the frontier points on the 8-neighborhood grid defined over the traversability
map. The blue circle shows the frontier that the robot has decided to explore on
each step. When deciding which frontier should be explored we take into account
the distance to a particular frontier and the cost of carrying out the route to
it. For example, a frontier behind the robot is down-weighted with respect to a
frontier in front of the robot as the robot must make fewer turns on the way to
the latter. The main reason for choosing this behavior over choosing the closes
frontier is that the odometry of the robot that drives on tracks is more stable and
reliable when the robot traverses a straight line than in turns.

When choosing the frontier to be explored we take into considerations these
factors:

1. if the frontier is reachable given the constraints of the robot;

2. how complicated it is to reach the frontier given the constraints of the robot
and the currently available map;

3. how much information do we gain from a frontier, i.e. how many frontier
points form a particular frontier;

4. if the particular frontier has already been visited before by the robot

All of these factors play a role in the choice of the frontier. The first criterium
is very intuitive and discards all the frontiers that the robot cannot reach. We
check the reachability of each frontier by planning a path on a 2D map of the
environment using the A* algorithm as described in Section 2.8. This map is
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Figure 4.12: A sequence of images that shows how the robot is choosing the best frontier for
exploration. The black circle depicts the robot, blue circle shows the currently picked frontier
and white points depict all detected frontiers. The robot starts in the situation depicted in the
top left corner of this figure. Every next image from left to right, top to bottom depicts the
state of the robot when reaching the frontier chosen on the previous step.

generated from the traversability map of the environment by extending the size
of all walls by the size of the robot. A valid path is the path that stays in the
traversable area of the map and reaches the center of the frontier starting from
the current position of the robot.

A frontier can be close to the robot, but would require a multitude of turns
on the way. Every turn the robot makes reduces its certainty about its position
and creates additional complications on the SLAM system that is running in the
background. The odometry of the robot with tracks is more precise when moving
on a straight line compared to doing turns. Therefore, when planning a route to
the frontiers, we compute the complexity of this route and use this score in our
selection algorithm.

The next criterium that we take into account is the potential information gain
of the frontier. A frontier that consists of more points that form it, potentially will
provide the robot with more information about the environment, when observed.
Therefore, we prioritize the frontiers based on their volume.

Lastly, we make sure we do not take into account the frontiers already ob-
served. Most of the times, when the robot reaches a particular frontier it would
observe a new part of the environment, thus, pushing the frontier further away
from itself. As an example of this we can look at the top-left and top-right images
in Figure 4.12. Initially, the frontier that the robot decided to explore was on
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the right of the map in the apex of the turn, however, after reaching that point,
the newly observed part of the environment removed that frontier and created a
new one in the start of the next turn of the environment. This behavior can be
observed most of the times with most frontiers. Some points in the map, however,
would always lie on the border with an unknown area. This happens if this area
in impossible for the robot to observe. This situation can happen if there is a gap
in the surface of the floor making the bottom of this hole unseen for the robot
given the position of its sensors. Such points will always form a frontier following
our definition of the frontier. To deal with this situation we assume that all the
frontiers within the sensor reach of the robot are marked as observed and do not
play a role in the further exploration procedure.

In the remainder of this section we present an extention to the frontier-based
exploration technique that takes into account background information that the
robot might have about the environment.

4.2.2 Robust exploration using background knowledge

Given the fact that most real robots maintain a probabilistic belief about their
pose and the map of the environment, an alternative approach is to select the
target location that is expected to minimize the uncertainty in the belief of the
robot. In this setting, the exploration problem can be formulated as follows. At
each time step ti, the robot has to decide, which action a to execute (where to
move next). During the execution of a, the robot obtains a sequence of observa-
tions z1:t at times 1..t that we will denote as Za for better readability. Thus, we
can define the expected information gain I(X,M ;Za), also called mutual infor-
mation, of selecting the action a as the expected change in entropy in the belief
about the robot’s poses X and the map M :

I(X,M ;Za) = H(M,X)−H(M,X | Za), (4.10)

where H stands for Shannon’s entropy [112], M for the currently available map
and X for the history of all poses of the robot.

The second term in Equation (4.10) is the conditional entropy and is defined
as

H(M,X | Za) =
∫
p(Z | a)H(M,X | Za = Z) dZ, (4.11)

where Za stands for the observations the robot would make should it carry out
action a and p(Z | a) is the probability of a particular observation sequence Z
given the action a has been taken by the robot.

Unfortunately, reasoning about all potential observation sequences Z in this
equation is intractable in nearly all real world applications since the number of
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potential measurements grows exponentially with the dimension of the measure-
ment space and with time. It is therefore crucial to approximate the integral
of Equation (4.11) so that it can be computed efficiently with sufficient accuracy.

A suitable approximation, however, depends on the environment model, the
sensor data, and the application so that no general one-fits-all solution is available.
Following the work of Stachniss et al. [118], we consider these types of actions:
First, exploration actions that guide the robot to the closest frontier and reduce
the map uncertainty. As we have no further information about the unseen area,
it is difficult to distinguish two frontiers with respect to the expected uncertainty
reduction. Second, loop-closing and re-localization actions, which are key to the
uncertainty reduction about the robot’s pose.

In this work, we aim at combining these types of actions into a single one. We
seek to predict what the so far unseen environment beyond a frontier may look
like based on background knowledge of previously seen environments and select
the frontier that potentially leads to a loop-closure. In this way, we maximize the
expected uncertainty reduction in the belief of the robot about the world.

4.2.2.1 Utility function for information-driven exploration

Most exploration systems define a utility function to relate the expected gain in
information with the cost of obtaining the information. As long as no constraints
such as available energy or similar are considered, the distance that the robot has
to travel to obtain its measurements is a standard choice. This yields a utility
function of the form

U(a) = I(M,Z;Za)− cost(a), (4.12)

so that the task of selecting the best action can be formulated as

a∗ = argmax
a

(I(M,Z;Za)− cost(a)). (4.13)

Throughout this work, we define the cost function cost(a) as the path length
corresponding to action a, i.e., the length of the trajectory from the current
location of the robot to the designated target location.

As mentioned in the previous section, estimating the expected information
gain is challenging and computationally demanding and thus we use the following
approximation. We assume that actions can reduce the robot’s uncertainty about
the map by exploring unseen areas and/or can reduce its uncertainty about the
trajectory by closing a loop:

a∗ = argmax
a

(Imap(a) + Itraj(a)− cost(a)). (4.14)

As we do not know how large the unknown area and thus the number of
unknown grid cells behind a frontier is, we may argue that all frontiers yield the
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query

Figure 4.13: Example of the submap retrieval using FabMAP2. The left image shows the query
map, the other ones the best four matches from the database.

same expected information gain with respect to the map uncertainty. Thus, we
can simplify Equation (4.14) as long as we consider only exploration actions to
frontiers:

a∗ = argmax
a

(Itraj(a)− cost(a)) . (4.15)

The expected information gain about the trajectory Itraj(a) is mainly influenced
by loop closures. The more likely a loop closure can be obtained when executing
an exploration action a, the higher its expected gain. Thus, the remainder of this
section addresses the problem of predicting possible loop closures.

4.2.3 Predictive exploration
The key contribution here is to model the predictive belief describing what the
environment may look like in the unexplored areas. To compute this belief, the
robot exploits environment structures it has seen in the past—either in the envi-
ronment explored so far or even from previous missions. Our exploration system
uses this predictive belief to evaluate the frontiers as possible target locations for
the exploration. This allows us to select the frontiers that are likely to lead to a
loop-closure and thus to an active reduction of the uncertainty in the robot’s be-
lief. As we show during the experimental evaluation, this approach outperforms
the traditional frontier-based exploration system.

Here we present the predictive exploration method from the earlier publi-
cation by Perea-Ström et al. [96]. We believe the inclusion of this work here
aids understanding of the thesis as a whole and therefore Sections 4.2.3.1-4.2.4.1
should be read as a quote.

4.2.3.1 Querying for similar environment structures

The key idea of this approach is to look for similarities between the known areas
around a frontier and portions of previously mapped environments. Under the
assumption that environments are not random but expose certain structures and
that these structures tend to appear more than once, we can use the already
mapped areas in order to predict what the environment beyond the frontier may
look like.
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Figure 4.14: Illustration of the loop closures prediction. Left: So far explored map with the
frontier under consideration (blue circle). Middle: One map from the predictive belief (in red)
superimposed on the map explored so far. Right: Voronoi diagram used for the path search.

The first step is to look for portions of the already mapped environments that
are similar to the area around the frontier for which the prediction should be
performed. To do this, we incrementally build a database storing all local grid
maps that the robot experienced. To perform a similarity query, we compare our
local maps with the maps stored in the database. To avoid a large number of
expensive map-to-map comparisons to search for similar submaps, we rely on a
bag-of-words inspired approach, a technique that is frequently used in computer
vision to search for image similarities. More concretely, we apply FabMAP2 by
Cummins and Newman [24], an appearance-based approach we can use to effi-
ciently query our database. Although FabMAP2 was originally designed to match
camera images, it turns out that we can also use it to effectively search for local
grid maps in a large database of maps. As FabMAP2 also provides a likelihood
l(m) for each match m, we can obtain a belief about possible environment struc-
tures. Figure 4.13 shows an illustration of this procedure. The image on the
left is a query image and the other images are the top 4 matches reported by
FabMAP2.

4.2.3.2 Loop closures prediction

As we are mainly interested in the possible paths through the unknown environ-
ment in order to find loop closures and not necessarily the exact geometry, we
reduce the maps reported by FabMAP2 to extended Voronoi graphs [5] and do
all further computations on these graphs.

FabMAP2 provides us with candidates of matching maps but no geometric
alignment between the query map and the reported ones. Thus, we align each
map reported by FabMAP2 with our query map. This can be done in a robust
manner through a RANSAC-based alignment of the Voronoi graphs using its
junction points. Figure 4.14 shows an example of a Voronoi graph aligned with
the map explored so far.

The next step, is to search for possible loop closures, for which we use the
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Figure 4.15: Illustration of the active loop closing. Left: prediction of the possible path with
the loop closure shown in blue. Middle: the robot explores the path along the predicted loop
closure and perceives the actual structure of the scene. The graph in the already explored
environment shows the pose graph of the SLAM system. Right: successful loop closure Please
note that the predicted environment is actually not identical with the real environment but
reveals a similar structure. This similarity resulted in the shown loop closure.

extended Voronoi graph. Starting from the frontier point, we traverse the Voronoi
graph in a breadth-first manner. During the traversal, we check if the Voronoi
graph leads to a position that is close to any other frontier in the map built so
far. If this is the case, we regard that as a possible loop closure. Such a situation
is illustrated in the left image of Figure 4.15. This process is executed for each
frontier.

4.2.3.3 Estimating the probability of closing a loop

Each map reported by FabMAP2 comes with a likelihood. Thus, we can ap-
proximate the probability of closing a loop when executing an exploration action
as

Sf =
∑

m∈M(f)

l(m)
∑

c∈C(f,m)

l(c | m) (4.16)

Here, M(f) is the set of matches returned by FabMAP2 when querying with the
frontier f , and l(m) the likelihood of a match m. The term C(f,m) refers to
the set of possible loop closures computed according to the breadth-first traversal
explained above and l(c | m) is the likelihood that the loop closures can be
reached. We assume that l(c | m) is proportional to the inverse length of the
path of the predicted loop closure. This means that short loop closures are more
likely than long ones.

Assuming that every executed loop closure through unknown areas of the
map yields the same expected uncertainty reduction, we can approximate the
expected information gain Itraj of Equation (4.15) with the score Sf according
to Equation (4.16). This is clearly a strong assumption but we argue that a high
score indicates a high expected gain from exploring the frontier.
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Robot failed to 
continue
the exploration 
task

Robot failed to continue
the exploration task

Figure 4.16: Two performance comparisons in constant odometry bias scenario. Left: the
original map. Middle: the closest frontier approach. Right: our prediction-based approach.
Note that the nearest frontier approach produces a map that is not consistent with the original
one, so that the robot can not continue the exploration task. The map produced by the
prediction-based approach is instead consistent with the original one.

4.2.4 Predictive exploration experiments

We compare our predictive exploration approach to the frontier-based exploration
approach described in Section 4.2.1 as a baseline and show that our approach se-
lects frontiers that lead to loop closures which in turn result in improved maps of
the environment. The underlying mapping framework for all exploration exper-
iments is a state-of-the-art graph-based SLAM system that uses scan matching
for incremental alignments and loop closures.

4.2.4.1 Map comparisons

In this section we show that our system outperforms the frontier-based one in
terms of the resulting map quality. Figure 4.16 illustrates the obtained results
for two environments using exactly the same mapping system and identical pa-
rameters for the comparison. The map database used for predictions consists of
maps constructed from other catacomb sites representing a similar type of envi-
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Figure 4.17: Mean and standard deviation of the distances traveled in the frontier-based ap-
proach and in the proposed approach.

ronment but not the same one. The images on the left are the “ground truth”
maps obtained from manual surveys. The images in the middle correspond to the
results of the frontier-based exploration, while the images on the right show our
approach. Our approach yields a consistent model of the environment, while the
frontier-based approach fails as can be seen from the inconsistencies shown by the
blue arrows in the figure. Using the frontier-based approach, the robot was unable
to continue its exploration task due to an inconsistent map that prevented the
computation of further exploration actions. We performed similar experiments
in different nested tunnel environments and obtained comparable results.

The exploration task strongly benefits from achieving loop closures early,
avoiding a high uncertainty in the pose-graph. Our approach improves the
amount of loop closures whenever the current environment resembles previously
seen maps, either in previous or current explorations runs. Thus, a new environ-
ment with recurrent structures also benefits from this approach.

In case there is no similarity between the current environment and the maps
stored in the database, no map should be retrieved and thus the system falls back
to the frontier-based exploration.

The execution time of our approach depends on the number of unexplored
frontiers, as well as on the map size and resolution. On a standard computer
and a map size of 150m by 100m with a grid resolution of 4 cm, next view point
selection time ranged from 131ms up to 4.8 s in the most complex situation.
In practice, time consumed by the robot reaching the next view point usually
dominates over the time consumed by the selection task.

4.2.4.2 Exploration path length

The advantages of the prediction-based approach come at a cost—the cost of
traversing exploration paths that are longer than the ones generated by the
frontier-based approach. This experiment is designed to evaluate the increase
in path length. As we are not able to obtain consistent maps for the frontier-
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based approach under a realistic noise model for the task under consideration,
we executed this evaluation under zero noise assumption in the simulator. Using
a zero noise odometry, also the frontier-based system is able to build consistent
maps. In this setting there is no advantage in using our predictive approach as
the pose uncertainty is zero and no uncertainty reduction is gained from closing
loops. We compared the distances traveled for the frontier-based and our ap-
proach. The distances traveled are summarized in Figure 4.17. In the worst-case
scenario, the path generated by our approach was 1.85 times longer than the one
of the frontier-based approach. The minimum increase was a factor of 1.5. Gen-
erating on average a 1.7 times longer trajectory is clearly an overhead paid for
actively closing loops and in this way reducing uncertainty, however, this price
must be paid.

4.2.5 Related work
The majority of techniques for mobile robot exploration focus on generating
motion commands that minimize the time needed to cover the whole terrain.
Several techniques also assume that an accurate position estimate is available
during exploration [70, 140]. Whaite and Ferrie [135] present an approach that
uses the entropy to measure the uncertainty in the geometry of objects that are
scanned with a laser range sensor. Similar techniques have been applied to mo-
bile robots [117, 104], but such approaches still assume to know the correct pose
of the vehicle. Such approaches take the map but not the pose uncertainty into
account when selecting the next vantage point. There are, however, exploration
approaches that have been shown to be robust against uncertainties in the pose
estimates [33, 69].

Besides the idea of navigating to the next frontier [140], techniques based
on stochastic differential equations for goal-directed exploration have been pro-
posed by Shen et al. [113]. Similar to that, constrained partial differential equa-
tions that provide a scalar field into unknown areas have been presented by
Shade et al. [111]. An information-theoretic formulation that seeks to minimize
the uncertainty in the belief about the map and the trajectory of the robot has
been proposed by Stachniss et al. [118]. This approach builds upon the works
of Makarenko et al. [78] and Bourgault et al. [15]. Both extract landmarks out
of laser range scans and use an Extended Kalman Filter to solve the underlying
SLAM problem. They furthermore introduce a utility function which trades-
off the cost of exploring new terrain with the potential reduction of uncertainty
by measuring at selected positions. A similar technique has been presented by
Sim et al. [114], who consider actions to guide the robot back to a known place
in order to reduce the pose uncertainty of the vehicle. Such information-driven
techniques have also been used for perception selection to limit the complexity of
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the underlying optimization problems in SLAM [73].
In general, the computation of the expected entropy reductions is a complex

problem, see Krause and Guestrin [72], and in all real world systems, approxi-
mations are needed. Suitable approximations often depend on the environment
model, the sensor data, and the application. In some cases, efficient approx-
imations can be found, for example in the context of monitoring lakes using
autonomous boats [59].

Other approaches, especially in the context of autonomous micro aerial vehi-
cles (MAVs), seek to estimate the expected feature density in the environment in
order to plan a path through areas that support the helicopter localization [105].
This can be seen as related to information-theoretic approaches, although Sa-
dat et al. [105] do not formulate their approach in this framework. A number of
approaches related to MAV exploration seek to select new vantage points dur-
ing exploration, so that the expected number of visible features and thus the
information gain is maximized, see Mostegel et al. [85] and Palazzolo et al. [95].

An interesting approach by Fox et al. [39] aims at incorporating knowledge
about other environments into a cooperative mapping and exploration system
for multiple robots. This allows for predicting simplified laser scans of an un-
known environment. This idea was an inspiration for our paper for predicting
possible loop closures given the environment structure explored so far. We use
this approach for exploring ancient catacombs, which are repetitive underground
environments, with a mobile platform, see Figure 4.11. Chang et al. [21] propose
an approach for predicting the environment using repetitive structures for SLAM.
Other background knowledge about the environment, for example semantic infor-
mation [121], can support the exploration process as shown by Wurm et al. [138],
Stachniss et al. [120] as well as Holz et al. [60]. In addition to this, if a topo-metric
graph of the environment is known a-priori methods can use it as additional in-
formation. Oßwald et al. [92] makes use of this information to significantly reduce
the exploration time with respect to the standard frontier-based approach.

4.2.6 Conclusion
In this section, we presented an approach for robust and reliable autonomous
exploration that uses the previously-acquired knowledge about the environment.
This approach ensures that the loop closures are part of the exploration utility
function, thus improving the robot localizability. The work presented here is
based on a conference publication [124], which described the idea of predictive
exploration. While the exploration technique is not the main contribution of this
thesis, building on top of this work, we integrate it into our system and tightly
couple it with the robust homing method presented in Section 4.3 and in the
related journal article [96].
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4.3 Robust homing
The ability to robustly operate without user intervention is an important capa-
bility for exploration robots, especially if there are no means for communication
between the robot and an operator. In the previous section we have introduced
a method for exploration that actively closes the loops, thus, making the map
estimation process more robust. However, even despite our best effort to navi-
gate the robot in a way to maintain a consistent map, state estimation processes
in the robot’s navigation system may still fail, and there is no guarantee that
they will operate flawlessly throughout the time the robot navigates. Thus, it is
of great importance to design a system that enables the robot to navigate back
to its starting position without the risk of getting lost, even if a component as
central as the mapping system fails. This is the challenge that we address in this
section.

Our work is motivated by the autonomous exploration robot depicted in Fig-
ure 4.11. It is used to explore difficult-to-access underground environments such
as ancient Roman catacombs. As no communication between the robot and an
operator is possible most of the time, the platform has to be truly autonomous.
During the course of an exploration task, as described in Section 4.2, the robot
constructs a map of the environment via a graph-based SLAM system. As long
as this map is consistent, the robot can perform autonomous navigation by plan-
ning the shortest path—for example using A*—from its current location to its
starting point using the map. Although modern SLAM systems are fairly robust,
they may still fail, for example, due to wrong data associations generated by the
SLAM front-end. Even current state-of-the-art SLAM system cannot guarantee
the consistency of the resulting map, nor do they provide robust means to decide
whether the constructed map is consistent or not. Computing a path based on
an inconsistent map, however, is likely to lead to a failure and a possibility of
losing the robot if operating in a hazardous environment.

To avoid that the robot gets lost, we propose a novel robust homing system
consisting of two distinct parts. The first part performs a statistical analysis of
the map and thus provides information about its consistency. We build upon
the work of Mazuran et al. [80] for performing a cascade of pair-wise consistency
checks using observations perceived from the same areas with a high-precision
2D LiDAR. We adapt this method to RGBD sensors and extend it to avoid
performing such checks on the overall map by reducing the area that must be
analyzed. We plan the shortest homing route for the robot assuming a consistent
map and analyze the map consistency only along that path. This allows us to
estimate online if the map around this path is consistent with a given confidence
level. The second part of our approach is responsible for driving the robot back
to its starting location by rewinding the trajectory that the robot took to reach
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its current pose. This operation is performed without any map knowledge (as
the map is inconsistent). If the motions of the robot were perfect, i.e., if they
would lead exactly to the desired robot pose in the world frame, we would be able
to simply invert the motion commands performed by the robot and could safely
reach the starting location. Both, motion execution and odometry, however, are
often noisy and can generate erroneous estimates. As a result, simply following
inverse motion commands will not bring the robot to the starting location in the
real world. Therefore, we take into account the sensor information to guide the
robot back by matching the observations with the ones taken in the past.

4.3.1 Robust homing using map consistency checks
Under the assumption of map consistency, homing can be solved with existing
tools. This can be done by computing a collision-free path from the current to
the starting location and executing this path with a standard navigation pipeline.
Such a navigation system would, for instance, localize the robot in the map built
so far and plan the shortest path towards home using A* or a similar approach.
If the map, however, is not consistent due to a failure in the underlying SLAM
system, this approach is likely to lead to a deadlock situation from which the
robot cannot escape easily.

We address the problem of robust homing in a two-stage approach. First,
we plan a path from the current location under the assumption of a consistent
map. Then, we apply a map consistency estimation to evaluate if the map along
the planned path is consistent with a given confidence. In the second stage,
we navigate the robot back home. If the planned path is consistent, we simply
execute this plan. Otherwise, we aim at reversing the trajectory that the robot
has executed so far by aligning the current observation with the observations
obtained on the way from the starting location to the current one to return the
robot safely to its starting position. As we show in this section, this yields a
robust strategy to bring a robot back to its starting location.

Here, we first introduce the consistency check taken from an earlier work by
Mazuran et al. [80] in Sections 4.3.1.1-4.3.1.3. These sections should be therefore
read as a quote and we include them here to aid understanding of the big picture
depicted in this thesis. This approach has been originally proposed for 2D LiDARs
and in Section 4.3.2 we focus on adaptations made to this approach to be used
in our setup with a 3D depth sensor.

4.3.1.1 Pairwise inconsistency measure

Let S1 and S2 be two laser scans, taken from two different poses expressed in
global coordinates. The key part of this method is to compute a polygon spanning

84



CHAPTER 4. NAVIGATION IN STATIC ENVIRONMENTS

Figure 4.18: Example showing sample occlusions by Si by Sj using the method of Mazuran
et al. [80]. The set of green and black line segments compose the polylines of Si and Sj , while
the shaded green area represents the visibility polygon of Si. The lengths of the dotted red
lines represent the sample occlusions of Si by Sj , for all obstacle vertices of Sj falling into the
visibility polygon of Si. Image courtesy of Mazuran et al. [80].

over its end points and the position of the robot. Each polygon describes the free
space that is covered by the scan. The intuition is that S1 and S2 are considered to
be consistent with each other if none of the end points of S1 lies inside the polygon
of S2 and vice versa. We call the points of S1 lying inside S2 the inconsistent
points of S1 w.r.t. S2.

The measure we derive from this intuition computes the sum of the distances
of each inconsistent point of the first scan to the boundary of the polygon sur-
rounding the second scan and vice versa. Let V i be the set of points defining the
visibility polygon of Si and pki its k-th end point. We define the inconsistency
distance di(p) for a point p as:

di(p) =

dist(p,V i) if p inside V i

0 otherwise
(4.17)

where dist(p,V) is the Euclidean distance of a point p to the closest point on
the polygon boundary V . By summing over all the end points of the scans, we
obtain the pairwise inconsistency measure

Mij =
∑
k

di(pkj ) +
∑
k

dj(pki ). (4.18)

See Fig. 4.18 for an example. In the remainder of this section, we refer to the
total number of inconsistent points in Si w.r.t. Sj and in Sj w.r.t. Si as nij. A
naïve implementation computes Mij in O(K2), where K is the number of end
points.
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4.3.1.2 Hypothesis test for pairs of scans

Under the assumption of a correct alignment of two scans Si and Sj, we expect
that on average 50% of the end points in Si are inconsistent points of Sj and vice
versa. This is due to the inherent sensor noise in the laser measurements.

If Si and Sj are obtained from the exact same pose and the laser range
values are normally distributed, the inconsistency distances are half-normally
distributed, with the scale parameter s2 given by twice the range variance of
the sensor. The half-normal distribution is the distribution of Y = |X|, with
X ∼ N (0, s2).

We further assume that the inconsistencies are i.i.d. random variables with
finite mean µ and variance σ2. In the case of the half-normal distribution, we
have

µ = s

√
2

π
σ2 = s2

(
1− 2

π

)
. (4.19)

According to the central limit theorem, Mij follows

Mij − µnij
σ
√
nij

∼
nij→∞

N (0, 1). (4.20)

The former can be generalized to situations in which the random variable fol-
lows different distributions, as long as they are independent and they satisfy
Lindeberg’s condition [3]. In this case, the limit of the mean is still normally
distributed.

As a result of that, we can conduct a hypothesis test if nij is sufficiently large
and µ and σ2 are known. The hypothesis test allows us to determine whether
Mij ∼ N (µnij, σ

2nij). It requires a one-sided test, as only large Mij values are
relevant; a low Mij value only implies that larger deviations from the perfect map
assumption are accepted.

Based on N laser scans, we can build a N×N symmetric matrix Ψ containing
standardized Mij values:

Ψ = [Ψij] =

[
Mij − µnij
σ
√
nij

]
1≤i≤N
1≤j≤N

. (4.21)

Here, the sparsity of this matix depends on the amount of overlap between laser
scans.

Given Ψ, we can infer whether two scans Si and Sj are consistent with con-
fidence 1− α by verifying the inequality:

Ψij ≤ F−1(1− α), (4.22)

where F−1(p) is the inverse CDF of the normal distribution.
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By adopting a bounding box test and assuming that the pairwise measure of
compatibility is determined in O(K2) complexity, Ψ can be computed in O(N2+

NRK2), where R denotes the average number of laser scans a scan overlaps with
respect to the bounding box and K is the number of laser beams per scan.

4.3.1.3 One-vs-all consistency test for scans

We conduct the above-described test for all pairs of scans and consider a map to
be consistent if all tests are successful. The problem, however, is that a single
statistical test will produce the wrong result with probability α. Thus, testing
a single scan that overlaps with r other scans yields a type I error probability
of 1 − (1 − α)r. This renders the direct application of the pairwise approach
unsuitable.

To overcome this issue, we represent the outcome of a pairwise hypothesis
test as a Bernoulli-distributed random variable with parameter α. Thus, the
number of failed tests follows a binomial distribution with parameters α and r.
Given that, we can compute the maximum number ξ̂ of tests that can fail for a
confidence level 1− α′ as:

ξ̂ = min
0≤ξ≤r

{
ξ

∣∣∣∣∣
r∑

i=ξ+1

(
r

i

)
αi(1− α)r−i ≤ α′

}
. (4.23)

This allows for computing a cascaded hypothesis test for the consistency of
a scan with respect to all scans it overlaps with. We first perform all pairwise
hypothesis tests. Then, if the number of failed tests is smaller than ξ̂, the overall
consistency test is positive.

4.3.2 Adapting consistency check to RGBD data
The approach of Mazuran et al. [80] has been initially formulated for high-
precision 2D laser scans. There are two different ways of how this method can
be applied in our setting. It can either be extended towards 3D data by sub-
stituting the polygons with triangulations of the full Kinect-generated 3D scan
or, alternatively, the 3D scans can be reduced to a 2D scan and analyzed in a
similar way to the original approach. We argue that there is no need for the more
complex 3D-based approach1 as the robot is a track-based platform that is—at
least locally—operating roughly on a plane. We found that the 2D solution is
well suited for the task at hand, at least for our type of environments.

On our robot, each 3D point cloud is created by combining the point clouds
generated by two Asus Xtion cameras, see Figure 4.19. For every local 3D point

1We refer only to the consistency check and not to the SLAM system, which takes into
account all six degrees of freedom.
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Figure 4.19: An example of the point cloud from the double Asus Xtion system we use to log
data in the Priscilla catacomb. The red line shows the “scan” line to generate the simulated 2D
scan from 3D point cloud. We discretize all the points within the red line into bins according
to their horizontal dispersion from the camera viewing direction shown here as a floating red
arrow.

[x y z]⊤ that is within a small margin from the height of the scan line illustrated
by the red stripe in the image, we compute its bearing from the center of the
robot (red arrow in the figure). The relative bearing can directly be computed
through α = atan2(y, x) and the virtual range reading by the Euclidean distance
from the robot’s center to (x, y). For our setup, this results in an approximate
field of view of [−π/4, π/4]. Such virtual range scans are used for the statistical
consistency check described above. A map combined from the scans generated
in this manner can be seen in the Figure 4.20. In order to account for much
lower precision of the RGBD cameras with respect to 2D LiDARs we adapt the
scale parameter s2 that depends on the range variance of the sensor. All the
decisions about map consistency are carried out on a 2D map constructed from
these virtual scans.

4.3.3 Map consistency estimate for the way to home

Given the consistency test presented above, we can perform a mathematically
sound statistical test to evaluate if a map is consistent or not. However, what
the robot really needs to know is not the consistency of the full map. Instead, it
is sufficient to know if it can safely move along a specific path through the envi-
ronment to the start location. Thus, we plan a path with A* assuming that the
current map is consistent and extend the statistical consistency check to consider
only the scans along that path. To achieve this, we select all recorded locations
that were closer than twice the maximum sensor range away from the trajectory
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Figure 4.20: Top: a map built so far with the detected inconsistencies (inconsistent scans are
shown in red). Middle: image shows a submap that is built using only the scans recorded
around the A* path from A to B computed in the full map. In this example, no inconsistencies
are present and none are detected. Bottom: image is constructed in the same way as the middle
one, but the A* path is computed from C to D and here, the map inconsistencies are correctly
detected.
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planned with A*. Examples of such partial maps can be found in Figure 4.20.
The top image shows an inconsistent 2D map of the Priscilla catacomb. Directly
applying the approach explained in Section 4.3.1 would label the whole map as
inconsistent. In contrast to that, if the robot only takes into account the shortest
route from A to B, it can still safely perform the navigation task, as shown in
the middle image of the same figure. This is not the case if the robot wants to
go from C to D as it will encounter an inconsistent part of the map on its way.

4.3.4 Homing by rewinding the trajectory
Once the consistency check has identified that the submap including the current
path is inconsistent, we need to perform the trajectory rewinding to bring the
robot home safely. We can view the robot’s forward trajectory as a series of poses
of the robot P = {p0, . . . ,pn}, where pi = [xi yi θi]

⊤. The trajectory is expressed
as a sequence of 2D positions (xi, yi) and orientations θi as we can only steer the
robot on a ground plane. The task of rewinding the trajectory is to drive the
robot from pn to p0 backwards. This, however, requires us to correct the error
in odometry. We do this correction by aligning the sequence of point clouds that
the robot perceives with the ones taken before (corresponding to pn, . . . ,p0). We
subsample the trajectory in such a way that each pose in P is either 1m away
from the previous one or that there is a rotation of at least 10◦ between two poses.

Without loss of generality, we consider that the robot has to carry out an
action to move from pi to pj and at the same time to compensate for the error
in odometry. To do so, at each time step t, the robot exploits the point cloud Ct
obtained after executing the movement from pi to pj. In an ideal scenario, the
command should have brought the robot to the pose pj. In reality, there is an
error caused by slippage, uneven ground, etc. Thus, we align current cloud Ct with
the expected one, i.e. the previously stored during the forward pass cloud Cj. To
achieve that, we can use any ICP algorithm, for example the approach presented
in Section 3.1. However, this method has not been developed at the time of
implementation of this part of our work and NICP [109] has been used instead to
find the discrepancy between the point cloud that the robot expects to perceive
and the one that it actually perceives. The NICP method extends the point-to-
plane error metric proposed in Generalized ICP [107] by accounting not only for
the metric distance between the points but also the curvature of the underlying
surface. The transformation between the point clouds provided by the matching
algorithm is an SE(3) transformation between the poses at which the two point
clouds Ct and Cj were taken. As our robot moves on the ground, we project the
poses onto the ground plane in order to obtain an SE(2) transformation. This
transformation is parameterized by �p = [∆x ∆y ∆θ]⊤. The coordinates ∆x and
∆y are the coordinates of the point cloud Ct expressed in the local coordinate
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frame defined by the position where the robot expects to arrive. Knowing the
pose pj and the local position of Ct enables us to compute the current position
of the robot in the global odometry frame.

In addition to a 2D pose, we find the orientation of the robot θt as a sum of
θj and ∆θ normalized to (−π, π]. We use this new pose to generate a motion
command to reach the next pose from the recorded trajectory. We continue this
process until the robot is within dmax = 1m from the starting pose p0.

4.3.5 Scalability
The map consistency test requires each scan to be tested against all other scans in
its vicinity, therefore the number of checks grows with the length of the trajectory
under test. However, we only need to perform the consistency check when the
robot plans a new path, i.e., before the actual movement. Therefore it is safe to
spend even longer time for the consistency check should it be needed, although
our experiments in real-world catacombs show that doing a consistency check
along a planned path usually takes substantially less than a second.

The path rewinding homing procedure computations do not depend on the
length of the trajectory. At each moment only two point clouds need to reside in
memory and ICP is performed pairwise. The rest of the point clouds are stored
on a hard disk in a strict order and are loaded in a sequential order into memory
on demand.

4.3.6 Experiments
The evaluation is designed to illustrate the capabilities of our approach and to
support the claims made in this section. Our two main claims are that (i) the
map consistency check works on the virtual 2D scans and is able to evaluate
map consistency in an online fashion and (ii) we can rewind trajectories in case
of failures of the mapping system and yields a homing behavior not reliant on
a map. All experiments have been conducted on real world data and on a real
robot. All components are ROS nodes and operate on the notebook computer
installed on the robot, available as open-source software as part of the ROVINA
software suite.

The robot is controlled through an own navigation system that uses the
ROS communication infrastructure. Its SLAM system is a pose graph-based sys-
tem [47] that aligns the depth images from the cameras. The optimization is done
with g2o [48] and loop closure hypotheses are generated based on the similarity
of local maps stored in the nodes of the graph. The local maps are generated
by incrementally aligning the input data until a certain distance of orientation
change is accumulated. In this part any ICP algorithm can be used for incre-
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mental point cloud alignment for example the approach presented in Section 3.1.
However, this method has not been developed at the time of implementation of
this part of work and NICP [109] has been used instead.

In terms of the persistent data structure that is used to store all the informa-
tion, we use a generalization of a pose graph. Each node in the graph corresponds
to a pose of the robot at time t. In addition to that, each node stores the origi-
nal odometry pose pt and the corresponding 3D point cloud Ct from the RGBD
cameras. To efficiently handle this data structure even for large environments,
the pose graph with the nodes pt itself is kept in memory but the corresponding
point clouds Ct are stored on disk and are loaded on demand.

The data is gathered using a setup with two Asus Xtion RGBD cameras.
Both cameras point forward, one slightly rotated to the left and the other one to
the right with a minimal overlap in the middle. The robot computes the point
clouds and generates 2D scans from the point clouds for the consistency check as
described above.

First, Figure 4.20 illustrates an example of the statistical map consistency
check performed on the real data (virtual 2D scans from Kinect-generated point
clouds) from the Priscilla catacomb in Rome. The partial maps computed around
the shortest path are usually substantially smaller than the map of the whole
environment, especially if the environment has multiple alternative branches and
forms a complicated network of corridors or rooms. This is often the case in
catacombs or underground mines. Testing smaller maps results in a significant
speed-up of the statistical consistency evaluation procedure. The timings for
the maps presented in Figure 4.20 are as follows, top map: 2.93 s; middle map:
0.14 s; bottom map: 0.17 s. The maps in the figure contain, respectively, 1101,
137 and 164 different scans. The computational time depends on the number of
scans to analyze and the gain in speed grows with the reduction in size of the
tested map, and with the reduction of overlap between the scans. We performed
the map consistency test on 5 different maps recorded in real catacombs and
the consistency check always generated correct results. In sum, we prove that
it is feasible to test a map in less than 200ms, and therefore also to execute
the algorithm online. Furthermore, if needed, most of the computations can be
cached during navigation. This is the case when dealing with huge maps. In such
instances, the test would require a recomputation only if the SLAM back-end
changes the configuration of the pose graph substantially.

As a second step, we need a robust method to return the robot to the starting
location if the statistical consistency check claims the map to be inconsistent.
Thus, the next set of experiments is designed to backup our second claim, i.e.,
that our approach can robustly rewind trajectories yielding a homing behavior
that does not rely on a map. We evaluate the ability of our approach to rewind
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the trajectory by carrying out 20 experiments in our lab environment as well as
10 experiments in a catacomb-like, man-made cave in Niederzissen near Bonn.
The latter consists of long tunnels and several small room-like structures.

In Figures 4.21-4.24 we depict different tracks from our homing procedure.
The original odometry measurements from the forward path are drawn in black
(hardly visible as the red trajectory overlays it). The red line illustrates the
subsampled trajectory that the robot has selected as its sequence P for rewinding
the trajectory. Both trajectories overlay because the robot does not use any
map (it would be inconsistent) and relies solely on the observations and poses it
recorded on the forward path to navigate back. The blue line shows the poses
from P (poses on the red line) after the alignment by NICP, thus yielding an
estimate of the robot’s real position in the odometry frame.

One of the lab experiments is illustrated in Figure 4.21. Here, we steered the
robot on a trajectory through an obstacle parcour containing narrow passages
as well as areas with numerous flat walls. The robot activated the “trajectory
rewind” behavior after we manually introduced a fault in the SLAM system (by
adding incorrect constraints). Consequently, the robot followed the way in reverse
order using pair-wise point-cloud alignment with the NICP-based pose correction.
Three examples are illustrated in Figure 4.22.

We also executed the same system in the cave of Niederzissen, see Figure 4.23
and Figure 4.24. Here, the floor is covered with dust and dirt and it is quite
uneven, which causes substantial track slippage and a comparatively poor odom-
etry. Even under such conditions, the robot is able to rewind the trajectory as
illustrated in Figure 4.23. Again, we varied the trajectory 10 times, a second
longer experiment is shown in Figure 4.24 and we were always able to robustly
drive the robot back to the start location.

As can be seen from the close similarity between the rewinding and corrected
trajectories in Figures 4.21-4.24, our approach ensures that the robot is able to
accurately rewind its trajectory. The deviation of the rewinding trajectory (blue
line) from the original trajectory (black line) is approximately 5 cm to 7 cm in the
shown datasets and is largely caused by the imprecise motion command execution
and strong track slippage. The gray line depicts the pure odometry measurements
recorded while rewinding the trajectory. From the gray trajectory, we can see that
the matching of observations must be taken into account—otherwise, the robot
would deviate substantially from the reference path (and would collide with walls
and obstacles).

Overall, our evaluation illustrates that our robot is able to rewind its tra-
jectories through different environments. While rewinding the trajectory, the
robot moved backwards most of the time and thus it cannot observe obstacles on
the path before it fully passed them. Only by following the reference trajectory
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odometry forward
pure odometry backward

picked odometry destinations
corrected destination positions

Figure 4.21: Illustration of rewinding the trajectory through the office environment. The robot
is steered from the bottom “tail” of the depicted trajectory to the upper-right one. The black
line denotes the odometry poses saved while the robot is steered, gray denotes the odometry on
the way back, red shows the temporary destination poses picked from the odometry and blue
shows the same poses after the ICP correction. The pictures show several example locations
visited by the robot. These feature tight doors to rooms as well as feature-scarce corridors.
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odometry forward
backward odometry destinations

corrected positions

odometry forward
backward odometry destinations

corrected positions

odometry forward
pure odometry back

backward odometry destinations
corrected positions

Figure 4.22: Three experiments performed in different settings. The meaning of the lines is
the same as in Figure 4.21. The average deviation from the original trajectory is between
4 cm(topdataset)and6 cm (middle dataset).
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Figure 4.23: An experiment in a man-made cave in Niederzissen near Bonn that consists of long
tunnels and several small room-like structures. The narrow passages allow for approx. 10 cm
margin for fitting a robot. The schematic drawing (top image) shows the approximate robot
path drawn on top of a map. The bottom image shows the actual movement of the robot in the
odometry frame while being steered from “start” to “stop” (black lines) as well as the waypoints
the robot has chosen returning from “stop” to “start”. The blue lines show the positions of the
robot reported after ICP registration. The gray lines show pure odometry while performing
homing. As can be seen by the distance between the odometry readings while exploring and
while performing homing our method is essential for safe trajectory rewinding.
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Figure 4.24: Second experiment the cave as in Figure 4.23. The robot was steered from “start”
to “stop” and has performed homing autonomously from “stop” to “start”. In the left corner of
the top picture, the robot was steered forward and then backwards. It has repeated the same
path during the homing route as can be seen in the bottom of the second image. The length of
the trajectory in this experiment is approximately 70 meters.
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precisely, the robot can return. We illustrated here that even when there is a
substantial amount of track slippage on the ground, our method is still capable of
robustly handling corridor-like environments with multiple narrow passages such
as the doorways or narrow winding corridors.

In addition to the presented qualitative and quantitative evaluations, we have
tested and shown the performance of the robust homing system presented in
this section at multiple review meetings during the ROVINA project in the real
Roman catacombs, and have proven it capable of safely returning the robot back
to the starting position without relying on a consistent map.

4.3.7 Related work
A key problem in autonomous exploration, is that in case of a SLAM failure,
the map becomes inconsistent. This can prevent the robot from continuing its
exploration mission and—even worse—from being able to navigate back. It is
therefore important to be able to perform reliable navigation without relying
on a map. We are, however, not aware of any robotic navigation system that
monitors the map to detect a SLAM failures to trigger a homing action if the
map becomes inconsistent.

Rewinding a trajectory is related to teach-and-repeat navigation systems. One
of important outposts of teach-and-repeat is visual teach-and-repeat. Works of
Furgale et al. [40, 41], Nitsche et al. [90] and Ostafew et al. [93] show that this
approach is indeed suitable to steer a robot in complicated environments based
solely on visual sensors without relying on a consistent map. These visual meth-
ods, however, need substantial adaptation in order to be used in a setup similar
to ours: using monocular cameras to localize through feature detection relies
on having enough visual information, which ancient catacombs typically do not
possess.

Teach-and-repeat approaches have also been used in LiDAR-based settings.
Sprunk et al. [116] present an approach that relies on precise localization of the
robot based on LiDARmeasurements recorded during a trajectory demonstration.
Similarly, Furgale et al. [42] perform an ICP-based teach-and-repeat approach on
an autonomous robot equipped with a high precision 3D spinning LiDAR. They
extend the standard teach-and-repeat approach by adding a local motion planner
to account for dynamic changes in the environment. Our method to rewind the
trajectory is similar to the teach-and-repeat setup in this formulation. However,
in contrast to the mentioned methods, we use a substantially less accurate robot
and thus have to cope with somewhat larger deviation from the reference tra-
jectory. Further, we are rewinding a trajectory, not repeating it, and the sensor
suite also differs significantly: Sprunk et al. use a high-precision 2D SICK laser
range finder, which allows for accurate position correction. Furgale et al. also rely
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on a precise LiDAR sensor which is able to provide them with more information
than our RGBD camera setup, thus simplifying scene matching.

4.3.8 Conclusion
The ability to robustly operate without user intervention is an important capa-
bility for exploration robots and safely returning after the mission is a key re-
quirement in real-world settings. In this section, we presented a complete homing
system that addresses the problem of returning a robot operating in an unknown
environment to its starting position even if the underlying SLAM system fails.

Despite our best efforts in steering the robot with active loop closures in
mind, as shown in Section 4.2, there is still no system that can guarantee a con-
sistent map during the whole navigation procedure. Therefore, we have combined
a statistical map consistency test with a scan alignment approach to rewind a
previously taken trajectory in case the map constructed by the robot is broken.
The approach can be executed online on a notebook computer with two Asus
Xtion RGBD cameras recording 3D point cloud information. We implemented
our approach in ROS and executed it on a real autonomous robot designed to
explore and map hard-to-access underground environments. We evaluated the
consistency check in our lab environment as well as on real-world data acquired
in the Priscilla catacomb in Rome and in a cave in Nierderzissen near Bonn.
The evaluation suggests that our approach is well suited for homing in situations
in which the mapping system failed. We illustrated that our proposed method
can accurately rewind trajectories guiding the robot back to its starting location.
It does so in challenging real-world settings in which the robot has to navigate
through narrow passages and over uneven ground. In conjunction with the meth-
ods described in Section 4.2 our robust homing system is a valuable tool to allow
for safe autonomous exploration using a mobile robot.
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Towards dynamic environments
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Chapter 5

Detecting motion

Until this point in this thesis, we have focused on navigation and
perception in a static world, i.e., we assumed that no changes take
place in the environment surrounding the robot. This allows us to
simplify many parts of the navigation pipeline. For example, once we

have analyzed the current robot surroundings for traversability using the approach
presented in Section 4.1, the robot is safe to navigate in such an environment. If
we drop the assumption that the world is static this is not true anymore. What
is perceived as traversable in one moment can be occupied by a moving object in
the next one. This makes reasoning about the environment as well as selecting
actions for the robot in this environment more difficult.

The same holds for map building. If the world is static, the point clouds taken
from the same position should always match perfectly, up to the precision of the
used sensor. Likewise, if the robot is moving through such an environment and
is performing incremental matching to estimate its own pose, the discrepancy
between the consequent point clouds is caused exclusively by the ego-motion of
the robot. In the dynamic world, this discrepancy can be caused by the changing
environment, which might cause localization and mapping errors if the change is
substantial.

In reality, the environments often are not static. Therefore, there is a need for
methods that deal with the complexity that arises from the potential dynamic
objects populating the scene. There are different approaches to deal with that.
We believe that the first step towards safe navigation is to cluster the world
into meaningful objects. Although, the robot has no knowledge if the objects
can move or are static, the main purpose is to simplify the reasoning about the
surroundings in terms of separate objects. We present our novel approach for
efficient and robust clustering of such data in Section 5.1.

Once the objects are clustered, we can track them to determine if they are
part of the static environment or are moving objects. A common approach is
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to put bounding boxes around these objects and use a tracking approach such
as an extended Kalman filter to track their movement. In conjunction with the
ego-motion estimated through incremental scan matching, the objects can be
categorized into moving and static ones. With this information at hand, we can
ignore the moving objects to improve the scan matching procedure as well as
estimating the movement of the dynamic objects to aid the planning step.

Tracking objects is a well studied problem and not the focus of this thesis.
However, matching segmented objects based solely on the bounding boxes is error-
prone due to overlaps and occlusions, and we present an approach that helps
the robot to better match clustered objects. We propose a novel method for
matching point clouds that correspond to different objects in order to determine
if any particular object has to be tracked or is occluded in the next frame. The
core idea behind this method is to represent objects as their depth map. This
is possible because every object is part of a single depth image. The depth
map representation allows us to use additional information about every object,
such as the free space surrounding them, to improve matching. This free space
information can be exploited in the matching step to produce a single probabilistic
measure of how well the individual objects match. We present this approach in
detail in Section 5.2. Our measure is fast to compute and makes it easier to
determine if any two point clouds representing objects should be thought of as a
single object or not.

In the remainder of this chapter we present our method for robust ground
detection from LiDAR scans, along with our fast clustering method to separate
a scene into meaningful objects in Section 5.1, and a robust measure that can be
used as a validation step on top of any ICP algorithm, while tracking objects in
the vicinity of the robot in Section 5.2.

5.1 Ground estimation and scene clustering
Image segmentation in RGB and multi-spectral data is a common problem in pho-
togrammetric image analysis, computer vision, and remote sensing. Separating
individual objects in 3D laser range data is also an important task for autonomous
navigation of mobile robots or instrumented cars. An autonomous vehicle that
is navigating in an unknown environment faces the complicated task of reason-
ing about its surroundings, see [45, 55, 58, 74, 122, 127, 130, 138]. There might
be objects that constrain the possible actions of the robot or that may interfere
with the robot’s own plans. Thus, the interpretation of the robot’s surroundings
is key for robust operation and is probably one of the most complex problems
in building autonomous vehicles today. While some approaches focus on finding
specific objects in a dynamic scene [52, 75, 81], most perception pipelines per-
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Figure 5.1: Left: Segmentation of objects such as people, cars, and trees generated from sparse
3D range data recorded with Velodyne VLP-16 scanner. Colors correspond to different seg-
ments. Right: Clearpath Husky robot used for the experiments driving at the University of
Bonn campus.

form a segmentation of the environment into individual objects before a further
interpretation is performed. Therefore, there is the need for an efficient online
segmentation approach for 3D range data as this allows the robot to directly react
to individual objects in its surroundings. This segmentation must be available in
real time, as the system needs to reason about what it sees at the moment when
the data become available in order to react appropriately.

Object segmentation from raw sensor data is especially relevant when oper-
ating in dynamic environments. In busy streets with cars and pedestrians, for
example, the maps can be influenced by wrong data associations caused by the
dynamic nature of the environment. A key step to enable a better reasoning
about such objects and to potentially neglect dynamic objects during scan reg-
istration and mapping is the segmentation of the 3D range data into different
objects so that they can be tracked separately [27].

Besides rather expensive terrestrial laser scanners, there are also less accurate
and cheaper scanners targeted at mobile robotics applications. One example is the
16-beam LiDAR by Velodyne, which is becoming increasingly popular and can be
installed on relatively low-cost platforms. If we compare the data provided by the
16-beam LiDAR with those provided by the 64-beam variant or even terrestrial
scanners, we observe a substantial drop in the vertical angular resolution, i.e., the
16-beam LiDAR has a vertical angular resolution of 2 degrees. This poses several
challenges to a segmentation algorithm operating on such 3D data. Sparser point
clouds lead to an increase in Euclidean distance between neighboring 3D points,
even if they stem from the same object. Thus, such sparse 3D points render
it more difficult to reason about segments. The situation becomes even more
complex with the increase in distance between the object and the sensor.
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The contribution outlined in this section is a fast and effective method for
separating ground from the rest of the scene and a fast and effective segmentation
approach for 3D range data obtained from modern laser range finders such as
Velodyne scanners. To achieve the final segmentation, we first perform robust
ground separation, which can detect the surface the robot is operating on in a
fast and reliable manner. In contrast to several other approaches, the ground can
have slight curvature and does not necessarily have to be entirely flat. We also
do not use any kind of sub-sampling and decide for each pixel of the range image
whether it belongs to ground or not. An example of our segmentation with ground
removed is depicted in Figure 5.1, where people and cars are correctly segmented
using data from a Velodyne VLP-16 scanner.

Our segmentation method provides meaningful segmentations and runs mul-
tiple times faster than the acquisition of the scan. Even on a mobile CPU, we
can process the scans of a Velodyne with over 70Hz (64 beam scanner) or 250Hz
(16 beam scanner) and thus faster than the scans are acquired by the sensor,
which acquired data at 10Hz. We achieve this by performing all computations
on a cylindrical range image. This method is advantageous, as the range image
is often small, dense, and maintains the neighborhood information implicitly.
Moreover, our approach is suited for scanners that provide comparably sparse
point clouds as these clouds can still be represented as a dense range image. In
addition to that, we made our approach available as open source software at:

https://github.com/PRBonn/depth_clustering

5.1.1 Range image based ground removal
Before performing object segmentation, we remove the ground from the scan. A
standard approach to ground removal simply discards all 3D points that are lower
than the vehicle (assuming we know where the sensor has been mounted on the
mobile base/robot). While this approach may work in simple scenes, it fails if
the vehicle’s pitch or roll angle is unequal to zero or if the ground is not a perfect
plane. Using RANSAC-based plane fitting improves the situation but even using
this strategy, non-zero curvatures remain a challenge, and the operation can be
time consuming. Thus, we take a different approach.

Most laser range scanners provide raw data in the form of individual range
readings per laser beam with a time stamp and an orientation of the beam. This
allows us to directly convert the data into a range image. The number of rows
in the image is defined by the number of beams in the vertical direction, i.e.,
16, 32 or 64 for the Velodyne scanners. The number of columns is given by the
number of range readings per 360◦ revolution of the laser. Each pixel of such
a virtual image stores the measured distance from the sensor to the object. To
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Figure 5.2: Top: An illustration of α angle. A Velodyne LiDAR on the left of this picture shoots
two beams that form a triangle with the angle that we are interested in. Middle: Three images
representing the depth, i.e. part of the original range image generated from data acquired from
a Velodyne, computed α angles and the same angles after applying Savitsky-Golay smoothing
to them. Bottom: illustration of the smoothing for a column of α angles as marked in the left
image.
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speed up computations, one may even consider to combine multiple readings in
the horizontal direction into one pixel if needed.

In our implementation, we use range images and construct them directly from
the raw measurements of the laser scanner, not computing the 3D point cloud.
In case, however, a different laser scanner or a different device driver is used that
only provides a 3D point cloud per revolution and not the individual range mea-
surements, one can project the 3D point cloud onto a cylindrical image, compute
the Euclidean distance per pixel, and proceed with our approach. This will in-
crease the computational demands by approximately a factor of 2 for the whole
approach, but still allows for a comparably fast segmentation.

For identifying the ground plane, we make three assumptions. First, we as-
sume that the sensor is mounted roughly horizontally on the mobile base/robot.
Second, we assume that the curvature of the ground is low. Third, we assume
that the robot observes the ground plane at least in some pixels of the lowest row
of the range image (corresponding to the laser beam scans hitting the ground
close to the robot).

With these assumptions in place we start by turning each column c of the
range image I into a stack of angles αrr−1,c, where each of these angles represents
the angle of inclination of a line connecting two points A and B derived from two
range readings Ir−1,c and Ir,c in neighboring rows r − 1, r of the range image,
respectively, as depicted in the top right part of Figure 5.2. Knowing two range
readings of vertically consecutive individual laser beams, we can compute the
angle α using trigonometric rules as follows:

α = atan2(∥BC∥, ∥AC∥) (5.1)
= atan2(∆z,∆x),

∆z = |Ir−1,c sin ξa − Ir,c sin ξb|,
∆x = |Ir−1,c cos ξa − Ir,c cos ξb|,

where ξa and ξb are vertical angles of the laser beams corresponding to rows r−1

and r.
Note that we need two range readings for each α computation and so the size

of the stack of α angles has size one less than the number of rows in the range
image. We treat all stacks of these angles as a matrix Mα = [αrr−1,c], where r and
c are row and column coordinates of the corresponding range readings from the
range image.

Unfortunately, LiDAR sensors such as the Velodyne HDL-64 produce a sub-
stantial amount of outliers in the range measurements, which is discussed in more
details in the work of Leonard et al. [76], and this impacts the computation of
the angle α in Figure 5.2. We therefore need a way to eliminate such outliers.
Weinmann and Jutzi [131] address this problem by computing features over a
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Figure 5.3: An example scene taken with a 64-beam Velodyne LiDAR seen from above with
ground marked light blue.

small local neighborhood of every pixel of a range image to detect if a reading
can be treated as reliable or not. This approach filters out unreliable readings
but also the points on the borders of the objects. As these points are impor-
tant for performing segmentation, we instead compute the corresponding angles
from all available data points and smooth the computed angles afterwards. To
achieve such smoothing, we apply the Savitsky-Golay filter to every column of
Mα. This filter performs least-squares optimization to fit a local polynomial for a
given window size to the data. In their work, Savitzky and Golay [106] show that
one can avoid the explicit least squared fitting of the polynomials and compute
an effective approximation relying on precomputed coefficients, which allows for
greater computational efficiency.

We carry out the ground labeling on the matrix Mα after applying the
Savitsky-Golay filter to its columns starting with the entries that we expect to
belong to the ground and labeling similar components together using breadth-
first search. Breadth-first search (BFS) is a popular graph search or traversal
algorithm. It starts at a given node of the graph and explores the directly neigh-
boring nodes first, before moving to the next level of neighbors. In our approach,
we consider the difference in the calculated angles α over an N4 neighborhood on
a grid to decide if two neighboring elements of the matrix Mα should be labeled
together by the breadth-first search. For that purpose we select a threshold ∆α,
set to 5 degrees in our experiments.

We start by labeling each element of the lowest row as ground if the cor-
responding α1

0,c is smaller than a pre-defined angle (45 degrees in our current
implementation), i.e., we do not label any almost vertical objects such as walls.
Let the set G be a set of all column indices in the first row that we have labeled
as ground.

For every c ∈ G we label the connected component using BFS starting from
α1
0,c as ground as depicted in procedure LabelGround in Algorithm 3. By the time

we have processed all c ∈ G, all the ground pixels in the image have been labeled
as such. Figure 5.3 shows an example point cloud with the ground detected by
our algorithm marked in light blue.
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Algorithm 3 Ground labeling
1: procedure LabelGround(R)
2: M← [αrr−1,c], matrix of angles α computed with Equation (5.1).
3: for c = 1 . . .Icols do
4: if M(0, c) not labeled then
5: LabelGroundBFS(0, c);
6: procedure LabelGroundBFS(r, c)
7: queue.push({r, c})
8: while queue is not empty do
9: {r, c} ← queue.top()

10: {r, c} ←labeled as ground
11: for {rn, cn} ∈ neighborhood{r, c} do
12: if |M(r, c)−M(rn, cn)| < 5◦ then
13: queue.push({rn, cn})
14: queue.pop()

Figure 5.4: Illustration of our method. A: Point cloud from Velodyne, which is shown for
illustration reasons only. B: We build up a range image not considering points lying on the
ground plane and C: perform the segmentation in the range image directly. D: This allows us
to provide individual small point clouds for the different segments. The different objects are
shown with random colors. Range and label images are scaled for better visibility.

5.1.2 Fast and effective segmentation on laser range data

The vertical resolution of the sensors which differs between 16, 32, or 64 beams
variants has an impact on the difficulty of the segmentation problem. For every
pair of neighboring points, one basically has to decide if the laser beams have been
reflected by the same object or not. When reasoning in 3D, this decision turns
more complex with the growth of the Euclidean distance between the points.

In our approach, which is outlined in Figure 5.4, we avoid the explicit creation
of the 3D point cloud and perform our computations using a laser range image,
in our case a cylindrical one for the Velodyne scanners. This has two advantages.
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people

cyclist

car

sensor

Figure 5.5: Left: example scene with two pedestrians, a cyclist and a car. Middle: Given that
the sensor is in O and the lines OA and OB represent two laser beams, the points A and B

spawn a line that estimates the surface of an object should they both belong to the same object.
We make the decision about this fact based on the angle β. If β > θ, where θ is a predefined
threshold, we consider the points to represent one object. Right: a top view on the pedestrians
from the example scene. The green lines represent points with β > θ while the red one shows
an angle that falls under the threshold and thus labels objects as different.

First, we can exploit the clearly defined neighborhood relations directly in the
range image, which makes the segmentation problem easier. Second, we avoid
the generation of the 3D point cloud, which makes the overall approach faster to
compute.

We assume that the vehicle moves on the ground (see Figure 5.1 for our setup)
and we expect the sensor to be oriented roughly horizontally with respect to the
wheels. We obtain an estimate of the ground plane by analyzing the columns of
such a range image, as described in Section 5.1.1. This allows us to remove the
ground from the range image, see Figure 5.4 (B).

The key component of our approach is the ability to estimate which measured
points originate from the same object for any two laser beams. We explicitly
avoid feature computation and work with raw sensor data, taking a decision for
each point of the 3D range data.

We present an easy-to-implement and fast-to-compute, but yet, effective ap-
proach to find the components that belong to one object. To answer the question
if two laser measurements belong to the same object, we use an angle-based
measure, which is illustrated in Figure 5.5 and is described in the following para-
graphs.

The left image of Figure 5.5 shows an example scene with two people walking
close to each other in front of a cyclist, who passes between them and a parked car.
This scene has been recorded using our Velodyne VLP-16 scanner. The middle
image shows an illustration of two arbitrary points A and B measured from the
scanner located at O with the illustrated laser beams OA and OB. Without loss
of generality, we assume the coordinates of A and B to be in a coordinate system
which is centered in O and the y-axis to be oriented along the longer of two laser
beams. We define the angle β as the angle between the laser beam and the line
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connecting A and B in the point that is further away from the scanner (in our
example that is A). In practice, the angle β turns out to be a valuable piece of
information to determine if the points A and B lie on the same object or not.

Given the nature of the laser range measurements, we know the distance ∥OA∥
as it corresponds to the first laser measurement as well as ∥OB∥ (second laser
measurement). We will call these range measurements d1 and d2 respectively.
One can use this information to calculate β by applying trigonometric equations

β = atan2(∥BH∥, ∥HA∥) = atan2(d2 sinψ, d1 − d2 cosψ), (5.2)

where ψ is the known angle between the beams and is usually provided in the
documentation of the scanner. The middle image in Figure 5.5 illustrates the
computation in the xy-plane from a top-down view of the scene. Note that we
can compute the angle β for pairs of points A and B that are neighbors either
in row or in column direction in the range image. In the first case, the angle ψ
corresponds to the angular increment in row direction, in the other case to the
increment in column direction.

The intuition behind the angle β is that it stays relatively large for most
objects and only takes small values if the depth difference between neighboring
points given the range image is substantially larger than their displacement in
the image plane, that is defined through the angular resolution of the scanner.
This insight allows us to define a parameter θ that acts as a threshold on the
angle β. This threshold enables us to take a decision about whether to separate
any two points in the range image into separate clusters or merge them into one.
If β is smaller than the user-defined value θ, we argue that the change in depth
is too large and take the decision to separate the points into different segments.
Otherwise, the points are considered as lying on the same object.

A threshold-based criterion on β is clearly a heuristic but works well in practice
as we illustrate in the experimental evaluation. A failure case can be a situation
in which the scanned object is planar, such as a wall, and oriented nearly parallel
to the laser beams. In this case the angle β will be small and it is therefore
likely for the object to be split up in multiple segments. This essentially means
that if β is smaller than θ, it is difficult to find out if two points originate on
two different objects or just lie on a planar object nearly parallel to the beam
direction. However, despite this shortcoming, our experiments suggest that the
method is still useful in practice. The aforementioned behavior occurs rarely and
if so, it usually results only in an over-segmentation of particularly inclined planar
objects.

With the separating threshold in mind, we approach the segmentation di-
rectly in the range image. We regard two endpoints as being neighbors stemming
from the same object if they are neighbors in a the range image (we use an N4
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Algorithm 4 Range image labeling
1: procedure LabelRangeImage(I)
2: Label← 1, L← zeros(Irows × Icols)

3: for r = 1 . . .Irows do
4: for c = 1 . . .Icols do
5: if L(r, c) = 0 then
6: LabelComponentBFS(r, c, Label);
7: Label← Label + 1;
8: procedure LabelComponentBFS(r, c, Label)
9: queue.push({r, c})
10: while queue is not empty do
11: {r, c} ← queue.top()
12: L(r, c)← Label
13: for {rn, cn} ∈ neighborhood{r, c} do
14: d1 ← max(I(r, c),I(rn, cn))
15: d2 ← min(I(r, c),I(rn, cn))
16: if atan2 d2 sinψ

d1−d2 cosψ > θ then
17: queue.push({rn, cn})
18: queue.pop()

neighborhood on the grid) and the angle β between them is larger than θ. Given
this definition of a neighborhood, we can view the segmentation problem as the
problem of finding the connected 2D components exploiting the structure of the
range image and the constraint on β.

Algorithm 4 depicts the algorithm that we use to find the connected compo-
nents that define the segments. We use a variant of a pass-through filter with
complexity O(N), where N is the number of pixels, i.e., the number of range
readings per scan. The algorithm guarantees visiting each point in the range
image at maximum twice. Please note that at this point in time, all pixels of the
range image that were labeled as ground (see Section 5.1.1) are set to zero and
do not take part in the following procedure.

We start in the top left corner of the range image and pass through every
pixel from top to bottom, left to right (line 3–4). Whenever we encounter an
unlabeled pixel (line 5), we start a breadth-first search from this pixel (line 6).
The goal of this search is to label every pixel of this component. For this purpose,
the BFS uses a queue and an N4 neighborhood consisting of the left, right, lower
and top pixels (line 13). The decision if a point in the N4 neighborhood should
be added to the queue of the BFS is taken based on the angle β generated by the
neighbor and the current point (line 14–17). This procedure guarantees that the
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whole connected component will receive the same label. Once the queue of BFS
is empty, we continue to traverse the range image sequentially until we reach a
new unlabeled point.

It has to be noted that the connected components algorithm is not the main
contribution of this work but its effective application to the segmentation of range
images considering the value of β for two neighboring measurements. For more
information on the comparison between different implementations of connected
components algorithms, we refer the reader to Cabaret et al. [19]. Overall, our
approach yields an easy-to-implement and fast method that does not require a
lot of parameters tuning to achieve good segmentation performance.

5.1.3 Experimental evaluation
Our experiments are designed to show the capabilities of our method and to
support our key claims, which are: (i) all computation can be executed fast,
even on a single core of a mobile CPU with around 70Hz, (ii) we can segment
typical 3D range data obtained by mobile robots into meaningful segments, and
(iii) the approach performs well on sparse data such as those obtained from a
16-beam Velodyne Puck scanner. In our evaluation, we also provide comparisons
to the grid-based segmentation method proposed by Teichman and Thrun [127]
as used by Behley et al. [6] as well as to Euclidean clustering implemented in the
point cloud library PCL and to range-based segmentation with a simple range
threshold. Throughout all experiments, we used our default parameter θ = 10◦.
The choice of this default parameter value is described later in this chapter in
Figure 5.8.

5.1.3.1 Runtime

The first experiment is designed to support the claim that our approach can be
executed fast, supporting online processing in real time. We therefore tested
our approach on point clouds computed with different Velodyne laser scanners
and processed the data on different computers. On the robot, we use an Acer
notebook with an Intel i5 5200U 2.2 GHz CPU, and we also process the data on
a desktop computer with an Intel i7 4770K 3.5 GHz CPU, in both cases using
only one core of the CPU.

Table 5.1 summarizes the runtime results for nearly 2,500 point clouds (each
generated by a single revolution of the scanner) recorded in urban outdoor envi-
ronments. The numbers support our first claim, namely that the computations
can be executed fast and in an online fashion. The frame rate of our segmenta-
tion pipeline including ground removal is multiple times faster than the frame rate
of the sensor. On a mobile i5 CPU, we achieve average frame rates of 74Hz —
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segmentation only ground removal + segmentation

scanner mobile desktop mobile desktop
i5 U5200 2.2GHz i7 4770K, 3.5 GHz i5 U5200 2.2GHz i7 4770K3.5 GHz

64-beam 8.6ms ± 2.6ms 4.7ms ± 1.2ms 13.3ms ± 1.0ms 8.6ms ± 0.6ms
116Hz 212Hz 74Hz 116Hz

32-beam 4.4ms ± 1.2ms 2.6ms ± 0.5ms 8.3ms ± 0.7ms 4.5ms ± 0.7ms
227Hz 385Hz 120Hz 222Hz

16-beam 2.4ms ± 0.5ms 1.5ms ± 0.2ms 4.0ms ± 0.8ms 2.8ms ± 1.0ms
416Hz 667Hz 250Hz 354Hz

Table 5.1: Average runtime and standard deviation per 360◦ laser scan.
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Figure 5.6: Timings for ground removal and clustering obtained on the KITTI dataset. The
x-axis depicts the index of individual point clouds while the y-axis shows the processing time
in ms.
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Figure 5.7: Timings for segmenting approximately 2,500 scans from a 64-beam Velodyne dataset
with our approach and Euclidean segmentation from PCL (ground removal time not included
here).
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Figure 5.8: Performance of our algorithm computed as a fraction of the number of found
objects over the number of all manually labeled objects in the scene compared to the grid-
based segmentation by Behley et al. [6], segmentation through Euclidean clustering as provided
by PCL and to segmentation on range images using depth difference threshold for varying
parameters on 30 different, manually labeled point clouds from the datasets available from
Frank Moosmann’s website. On the x-axis, the first value is the parameter θ for our method
and the second one serves as both the cell size for the grid-based approach and as the distance
threshold for the Euclidean clustering and depth thresholding approaches.

250Hz for the whole approach and 116Hz — 354Hz on an i7 computer. The pure
segmentation without ground removal can run with up to 667Hz. We obtained
similar timings on the publicly available KITTI datasets [44], see Figure 5.6.

We also compared the speed of our segmentation pipeline to Euclidean clus-
tering for segmentation as provided by the point cloud library PCL. For a fair
comparison, we used the same ground removal for both approaches and thus the
reported timing refers to the segmentation only. As can be seen from Figure 5.7,
our approach is on average around 1,000 times faster than Euclidean clustering
in the 3D space, here using 64-beam Velodyne data.

5.1.3.2 Segmentation results

The next set of experiments is designed to illustrate the obtained segmentation
results. We consider the results on 16-beams and 64-beams laser range data. For
the 64-beam evaluation, we rely on the publicly available street scenes dataset by
Moosman et al. [82] and the KITTI dataset [44], while we recorded the 16-beam
datasets using our robot in Bonn, Germany, see also Figure 5.1.

We evaluate the performance of our method and compare it to a popular
grid-based approach by Behley et al. [6], to a range image clustering method
that uses pure depth as the cluster separation criterion, and to segmentation
through Euclidean clustering as provided by PCL. For that purpose, we manu-
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Figure 5.9: Top: Point cloud of an outdoor scene taken with a 64-beam Velodyne (shown
for illustration only). Middle: Our segmentation that provides correct segmentation even for
distant objects while not under-segmenting the close ones. Bottom: Segmentation provided by
a grid-based approach with cell size set to 0.2m. There is a number of cars that are situated
further from the sensor missing and one car is merged with a bush.

ally segmented 30 point clouds from different scenes from two datasets provided
by Moosman et al. [82] and ran all three methods on these data varying their
parameters. For our method, we have chosen different values for θ, while for the
grid-based approach we have varied the size of the grid cells. For the pure depth
thresholding method we varied the range threshold and for Euclidean clustering
we have varied the distance between clusters that should be separated. We have
chosen values for θ from 5◦ to 45◦ and for the grid cell resolution (grid-based) and
the distance threshold (Euclidean and pure depth thresholding method) values
between 0.05m to 1.25m. We have evaluated the performance of the algorithms
by counting how many of the manually labeled objects have been found by the
algorithms. For every ground truth cluster, we search for a found segment with
the biggest overlap. We consider the cluster as correctly found if the point-wise
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Figure 5.10: An example segmentation of a group of people from KITTI dataset. Top: an RGB
image that shows the scene, shown for visualization purpose only. Bottom: the scene segmented
with our algorithm. Different clusters are assigned random colors.

overlap is substantial (80% in our implementation). We then count the number
of successful matches and divide them by the number of expected ground truth
clusters. We compute the performance measure for every scan and present the
mean and standard deviation of these values with relation to the chosen param-
eter in Figure 5.8. As can be seen with θ = 10◦, our method outperforms both
the grid-based approach and the pure depth thresholding approach in terms of
segmentation quality in all parameters settings. In comparison to Euclidean clus-
tering, our approach shows a comparable performance on the 64-beam datasets,
while being around three orders of magnitudes faster (4ms vs. 4 s per scan). This
nicely illustrates the benefits of our method for online processing. Typical exam-
ples of a resulting segmentation are shown in Figure 5.9 and Figure 5.10, both
using a 64-beam Velodyne scanner.

Finally, we aim at supporting our claim that our segmentation pipeline can
handle sparse data coming from a scanner with 16 beams in the vertical direction
(Velodyne VLP-16) well. For this purpose, we analyzed the results using data
recorded from our scanner and compared them to manually labeled ground truth
clouds. Examples are depicted in Figure 5.11. Although this is only a qualitative
evaluation, we can clearly see that our approach handles the sparse range data
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Figure 5.11: Top: An outdoor scene recorded with a 16 beam Velodyne that shows that our
approach is able to segment even complicated scenes with multiple small objects like bicycles
placed very close to each other. The grid-based approach in this scene merged all the bicycles
into two big clusters. Middle: Our segmentation of an example outdoor scene taken with a 16-
beam Velodyne. Our approach was able to find objects omitted by the grid-based method while
correctly segmenting people that stand close to each other. Bottom: Grid-based segmentation
result. Some objects are missing and people on the bottom left are under-segmented.

119



5.1. GROUND ESTIMATION AND SCENE CLUSTERING

better than the approaches that work in the space of 3D points.
In summary, our evaluation suggests that our method provides competitive

segmentation results compared to existing methods on dense range images and
outperforms them on sparse scans. At the same time, our method is fast enough
for online processing and has small computational demands. Thus, we supported
all our claims with this experimental evaluation.

5.1.4 Related work
Segmenting objects from 3D point clouds is a relatively well-researched topic.
There is substantial amount of work that targets acquiring a global point cloud
and segmenting it off-line [1, 34, 45, 55, 130]. These segmentation methods have
been used on a variety of different data produced by 3D range sensors or 2D lasers
in push-broom mode. The photogrammetric society has also been active in the
field of segmenting large point clouds into different objects. Velizhev et al. [129]
focus on learning the classes of the objects and detecting them in huge point
clouds via a voting-based method. These point clouds can be large, and the work
by Hackel et al. [50] targets the runtime along with the quality of classification. In
contrast with these works, we focus on the segmentation of range data that comes
from a 3D laser scanner such as a Velodyne that provides a 360 degree field of view
in a single scan and is used for online operation on a mobile robot. Additionally,
we target segmentation of a scene without the knowledge about the objects in it,
any prior learning, and not using complex features. For a comprehensive analysis
of methods that perform supervised scene segmentation, we refer the reader to
the work of Weinmann et al. [132].

Ground removal is an often used pre-processing step and is therefore well-
discussed in the literature. There is a number of papers that use RANSAC for
fitting a plane to the ground and removing points that are near this plane such
as the work by Os̆ep et al. [94]. Another prominent method of ground detection
is a side-product of full semantic segmentation of the scene, where all parts of
the scene get a semantic label. The ground is then segmented as one class;
for more details we refer the reader to the papers by Hermans et al. [57] and
Bansal et al. [4]. A couple of approaches use a 2D-grid and analyze the heights
of the points that fall into its bins, taking decisions about points being parts of
the ground based on this information. The decisions can be taken based on the
inclination of lines between consecutive cells [76, 97] or by analyzing the height
above the lowest local point [6, 46].

Segmentation techniques for single scans without requiring additional infor-
mation can be divided into three groups. The first group performs the segmen-
tation in the 3D domain by defining sophisticated features that explain the data
in 3D [31, 32] or by removing the ground plane and segmenting the clouds with a
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variant of a nearest neighbor approach [22, 68]. Feature-based approaches, while
allowing for accurate segmentation, are often comparably time-consuming and
may limit the application for online applications to a robot with substantial com-
putational resources. Our goal was to avoid computing complicated geometric
features allowing for very fast execution times.

The second group focuses on projecting 3D points onto a 2D grid positioned
on the ground plane. The segmentation is then carried out on occupied grid
cells [6, 58, 71, 122]. These algorithms are fast and suitable to run online. Quite
often, however, they have a slight tendency to under-segment the point clouds,
i.e. multiple objects may be grouped as being one object if they are close to each
other. This effect often depends on the choice of the grid discretization, so that
the grid width may need to be tuned for individual environments. Additionally,
some of these approaches can suffer from under-segmenting objects in the vertical
direction.

The third group of approaches performs the segmentation on a range im-
age and our approach belongs to this group of techniques. For example, Moos-
mann et al. [82, 83] use a range image to compute local convexities of the points
in the point cloud. In contrast to that, our approach avoids computing complex
features and, thus, is easier to implement, runs very fast and produces compa-
rable results. We therefore believe that our approach is a valuable contribution
to a vast and vibrant field of 3D point cloud segmentation, and consequently we
contribute our approach to the open source ROS community by providing the
source code for our implementation.

There are also several works that perform segmentation on RGBD data ac-
quired from a LiDAR registered with a camera [100, 125]. Registering one or
multiple cameras with the laser scanner requires a more sophisticated setup and
the segmentation becomes more demanding. Using both cues may improve the
results but it is seldom possible at the frame rate of the sensor. Therefore, we
focus on segmenting unknown objects from pure 3D range data not requiring any
additional visual or intensity information.

Visual information is not the only information that aids segmentation. Tem-
poral information and tracking are also shown to be useful to enhance the seg-
mentation performance [36, 127]. While the benefit of using the information
about the moving objects is clear, we show that it is possible to perform a fast
and meaningful segmentation on single scans even without relying on temporal
integration.
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5.1.5 Conclusion
This section presents a fast and easy to implement method for 3D laser range
data segmentation including fast ground removal. Instead of operating in the
3D space, our approach performs all computations directly on the range images.
This speeds up the segmentation of the individual range images and allows us
to directly exploit neighborhood relations. It enables us to successfully segment
even sparse laser scans like those recorded with a 16-beam Velodyne scanner.
We implemented and evaluated our approach on different publicly available and
self-recorded datasets and provide comparisons to other existing techniques. On
a single core of a mobile i5 CPU, we obtain segmentation results at average frame
rates between 74Hz and 250Hz and can run up to 667Hz on an i7 CPU. We
have released our code that can either be used standalone with C++ or as a ROS
module.
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5.2 Temporal object matching
Nowadays many applications, such as autonomous driving, rely on 3D data and
this data is crucial for autonomous systems to understand the world and espe-
cially the moving objects around them. Many methods have been developed for
interpreting such type of data. Such an interpretation, for example to estimate
the speed of a moving object, requires the scans of the individual objects to be
correctly registered with respect to each other. The information about the cor-
rectness and quality of the alignment is crucial when dealing with the real world.
Not knowing the quality of the match can lead to serious damage of the robot or
the environment, especially if the robot relies on scan matching while navigating
in dynamic or hazardous environments [10]. Thus, this aspect is of great im-
portance for automated driving as an autonomous car needs to be able to track
obstacles on the road, e.g., by matching features defined on the 3D data [28].
Performing a wrong match can potentially lead to estimating speed of other cars
wrongly or result in failing to recognize a pedestrian or losing track of an object.

In this section, we investigate the problem of evaluating the quality of 3D
point clouds of objects in potentially dynamic scenes. We assume that the scan
has already been segmented into objects, for example using our segmentation
appoach presented in Section 5.1 and that the segmented objects have been indi-
vidually aligned with an arbitrary registration method such as ICP, for example
one presented in Section 3.1. The objective of this section is to provide an ap-
proach that evaluates such matches. It should provide a high score in situations in
which the same objects are correctly aligned and low scores if both objects are not
aligned well or if two objects from different classes (such as car and pedestrian)
are aligned. The approach proposed here aims at achieving this, it is of proba-
bilistic in nature, and takes into account occupancy and free-space information,
which is typically ignored when matching point clouds using ICP.

The main contribution of this work is a novel approach that can generate a
probabilistically motivated quality measure for the alignment of two point clouds
corresponding to individual objects. Our approach is based on the observations
of two point clouds and focuses on the projections of these point clouds to virtual
image planes with expected free space information around objects. We explicitly
consider potentially moving objects segmented from a range scan such as people or
cars, see Figure 5.12 for an example. To illustrate the usefulness of the proposed
evaluation, we present several experiments analyzing aligned 3D scans of objects
and also show that our measure can be computed in the order of 1ms/object. We
furthermore illustrate that the analysis of an alignment can be used to support an
object-tracker estimating the trajectories of dynamic objects or to help clustering
real world objects and works better than considering a point-to-point similarity
score.
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Figure 5.12: It is a non-trivial task to determine the alignment quality of matched point clouds
of scanned objects as can be seen from the following example. Left: Two well-aligned point
clouds of a car (red and blue). Right: Two different objects (car shown in red and person shown
in blue) have been aligned with each other. Although the residuals of point-to-point differences
may not be too large, the objects should not be matched. In this section we make an attempt
to disambiguate such situations. Images best viewed in color.

5.2.1 Evaluating the alignment quality
Our approach is supposed to evaluate the alignment of two already aligned, 3D
range scans of (partially) scanned objects such as those depicted in Figure 5.12.
It is completely agnostic to the used alignment method as long as it computes
the 3D transformation between the sensor poses at scanning time.

Let C1 and C2 refer to two 3D point clouds that have been registered in a
common but arbitrary reference frame. Let O1 be the origin of cloud C1, i.e., the
pose of the sensor with respect to C1 when recording the cloud. The projection
of cloud C1 onto the image plane positioned in O1 results in a real depth image
I11 as shown in Figure 5.13. The same holds for O2 with respect to C2. We can
furthermore define two virtual image planes, one close to O1 and one close to O2

pointing towards the object, see Figure 5.14 for an illustration. The comparison
of the two clouds is performed based only on the projections of the point clouds
as depth images on the virtual image planes. This leads to four projected depth
images I11, I12, I21, and I22, where Ici refers to the projection of the cloud Cc
into the first or second image plane (index i). Each pixel in Ici stores the distance
between the 3D point in Cc and the origin Oi. It is important to note that for the
projections I11 and I22, we can also exploit negative information, i.e., knowledge
about the free space behind the objects. We label the pixels surrounding the
objects, which are generated from a scan segmentation approach (here using the
approach presented in Section 5.1), as free space if their depth readings are larger
than the distance to the object itself. This free space information is available only
for the depth images I11 and I22, as we know that there is free space around the
object as seen from the origin. This information may not be available for I12 and
I21 as here the projected image does not necessarily lie between the point cloud
and the physical scanner location during data acquisition.
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Figure 5.13: A sketch of the projection with darker shades on the projection plane depicting
free space information.

Figure 5.14: This image depicts two clouds viewed from above before and after registration
with ICP. Note that both clouds are projected to all four depth images: I11, I21, I12 and I22.
An example projection I11 is shown in Figure 5.13. We compute a similarity measure for each
pixel of corresponding projections following Equation (5.3). Knowing individual probabilities
from pixels we continue to combine them with Equation (5.4).
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Our analysis relies on comparing the depth images I11 to I21 and I12 to I22.
Thus, we are comparing the projections of the two clouds in the same (potentially
virtual) image plane. As only I11 and I22 encode free space information, there
are the following possibilities when comparing the range images pixel by pixel.
Let dcij be the depth information of pixel j in Ici, then we have three possible
cases:

• Both images Icc and Ici with c ∈ {1, 2}, i ̸= c have a depth value stored in
pixel j. In this case, we compute the probability of the two depth values to
be generated by the same object by

pj = 1− 1√
2πσ

∫ ∆j

−∆j

e
−t2

2σ dt

= 1−
(
Φ(

∆j

σ
)− Φ(

−∆j

σ
)
)
, (5.3)

where ∆j is the distance between the depth readings in the virtual image
plane at pixel j. Equation (5.3) considers Gaussian measurement noise with
standard deviation σ and thus the probability pj is the area under the tails
of the normal distribution. This area can be computed via a difference of
the following cumulative distribution functions (CDFs) of the given normal
distribution.

• Pixel j of image Ici has a depth reading while a pixel with the same co-
ordinates in image Icc is marked as free space. In this case, we set the
probability generated by these pixels to a low value corresponding to a
value of 2σ as ∆j in Equation (5.3).

• Pixel j in either of the images Icc or Ici contains no value at all. In this
case, we do not have enough information to make any decision and ignore
the pixel.

We perform this computation for all the pixels j = 1, . . . , K in the projected
depth image that have values in cloud C1 and C2. At this point, we have a
probability pj for each pixel j ∈ {1, K}, where K is the total number of pixels
that have a non-zero value for both projections.

We consider the evaluation of each pixel as an expert that tells us the probabil-
ity that the scans match. We can now apply a method to combine multiple expert
opinions into one probability so that this probability defines degree of similarity
between clouds C1 and C2. This problem is a well-known problem called opinion
pooling. If we have no further information, we use a so-called democratic opinion
pool [123], i.e., the similarity between two point clouds C1 and C2 is determined
by a linear opinion pool:

p(C1, C2) =
K∑
j=1

λjpj (5.4)
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Figure 5.15: Example clouds of two cars and two pedestrians aligned using ICP algorithm along
with the value of the similarity measure reported by our algorithm.

where λj = 1
K
,∀j ∈ {1, K}, and pj are opinions reported by a corresponding

expert, i.e. probabilities computed using Equation (5.3). Given this approach,
we finally obtain with p(C1, C2) a similarity measure between two 3D point clouds
exploiting projections and free space information.

5.2.2 Experimental evaluation

We propose a measure to evaluate how well two 3D point clouds of objects are
aligned. Thus, this evaluation is designed to show that (i) this measure is a useful
tool for quantifying the alignment quality of 3D range data of objects, (ii) our
approach can be executed fast, typically below 1ms. Furthermore, we illustrate
that (iii) it can support tracking and (iv) we can even use it to cluster differ-
ent objects perceived in 3D scans to obtain semantically meaningful objects, and
perform better than an ICP-like point-to-point measure, here using the imple-
mentation of PCL.

For our evaluation, we used several scans from the KITTI dataset [44] that
have been recorded with a 64-beam Velodyne scanner. In this part of the KITTI
dataset, typical objects are cars, people, vans, etc. We furthermore use sparser
3D data from a 16-beam Velodyne VLP-16 scanner recorded with a mobile robot
on our campus in Bonn.
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Figure 5.16: This image shows the changes in proposed similarity measure with a change in the
relative position of two matched clouds. We have evaluated the changes in x, y, z directions by
displacing point clouds by up to 1m as well as changing the roll, pitch and yaw of one of the
clouds by an angle of up to 1 rad.

5.2.2.1 Alignment quality

The first set of experiments is designed to illustrate that our approach for ana-
lyzing the alignment of scanned objects is a useful tool and provides meaningful
scores with respect to the alignment quality. We analyze two different types of
experiments here. First, the registration of the same physical object observed
from different locations based on typical street scenes. Second, we evaluate how
well different objects of the same class, e.g., two pedestrians or two cars can be
aligned.

Figure 5.15 depicts two range scans and similarity scores of an object before
and after registration. Figure 5.16 shows how the disturbance of the alignment
changes the similarity score of our approach. As can be seen, the function peaks at
the correct alignment. The plots illustrate how deviation from the true alignment
changes the score. The larger the deviation the smaller the similarity score.

5.2.2.2 Runtime

The next experiment is designed to show that the alignment score for two 3D point
clouds recorded with a regular laser range scanner can be computed in an efficient
manner so that it can be used for online operations easily. To quantify the runtime
requirements, we executed the evaluation of different objects of different size and
measured the runtime on a regular desktop computer with an Intel i7 CPU. The
timings are summarized in Table 5.2. As can be seen from the table, the average
computation time for typical objects such as cars or pedestrians can be executed
in below 0.5ms. Thus, our approach is suitable for an online assessment of the
alignment quality for up to 100+ individual objects in the scene considering a
frame rate of 10Hz of the Velodyne laser scanner.

128



CHAPTER 5. DETECTING MOTION

dataset objects average runtime per object

KITTI (64-beams) cars approx. 0.45ms
KITTI (64-beams) pedestrians approx. 0.38ms

Table 5.2: Average runtime for evaluating pairs of 3D scans of different objects on an Intel i7
CPU

5.2.2.3 Support for tracking dynamic objects

The next experiment is designed to illustrate that the quality analysis of point
clouds can support trackers that seek to estimate the trajectories of dynamic ob-
jects in the environment. To do this, we compute the quality measure for a made
data association and subsequent point cloud alignment and reject associations
that receive a low score. This approach rejects matchings in which people are
fused with nearby walls or other flat objects. An example of such a situation is
depicted in Figure 5.17. The sequence of images from 1 to 4 shows the result of
an EKF tracker aided by our similarity measure rejecting data associations that
receive a low score using our evaluation. As can be seen, here the tracks are not
fused and the objects get tracked correctly.

5.2.2.4 Support for clustering objects

Finally, we want to illustrate that our score is not only suited for evaluation of
the alignment of scans taken from the same objects but could also be used for
clustering different types of scanned objects in an unsupervised way and works
better than the score that standard ICP provides. To illustrate that, we extracted
the scanned cars, vans, and pedestrians from the KITTI dataset and computed
a pair-wise ICP alignment after shifting all clouds so that the barycenter of each
of them was in the origin. After the ICP alignment, we compute the similarity
value using our approach between all pairs and store the values in a similarity
matrix:

PN,N =


p(C1, C1) p(C1, C2) · · · p(C1, CN)
p(C2, C1) p(C2, C2) · · · p(C2, CN)

... ... . . . ...
p(CN , C1) p(CN , C2) · · · p(CN , CN)

 , (5.5)

where p(Ca, Cb) refers to the similarity score between point clouds Ca and Cb, while
N being the number of objects. For a comparison, we perform the clustering
also based on the RMSE resulting from the point-to-point metric. Figure 5.18
illustrates two visual representations of such a matrix with two and three different
types of objects. The left image always corresponds to the similarity matrix of our
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Figure 5.17: Our measure supports a dynamic object tracker and can help to reject data
associations generated by matching nearby point clouds. The sequence of images shows the
result of an EKF-based tracker performing a cloud validation step using our measure. We only
update an object track if the similarity measure between a new object and a tracked one is
high. As can be seen in the sequence, the person (cyan) is not fused with the flat vertical object
(brown) and so this illustrates that our approach helps to disambiguate the objects so that
separate tracks can be maintained. In the Images 1 and 2, the person approaches an object. In
Image 3 the person is occluded by the object and the bounding box shows an EKF prediction.
Note that the data association is done correctly. Image 4 depicts that EKF is able to resume
tracking of the person once the person is seen again maintaining the original track id (given by
the color).

approach while the one on the right corresponds to the RMSE-based matrix. In
the images, dark blue corresponds to p(Ci, Cj) = 0, while light green to p(Ci, Cj) =
1. The color of the bars on the top represent the class of the objects below it
after performing the spectral clustering. Note, that the text labels are for clarity
only, and in reality are not providede by the algorithm.

We sorted the point clouds according to the class of scanned object and thus
distinct squares in the matching matrix indicate that the measure can be used
for clustering objects. To verify this, we perform spectral clustering [87] with
both scores and test if the different classes of objects are correctly found given
manually labeled ground truth data.

We use out-of-the-box spectral clustering as a standard approach to group
objects. There may be more sophisticated ways for unsupervised clustering of
3D objects but this experiment suggests that our score serves as a better indica-
tor than point-to-point RSME that the two point clouds match well. Figure 5.18
shows that the classes are separated in a meaningful way when using our method.
A couple of failure cases for our (and the point-to-point) approach are depicted

130



CHAPTER 5. DETECTING MOTION

pedestrians
cars

0 20 40 60 80

0

20

40

60

80
0.2

0.4

0.6

0.8

1.0

pedestrians
cars

0 20 40 60 80

0

20

40

60

80
0.6

0.7

0.8

0.9

1.0

pedestrians
cars
vans

0 10 20 30 40 50

0

10

20

30

40

50
0.2

0.4

0.6

0.8

1.0

pedestrians
cars
vans

0 10 20 30 40 50

0

10

20

30

40

50
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.18: Top row: Left and right top images show similarity matrices of pairwise compared
between 45 people scans against 54 cars. Left image is estimated using our method, while the
right image using RMSE provided by PCL (with RBF kernel on top of it to generate similarity
measures). The bars on top of the matrices (blue and red refer to scans of different classes
of objects, here cars and people) show the results of unsupervised spectral clustering run on
the corresponding matrices. Bottom row: The images show our similarity measure on the left
and RMSE put through a robust kernel on the right. The data is sampled randomly from the
annotations from driving sequences 91 and 51 from the KITTI dataset. In this example, we used
20 vans, 15 pedestrians and 25 cars. They are depicted in that order on the axis of each matrix
as well as along the x-axis of the top bar. As can be seen from these bars on top of the matrices,
the clustering performs better using our measure than for the RMSE. Both algorithms segment
people into a single class correctly, however, our measure provides better separation between
cars and vans. Note that the labels in the legend are provided for convenience purposes only
as spectral clustering separates the data into clusters based on similarity with no knowledge of
the semantic class of objects in each cluster.
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Figure 5.19: This image shows examples of vans that are hard to match. The colors represent
the z coordinate and range from red to blue. The vans are very different from different sides and
therefore sometimes match poorly. Also, the top-left van is hard to match against any other
van in the dataset as it has a shape that differs substantially from the others. This explains
bad matching scores in the top-left corner of Figure 5.18.
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in Figure 5.19. The examples of vans driving in opposite directions and sub-
stantial shape differences make these point clouds hard to match. While the
point clouds shown in Figure 5.19 have good density of points for visualization
purposes, in reality it is often the case that the clouds are rather sparse, which
further complicates matching. When performing spectral clustering based on
the RMSE similarity matrix, the performance drops clearly. This suggests that
our method supports such similarity-based clustering of objects better than the
RMSE metric and provides enough information for an unsupervised clustering
algorithm to find classes from unlabeled data.

5.2.3 Related work
Finding a good scan alignment is a well studied problem and several approaches
have been proposed in the past. The most popular solution is probably the ICP
algorithm [7] and many variants of the original algorithm exist. Most ICP-based
approaches minimize the point-to-point distances between potentially correspond-
ing points but other variants such as point-to-plane of generalized ICP [107] exist.
We recommend the paper by Pomerleau et al. [98] for an overview.

To the best of our knowledge, mostly the probabilistic evaluation of the quality
of the point cloud matching has been done in correlation with the actual match-
ing process. For example, Olson [91] proposes a system that performs correlative
scan matching, maximizing the likelihood of the match between full scans. This
approach is suited for 2D data and would probably be computationally expensive
if extended to 3D. To the best of our knowledge, there is no efficient 3D vari-
ant that searches in the 6D transformation space. In 2D, this method provides
covariance estimates, which is valuable in determining the quality of the scan
alignment. We think of this covariance matrix as an orthogonal information to
our approach.

Another notable example of a method that provides a covariance matrix is
a method by Censi [20]. He treats scan matching as a probability distribution
approximation problem and provides an estimate of the matching uncertainty.
His method seems to be reliable under severe sensor occlusions and it handles
gracefully in constrained situations. However, this methods has been proposed
for 2D matching and, to the best of our knowledge, is mainly used as a 2D method.

A 3D variant of covariance matrix estimation can be found in modern tech-
niques for performing ICP. A recent example of such a method is a work by
Prakhya et al. [99], which is an extension of the work by Censi [20] to account
for 3D data. They also show that the covariance estimate of their method is
lower in the global minimum comparing to local ones. However, it is still unclear
which values of the covariance matrix should be considered good and which are
not. Our method, while not forbidding to use the covariance matrix for match
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likelihood estimation provides additional probabilistic measure, that is a single
number and therefore is relatively easy to interpret.

Recently, Yang et al. [141] proposed a variant of ICP that searches for the
globally optimal alignment of scans using a branch and bound approach. This is
an interesting techniques, with guarantees on the performance. Even if a global
approach is used, however, our metric will still be beneficial, as it could help to
detect a individual, wrong alignment of a moving object to a different object.

Another notable method for registering dense point clouds is NICP by Serafin
and Grisetti [109] that is designed for aligning full point clouds from Kinect-style
sensors. This approach considers normal information for the matching and its
open source implementation makes use of projections for matching. A related
form of projection is also used in our work. A further work that has a similar
motivation but is targeted to 2D SLAM is the work by Mazuran et al. [80]. They
analyze the map consistency by performing cascaded statistical tests on pairs of
2D scans and overlapping 2D polygons and use this information to determine pa-
rameters in the used SLAM backend. A further approach that bears similarities
to the ideas presented here is the work by Hähnel et al. [51]. As part of their
approach, they analyze the log-likelihood of data associations in SLAM, when
searching in the space of data associations. The log-likelihood of each measure-
ment is obtained by superimposing a scan onto a local 2D occupancy grid map
built by another scan.

One more interesting method by Endres et al. [34] models object classes as
distributions over features and use Latent Dirichlet Allocation to learn clusters
of 3D objects according to similarity in shape. However, it is interesting for us
to avoid using features to describe the scene and to work on pure 3D data.

To the best of our knowledge, there are not many approaches to estimating the
scan alignment quality that go beyond sums of squared distances between points
or planes or estimated covariance matrices in the space of transformations. Most
approaches furthermore use scans as a whole and not partial scans of objects. A
notable exception is the work by Blais and Levine [8] where the range images
of partial scans of the objects are registered minimizing the projective distance
between the points sampled in the range image. Our work is as well as their work
relies on projective distance evaluation, however, we avoid sampling the points,
make use of the projections of the clouds on multiple planes, introduce the notion
of free space and focus on making a decision about the quality of the match in a
probabilistic sense.
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5.2.4 Conclusion
We propose a novel way for analyzing the alignment quality of registered point
clouds of individual objects. We provide a fast to compute, probabilistic simi-
larity measure for any pair of registered point clouds of objects and do not rely
on any specific registration or segmentation procedure. Our approach uses pro-
jections of the point clouds alongside with information about the free space that
surrounds the scanned objects to evaluate a match. As our experiments suggest,
the probabilistic measure is well-suited to analyze matches, supports tracking dy-
namic objects, and allows us to cluster point clouds of different types of objects
in an unsupervised way better than a point-to-point metric would do.
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Conclusion

Robots take on increasingly more complex roles in our daily life. They
can deliver goods, drive people around, help in search-and-rescue sce-
narios or map historical sites. These tasks are far from simple. To
be successful, a robot must gain knowledge about the environment,

build its map, and localize itself in it. When such an environment is dynamic, the
robot must also reason about the objects that surround it: what will move and
what will remain static. Because of this variety of challenges that the robot must
address, usually, the software that steers the robot is designed with a specific
sensor configuration in mind, and is not trivial to adapt to other robots, scenar-
ios, or sensor configuration. This thesis challenges this concept by presenting a
number of approaches that target a typical robot navigation pipeline while us-
ing algorithms that work with general range sensors such as RGBD cameras and
LiDARs without adaptations to individual sensor models, and aims to provide
methods for navigation and scene perception in both static and dynamic envi-
ronments. For a static world, we provide contributions in mapping by presenting
our general multi-cue photometric point cloud registration method, analyze the
traversability of the surroundings of the robot to allow for safe navigation in po-
tentially hazardous environments such as mines, catacombs or caves, and provide
solutions for efficient and safe exploration and homing. In the dynamic setting, we
aim to identify distinct objects to aid navigation and scene understanding. These
objects can be tracked with any available tracking algorithm, and we provide a
robust measure that provides the information if the two objects match each other.
In the remainder of this section, we will briefly summarize the contributions of
each of the parts of this thesis on the per-component basis.
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6.1 Short summary of key contributions
To aid robot mapping, we have developed a novel flexible and robust framework
for point cloud registration that can work with both, RGBD and LiDAR sensors
and runs at frame rate of these sensors. In contrast to the classical ICP im-
plementations, our approach does not need the computationally expensive data
association step and in contrast to the dense visual odometry method [67], it
can be easily extended to new sensors or data modalities. Our method allows
for matching the point clouds with no explicit data associations by using range
image representation of the data. We have implemented and thoroughly tested
our approach and have released our implementation as open source C++ code.
The experiments show that our approach allows for an accurate registration of
the sensor data without requiring an explicit data association or model-specific
adaptations to datasets or sensors. Our approach exploits the different cues in a
natural and consistent way and the registration can be done at the frame rate of
a typical range or imaging sensor. The main contribution of this method is the
ability to extend the matching procedure by any modality while still performing
at the frame rate of the sensor.

On the side of the scene analysis, we have developed an effective method
for classifying the robots surrounding into traversable and non-traversable areas.
This capability is crucial for safe navigation in an unknown environment and to
safely return to the base. Our approach processes the depth data at 10 fps-25 fps
on a standard notebook computer without using the GPU and it allows for ro-
bustly identifying the areas in front of the sensor that are safe for navigation.
The component presented here is one of the building blocks of the EU project
ROVINA that aims at the exploration and digital preservation of hazardous ar-
chaeological sites with mobile robots. Real world evaluations have been conducted
in controlled lab environments, in an outdoor scene, as well as in a real, partially
unexplored, and roughly 1700 year old Roman catacomb. The navigation and
mapping systems have been released as open source software as part of ROVINA
software suite and is now used by the United Nations International Council on
Monuments and Sites.

For the navigation of the robot, we built systems to include previous knowl-
edge to detect the best way to explore the environment. In autonomous ex-
ploration tasks, robots usually rely on a SLAM system to build a map of the
environment online and then use it for navigation purposes. These maps are not
always reliable and a number of wrong associations can break a map making the
navigation of the robot much more complex and potentially even dangerous. To
target this challenge, we developed a system that is able to detect that the map
is in an inconsistent state, and can safely return the robot to the base. We im-
plemented the proposed system in C++, integrated it with the robot operating

138



CHAPTER 6. CONCLUSION

system (ROS) and showcase its effectiveness on an autonomous exploration robot
in an underground cave in Niederzissen, in the Priscilla catacomb in Rome and
in office environments.

In addition to the contributions to the operation of robots in static scenes
we have also developed a number of methods that aid scene understanding when
dynamic objects are present in the scene. The ability to extract individual ob-
jects in the scene is key for a large number of autonomous navigation systems
such as mobile robots or autonomous cars. Many systems that detect and track
the dynamic objects rely on a pre-segmentation of the scene into objects which
are consequently analyzed in order to determine if they belong to the static or
the dynamic part of the scene. In this part of our work, we have developed an
effective method that removes the ground from the scan and then segments the
3D data into different objects using a range image representation. A key focus of
our work is a fast execution with several hundred hertz. Our implementation has
small computational demands so that it can run online on most mobile systems.
We explicitly avoid the computation of the 3D point cloud and operate directly
on a 2.5D range image, which enables fast segmentation for each 3D scan. This
approach can furthermore handle sparse 3D data well, which is important for
scanners such as the new Velodyne VLP-16 scanner. We implemented our ap-
proach in C++ and integrated it with ROS, thoroughly tested it using different
3D scanners, and have released the source code of our implementation on GitHub.
Since the time we have uploaded the code to GitHub, it has gained popularity:
135 stars and 87 forks to date. Our method can operate at frame rates that are
substantially higher than those at which the sensors provide data, while using
only a single core of a mobile CPU and producing high quality segmentation re-
sults. This efficiency, bundled with a single bounded parameter that guides the
clustering, is the main contribution of this method.

Simply detecting the surrounding objects is not enough for safe navigation,
thus, we have implemented an extension to our object cloud matching procedure
in order to make sure that the matched clouds of the objects actually represent
the objects of the same class. Most matching methods such as numerous fla-
vors of ICP provide little information about the quality of the match, i.e., how
well the matched objects correspond to each other, which goes beyond point-to-
point or point-to-plane distances. We propose a projective method that yields a
probabilistic measure for the quality of matched scans. It not only considers the
differences in the point locations but also takes free-space information into ac-
count. Our approach provides a probabilistic measure that is meaningful enough
to cluster real-world data such as scans taken with Velodyne scanner in urban
scenes in an unsupervised manner. The main contribution of this work is the idea
of using the free space around the object seen from the position of the sensor as
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well as the method that is able to quickly and efficiently provide a single bounded
measure for likeliness between the point clouds of the objects.

Overall, we have developed and implemented a number of components crucial
for robot navigation in static and dynamic environments. While all of these
novel components made scientific contributions over the state of the art, and
have been tested on real robots and real-world datasets, there is still a substantial
amount of engineering effort required to build a complete system that would be
able to run on various mobile robots. Designing and implementing a completely
generic system that is able to map the environment, localize the robot in such a
map, perform exploration and navigation tasks while making sure that the robot
and the objects surrounding it are safe is an ambitious task and is, probably,
outside of the scope of a single Ph.D. thesis, as more software engineering effort
is required. However, we believe that the components implemented in this thesis
will be helpful in making such a system a reality. To support this statement, we
released most of our software as open source, and several of our software releases
have become quite popular among other researchers.

An interesting direction for the future work would be to integrate the object
detection and tracking into a fully robust system for working with dynamic ob-
jects and learn their traits to be able to integrate these objects with the mapping
system. For example, if learnt, the objects that have a dynamic class but hap-
pened to be static during data acquisition can be found in the map and removed
from it, potentially aiding the matching algorithms. However, these tasks re-
quire some form of unsupervised or semi-supervised learning, which is a research
direction orthogonal to the one of this thesis.

6.2 Contributions to the ROVINA project
We developed the traversability analysis, navigation and robust homing systems,
presented in this thesis, as part of a successful EC-funded project ROVINA, sup-
ported under FP7-600890-ROVINA. This is a project for autonomous exploration
and digital preservation of hard-to-access archaeological sites such as catacombs.
The financial support of the EC through the ROVINA project is gratefully ac-
knowledged.

On September 26, 2016, the final review of the 42-month project was success-
ful and ROVINA has been evaluated excellently in all four review meetings. The
systems presented in this thesis were put under test in real Roman catacombs
during multiple review meetings and the achieved performance has played an
important role in the excellent final evaluation of the project. Figure 6.1 shows
photos from various integration and project review meetings that showcase our
team working on the robot and Albert Gauthier, officer of the European Com-
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Figure 6.1: Photos from various integration and review meetings of the ROVINA project. Top
left: a test run with the robot in a man-made cave in Niederzissen. Top middle: an integration
meeting taking place in Rome. Top right: Albert Gauthier, officer of the European Commission
for cultural heritage, looking at the 3D map of the Priscilla catacombs built by the robot, using
an Oculur Rift headset.

mission for cultural heritage, looking at the 3D map of the Priscilla catacomb
through an Oculus Rift headset.

6.3 Open source contributions
Several methods presented in this thesis have been published as open source soft-
ware. Here we provide a list of links where each of the components is published:

• Multi-cue photometric point cloud matching, presented in Section 3.1:
https://gitlab.com/srrg-software/srrg_mpr

• Traversability analysis, presented in Section 4.1, parts of the navigation and
exploration pipelines presented in Section 4.2, and robust homing, presented
in Section 4.3, are parts of the ROVINA project and their code is distributed
from the ROVINA website as part of ROVINA code base:
http://www.rovina-project.eu/research/software_releases

• Range image-based clustering, presented in Section 5.1:
https://github.com/PRBonn/depth_clustering
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