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Abstract— 3D laser scanners are frequently used sensors for
mobile robots or autonomous cars and they are often used to
perceive the static as well as dynamic aspects in the scene. In
this context, matching 3D point clouds of objects is a crucial
capability. Most matching methods such as numerous flavors of
ICP provide little information about the quality of the match,
i.e. how well do the matched objects correspond to each other,
which goes beyond point-to-point or point-to-plane distances.
In this paper, we propose a projective method that yields a
probabilistic measure for the quality of matched scans. It not
only considers the differences in the point locations but can
also take free-space information into account. Our approach
provides a probabilistic measure that is meaningful enough to
evaluate scans and to cluster real-world data such as scans
taken with Velodyne scanner in urban scenes in an unsupervised
manner.

I. INTRODUCTION

Nowadays many applications such as autonomous driving
rely on 3D data and this data is crucial for autonomous
systems to understand the world and especially the moving
objects around them. Many methods have been developed
for interpreting such type of data. Such an interpretation,
for example to estimate the speed of a moving object,
requires that the scans of the individual objects are correctly
registered with respect to each other. The information about
the correctness and quality of the alignment is crucial when
dealing with the real world. Not knowing the quality of
the match can lead to serious damage of the robot or the
environment, especially if the robot relies on scan matching
while navigating in dynamic or hazardous environments [2].
Thus, this aspect is of great importance for automated driving
as an autonomous car needs to be able to track obstacles
on the road, e.g. by matching features defined on the 3D
data [5]. Performing a wrong match can potentially lead to
estimating speed of other cars wrongly or result in failing to
recognize a pedestrian or loosing track of an object.

The most popular approach to matching point clouds,
either of whole scenes or individual objects, is probably
ICP [1] and its numerous flavors, we refer to [12] for an
overview and a comparison. Recently, there have been ICP
variants proposed that compute a globally optimal alignment
using a branch and bound approach [18]. Other techniques
involve correlative scan matching [11], feature-based match-
ing, and many more. The matching can be performed on
raw 3D data or by exploiting different types of features with
varying complexity. While there is a zoo of features available
today, much less attention has been payed to the question
how to evaluate the matching quality of after the alignment
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Fig. 1. It is a non-trivial task to determine the alignment quality of matched
point clouds of scanned objects as can be seen from the following example.
Left: Two well-aligned point clouds of a car (red and blue). Right: Two
different objects (car shown in red and person shown in blue) have been
aligned with each other. Although the residuals of point-to-point differences
may not be too large, the objects should not be matched. This papers makes
and attempt to disambiguate such situations. (Images best viewed in color.)

has been carried out. Most approaches either use a sum of
squared point-to-point distances or point-to-plane measures
after alignment. We would like to stress the point here that
even in case a global alignment has been found, an evaluation
of the matching is beneficiary as in moving scenes, individual
moving objects may have been wrongly associated to each
other.

In this paper, we address the problem of evaluating the
quality of 3D point clouds of objects in potentially dynamic
scenes. We assume that the scan has already been segmented
into objects, for example using [3] or a similar approach, and
that the segmented objects have been individually aligned
with an arbitrary registration method such as ICP. The ob-
jective of this paper is to provide an approach that evaluates
such matches. It should provide a high score in situations in
which the same objects are correctly aligned and low scores
if the both objects are not aligned well or if two objects from
different classes (such as car and pedestrian) are aligned. The
approach proposed in this paper aims at achieving this, it
is of probabilistic nature, and takes into account occupancy
and free-space information, which is typically ignored when
matching point clouds using ICP.

The main contribution of this work is a novel approach that
can generate a probabilistically motivated quality measure
for the alignment of two point clouds corresponding to
individual objects. Our approach is based on the observations
of two point clouds and focuses on the projections of these
point clouds to virtual image planes with expected free
space information around objects. We explicitly consider
potentially moving objects segmented from a range scan such
as people or cars, see Fig. 1 for an example. To illustrate the
usefulness of the proposed evaluation, we present several
experiments analyzing aligned 3D scans of objects and also



show that our measure can be computed in the order of
1 ms/object. We furthermore illustrate that the analysis of an
alignment can be used to support an object-tracker estimating
the trajectories of dynamic objects or to help clustering real
world objects and is working better than considering a point-
to-point similarity score.

II. RELATED WORK

Finding a good scan alignment is a well studied problem
and several approaches have been proposed in the past. The
most popular solution is probably the ICP algorithm [1]
and many variants of the original algorithm exist. Most
ICP-based approaches minimize the point-to-point distances
between potentially corresponding points but other variants
such as point-to-plane of generalized ICP [15] exist. We
recommend the paper by Pomerleau et al. [12] for an
overview.

To the best of our knowledge, mostly the probabilistic
evaluation of the quality of the point cloud matching has been
done in correlation with the actual matching process. For
example, Olson [11] proposes a system that performs correl-
ative scan matching, maximizing the likelihood of the match
between full scans. This approach is suited for 2D data and
would probably be computationally expensive if extended to
3D. To the best of our knowledge, there is no efficient 3D
variant that searches in the 6D transformation space. In 2D,
this method provides covariance estimates, which is valuable
in determining the quality of the scan alignment. We think
of this covariance matrix as an orthogonal information to our
approach.

Another notable example of a method that provides a
covariance matrix is a method by Censi [4]. He treats scan
matching as a probability distribution approximation problem
and provides an estimate of the matching uncertainty. His
method seems to be reliable under severe sensor occlusions
and it handles gracefully in constrained situations. However,
this methods has been proposed for 2D matching and, to the
best of our knowledge, is mainly used as a 2D method.

A 3D variant of covariance matrix estimation can be found
in modern techniques for performing ICP. A recent example
of such a method is a work by Prakhya et al. [13]. They
provide an extension of [4] to 3D data. They also show
that the covariance of their method is lower in the global
minimum comparing to local ones. However, it is still unclear
which values of the covariance matrix should be considered
good and which are not. Our method, while not forbidding
to use the covariance matrix for match likelihood estimation
provides additional probabilistic measure, that is a single
number and therefore is relatively easy to interpret.

Recently, Yang et al. [18] proposed a variant of ICP
that searches for the globally optimal alignment of scans
using a branch and bound approach. This is an interesting
techniques, with guarantees on the performance. Even if a
global approach is used, however, our metric will still be
beneficial, as it could help to detect a individual, wrong
alignment of a moving object to a different object.

Another notable method for registering dense point clouds
is NICP by Serafin and Grisetti [16] that is designed for
aligning full point clouds from Kinect-style sensors. This
approach considers normal information for the matching and
its open source implementation makes use of projections for
matching. A related form of projection is also used in our
work. A further work that has a similar motivation but is
targeted to 2D SLAM is the work by Mazuran et al. [9].
They analyze the map consistency by performing cascaded
statistical tests on pairs of 2D scans and overlapping 2D
polygons and use this information to determine parameters
in the used SLAM backend. A further approach that bears
similarities to the ideas presented here is the work by
Hähnel et al. [8]. As part of their approach, they analyze the
log-likelihood of data associations in SLAM, when searching
in the space of data associations. The log-likelihood of each
measurement is obtained by superimposing a scan onto a
local 2D occupancy grid map built by another scan.

One more interesting method by Endres et al. [6] models
object classes as distributions over features and use Latent
Dirichlet Allocation to learn clusters of 3D objects according
to similarity in shape. However, it is interesting for us to
avoid using features to describe the scene and to work on
pure 3D data.

To the best of our knowledge, there are not many ap-
proaches to estimating the scan alignment quality that go
beyond sums of squared distances between points or planes
or estimated covariance matrices in the space of transforma-
tions. Most approaches furthermore use scans as a whole and
not partial scans of objects. Our work aims at contributing
a new approach to this problem by combining the idea
of mutual projections and the exploitation of free space
information for 3D point clouds.

III. EVALUATING THE ALIGNMENT QUALITY

Our approach is supposed to evaluate the alignment of two
already aligned, 3D range scans of (partially) scanned objects
such as those depicted in Fig. 1. Our approach is completely
agnostic to the used alignment method as long as it computes
the 3D transformation between the sensor poses at scanning
time. For this paper, we use a segmentation approach [3] that
transforms full 3D scans into individual objects and use the
ICP implementation of the point cloud library (PCL) [14].
Note that any other segmentation or alignment technique can
be used instead.

Let C1 and C2 refer to two 3D point clouds that have been
registered in a common but arbitrary reference frame. Let O1

be the origin of cloud C1, i.e. the pose of the sensor with
respect to C1 when recording the cloud. The same holds for
O2 with respect to C2.

We can define two virtual image planes, one close to O1

and one close to O2 pointing towards the object, see Fig. 3
for an illustration. The comparison of the two clouds is
performed based only on the projections of the point clouds
as depth images on the virtual image planes. This leads to
four projected depth images I11, I12, I21, and I22, where
Ici refers to the projection of the cloud Cc into the first



Fig. 2. A sketch of the projection with darker shades on the projection
plane depicting free space information.

Fig. 3. This image depicts two clouds viewed from above before and
after registration with ICP. Note that both clouds are projected to all four
depth images: I11, I21, I12 and I22. An example projection I11 is shown
in Fig. 2. We compute a similarity measure for each pixel of corresponding
projections following Eq. (1). Knowing individual probabilities from pixels
we continue to combining them with Eq. (2). (Images best viewed in color.)

or second image plane (index i). Each pixel in Ici stores
the distance between the 3D point in Cc and the origin
Oi. Is is important to note that for the projections I11 and
I22, we can also exploit negative information, i.e. knowledge
about free space. We label the pixels surrounding the objects,
which are generated from a scan segmentation approach
(here using [3]) as free space if their depth readings are
larger than the distance to the object itself. This free space
information is available only for the depth images I11 and I22
as we know that there is free space around the object as seen
from the origin. This information may not be available for
I12 and I21 as here the projected image does not necessarily
lie between the point cloud and the physical scanner location
during data acquisition.

Our analysis relies on comparing the depth images I11 to
I21 and I12 to I22. Thus, we are comparing the projections
of the two clouds in the same (virtual) image plane. As
only I11 and I22 encode free space information, there are
the following possibilities when comparing the range images
pixel by pixel. Let dcij be the depth information of pixel j
in Ici, then we have three possible cases:

• Both images Icc and Ici with c ∈ {1, 2}, i ̸= c have a
depth value stored in pixel j. In this case, we compute
the probability of the two depth values to be generated

by the same object by

pj = 1− 1√
2πσ

∫ ∆j

−∆j

e
−t2

2σ dt

= 1−
(
Φ(

∆j

σ
)− Φ(

−∆j

σ
)
)
, (1)

where ∆j is the distance between the depth readings
in the virtual image plane at pixel j. Eq. (1) considers
Gaussian measurement noise with standard deviation σ
and thus the probability pj is the area under the tails
of the normal distribution. This area can be computed
via a difference of the following cumulative distribution
functions (CDFs) of the given normal distribution.

• Pixel j of image Ici has a depth reading while a pixel
with the same coordinates in image Icc is marked as free
space. In this case, we set the probability generated by
these pixels to a low value corresponding to a value of
2σ as ∆j in Eq. (1).

• Pixel j in either of the images Icc or Ici contains
no value at all. In this case, we do not have enough
information to make any decision and ignore the pixel.

We perform this computation for all the pixels j =
1, . . . ,M in the projected depth image that have values in
cloud C1 and C2. At this point, we have a probability pj
for each pixel j ∈ {1,M}, where M is the total number of
pixels that have a non-zero value for both projections.

We consider the evaluation of each pixel as an expert
that tells us the probability that the scans match. We can
now apply a method to combine multiple expert opinions
into one probability so that this probability defines degree
of similarity between clouds C1 and C2. This problem is a
well-known problem called opinion pooling. If we have no
further information, we use a so-called democratic opinion
pool [17], i.e. the similarity between two point clouds C1

and C2 is determined by a linear opinion pool:

p(C1, C2) =
M∑
j=1

λjpj (2)

where λj = 1
M , ∀j ∈ {1,M} and pj are opinions reported

by a corresponding expert, i.e. probabilities computed us-
ing Eq. (1). Given this approach, we finally obtain with
p(C1, C2) a similarity measure between two 3D point clouds
exploiting projections and free space information.

IV. EXPERIMENTAL EVALUATION

We propose a measure to evaluate how well two 3D
point clouds of objects are aligned. Thus, this evaluation
is designed to show that (i) this measure is a useful tool
for quantifying the alignment quality of 3D range data of
objects, (ii) our approach can be executed fast, typically
below 1 ms. Furthermore, we illustrate that (iii) it can support
tracking and (iv) we can even use it to cluster different object
perceived in 3D scans and obtain semantically meaningful
objects and perform better than an ICP-like point-to-point
measure, here using the implementation of PCL.



Fig. 4. Example clouds of two cars and two pedestrians aligned using ICP
algorithm along with the value of the similarity measure reported by our
algorithm.

Fig. 5. Our measure supports a dynamic object tracker and can help to
reject data associations generated by matching nearby point clouds. The
sequence of images shows the result of an EKF-based tracker performing
a cloud validation step using our measure. We only update an object track
if the similarity measure between a new object and a tracked one is high.
As can be seen in the sequence, the person (cyan) is not fused with the
flat vertical object (brown) and so this illustrates that our approach helps to
disambiguate the objects so that separate tracks can be maintained. In the
Images 1 and 2, the person approaches an object. In Image 3 the person is
occluded by the object and the bounding box shows an EKF prediction. Note
that the data association is done correctly. Image 4 depicts that EKF is able
to resume tracking of the person once the person is seen again maintaining
the original track id (given by the color).

For our evaluation, we used several scans from the KITTI
dataset [7] that have been recorded with a 64-beam Velodyne
scanner. In this part of the KITTI dataset, typical objects are
cars, people, vans, etc. We furthermore used sparser 3D data
from a 16-beam Velodyne VLP-16 scanner recorded with a
mobile robot on our campus in Bonn.

A. Alignment Quality

The first set of experiments is designed to illustrate that
our approach for analyzing the alignment of scanned objects
is a useful tool and provides meaningful scores with respect
to the alignment quality. We analyze two different types of
experiments here. First, the registration of the same physical
object observed from different locations based on typical
street scenes. Second, we evaluate how well different objects
of the same class, e.g., two pedestrians or two cars can be
aligned.

Fig. 4 depicts two range scans and similarity scores of an
object before and after registration of ICP (using the PCL
implementation). We use this implementation throughout this

TABLE I
AVERAGE RUNTIME FOR EVALUATING PAIRS OF 3D SCANS

OF DIFFERENT OBJECTS ON AN INTEL I7 CPU

dataset objects average runtime
KITTI (64-beams) cars approx. 0.45 ms
KITTI (64-beams) pedestrians approx. 0.38 ms

work, however any other registration technique can be used
instead. Fig. 6 shows how the disturbance of the alignment
changes the similarity score of our approach. As can be
seen, the function peaks at the correct alignment. The plots
illustrate how deviation from the true alignment change the
score. The larger the deviation the smaller the similarity
score.

B. Runtime

The next experiment is designed to show that the align-
ment score for a two 3D point clouds recorded with a regular
laser range scanner can be computed in a efficient manner so
that it can be used for online operations easily. To quantify
the runtime requirements, we executed the evaluation of
different objects of different size and measured the runtime
on a regular desktop computer with a Intel i7 CPU. The
timings are summarized in Tab. I.

As can be seen from the table, the average computation
time for typical objects such as cars or pedestrians can be
executed in below 0.5 ms. Thus, our approach is suitable for
an online assessment of the alignment quality for up to 100+
individual objects in the scene considering a frame rate of
10 Hz of the Velodyne laser scanner.

C. Support for Tracking Dynamic Objects

The next experiment is designed to illustrate that the
quality analysis of point clouds can support trackers that
seek to estimate the trajectories of dynamic objects in the
environment. To do this, we compute the quality measure
for a made data association and subsequent point cloud
alignment and reject associations that receive a low score.
This approach rejects matchings in which people are fused
with nearby walls or other flat objects. An example of such
a situation is depicted in Fig. 5. The sequence of images
from 1 to 4 shows the result of an EKF tracker aided by our
similarity measure rejecting data associations that receive a
low score using our evaluation. As can be seen, here the
tracks are not fused and the objects get tracked correctly.

D. Support for Clustering Objects

Finally, we want to illustrate that our score is not only
suited for evaluation of the alignment of scans taken from
the same objects but could also be used for clustering
different types of scanned objects in an unsupervised way
and works better than the point-to-point score that standard
ICP provides.

To illustrate that, we extracted the scanned cars, vans, and
pedestrians from the KITTI dataset and computed a pair-wise
ICP alignment after shifting all clouds so that the barycenter
of each of them is in the origin. After the ICP alignment, we
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Fig. 6. This image shows the changes in proposed similarity measure with a change in the relative position of two matched clouds. We have evaluated
the changes in x, y, z directions by displacing point clouds by up to 1 m as well as changing the roll, pitch and yaw of one of the clouds by an angle of
up to 1 rad.

Fig. 7. Top row: Left and right top images show similarity matrices of pairwise compared between 45 people scans against 54 cars. Left image is
estimated using our method, while the right image using RMSE provided by PCL (with RBF kernel on top of it to generate similarity measures). The
bars on top of the matrices (blue and green refer to scans of different classes of objects, here cars and people) show the results of unsupervised spectral
clustering run on the corresponding matrices. Bottom row: The images show our similarity measure on the left and RMSE put through a robust kernel on
the right. The data is sampled randomly from the annotations from driving sequences 91 and 51 from the KITTI dataset. In this example, we used 20 vans,
15 pedestrians and 25 cars. They are depicted in that order on the axis of each matrix. As can be seen from the bars on top of the matrices, the clustering
performs better using our measure than for the RMSE. Both algorithms segment people into a single class correctly, however, our measure provides better
separation between cars and vans.



Fig. 8. This image shows two examples of vans that are hard to match
properly shown in different colors. This explains bad matching score in the
top-left corner of Fig. 7. The points of these vans have different density, the
vans have different shape and point in different directions. A human would
likely also struggle to decide that these clouds should belong to one class.

compute the similarity value using our approach between all
pairs and store the values in a similarity matrix:

PN,N =


p(C1, C1) p(C1, C2) · · · p(C1, CN )
p(C2, C1) p(C2, C2) · · · p(C2, CN )

...
...

. . .
...

p(CN , C1) p(CN , C2) · · · p(CN , CN ),

 (3)

where p(Ca, Cb) refers to the similarity score between point
clouds Ca and Cb, while N being the number of objects.
For a comparison, we perform the clustering also based on
the RMSE resulting from ICP’s point-to-point metric. Fig. 7
illustrate two visual representations of such a matrix with two
and three different types of objects. The left image matrix
always corresponds to the similarity matrix of our approach
while the one on the right corresponds to the RMSE-based
matrix. In the images, dark blue corresponds to p = 0, while
light green to p = 1.

We sorted the point clouds according to the class of
scanned object and thus distinct squares in the matching
matrix indicate that the measure can be used for clustering
objects. To verify this, we performed spectral clustering [10]
with both scores and test if the different classes of objects
are correctly found given manually labeled ground truth data.

We used out-of-the-box spectral clustering as a simple
approach to group objects. There may be more sophisticated
ways for unsupervised clustering of 3D objects but this
experiment suggests that our score serves as a better indicator
than point-to-point RSME of two point clouds actually match
well.

Fig. 7 shows that the classes are separated in a meaningful
way when using our method. A failure case for our (and the
point-to-point) approach is depicted in Fig. 8. As can be seen,
these two wrongly grouped examples of two vans driving
in opposite direction are actually hard to match clouds.
The clouds are rather sparse, both objects have somewhat
different shapes (front and back), and drive into different
directions. When performing spectral clustering based on
the RMSE similarity matrix, the performance drops clearly.
This suggests that our method supports such similarity-
based clustering of objects better than the RMSE metric and
provides enough information for an unsupervised clustering
algorithm to find classes from unlabeled data.

V. CONCLUSION

Registering 3D point clouds is a frequently performed
task in various robotics applications. In this paper, we
propose a novel way for analyzing the alignment quality
of registered point clouds of individual objects. We provide
a fast to compute, probabilistic similarity measure for any
pair of registered point clouds of objects and do not rely
on any specific registration or segmentation procedure. Our
approach uses projections of the point clouds alongside
with information about the free space that surrounds the
scanned objects to evaluate a match. As our experiments
suggest, the probabilistic measure is well-suited to analyze
matches, supports tracking dynamic objects, and even allows
us to cluster point clouds of different types of objects in an
unsupervised way better than a point-to-point metric would
do.
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