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Abstract

Image classification are critically dependent on the features. In this paper,

we perform an empirical feature evaluation task for building facade images. Fea-

ture sets we choose are basic features, color features, histogram features, peucker

features, texture features, and SIFT features. We present an approach for region-

wise labeling using an efficient randomized decision forest classifier and local

features. We conduct our experiments with building facade image classification

with eTRIMS database, where our focus is the object classes building, car, door,

pavement, road, sky, vegetation, and window.
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1. Introduction

Despite the substantial advances made during the past decade, the classifi-

cation of building facade images remains a challenging problem that receives a

great deal of attention in the photogrammetry community (Rottensteiner et al.,

2007; Korč and Förstner, 2008; Fröhlich et al., 2010; Kluckner and Bischof, 2010;
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Teboul et al., 2010). Image classification are critically dependent on the features.

Typical feature evaluation can be divided into two stages. First, image processing

is used to extract a set of robust features that implicitly contains the information

needed to make class-specific decisions while resisting extraneous effects such

as changing object appearance, pose, illumination and background clutter. Sec-

ond, a machine learning based classifier uses the features to make region-level

decisions, often followed by post-processing to merge nearby decisions. Instead

of using some unsupervised techniques, which bare generalization problem, it is

popular way that the classifier is trained using a set of labeled training examples.

The overall performance depends critically on all three elements: the feature set,

the classifier & learning method, and the training set. In this paper, we focus on

evaluating different feature sets.

Recently, Korč and Förstner (2009) published an image dataset showing urban

buildings in their environment. It allows benchmarking of facade image classifi-

cation, and therefore the repeatable comparison of different approaches. Most of

the images of this data set show facades in Switzerland and Germany. Regarding

terrestrial facade images, the most dominant objects are the building itself, the

window, vegetation, and the sky. Fig. 1 demonstrates the variability of the object

data.

In this work, we empirically investigate extended feature sets give state of the

art performance on eTRIMS dataset (Korč and Förstner, 2009). We show random

forest gives good classification results on building facade images, and evaluate

classification results by counting corrected labeled regions. The remainder of the

paper is organized as follow. Section 2 reviews some existing methods for feature
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Figure 1: Example images from benchmark data set (Korč and Förstner, 2009).

evaluation and building facade image classification. Then, we introduce feature

sets for evaluation in the scope of the paper in Section 3. Randomized decision

forest classifier for performing image classification is described in Section 4. In

Section 5, we show our results and discuss the effect of each feature sets with

respect to the classification of facade images. We finally conclude with a brief

summary in Section 6.

2. Related works

Previous works on building facade classification mostly regard the facade clas-

sification problem as multiple object detection tasks. Building facade detection is

a very active research area in photogrammtery and computer vision. A feature
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selection scheme with Adaboost for detecting buildings and building parts is pre-

sented in Drauschke and Förstner (2008) . In recent approaches, graphical models

are often used for integrating further information about the content of the whole

scene (Kumar and Hebert, 2003; Verbeek and Triggs, 2007). In another paradigm,

the bag of words, objects are detected by the evaluation of histograms of basic im-

age features from a dictionary (Sivic et al., 2005). Unfortunately, both approaches

have not been tested with high resolution building images. Furthermore, the bag

of words approaches have not applied to multifarious categories as building, and

it is extremely slow and often the most time consuming part of the whole sys-

tem, even with optimizations such as kd-trees, or hierarchical clusters (Nister and

Stewenius, 2006).

Support vector machine (SVM) is widely considered as a good classifier. Schnitzs-

pan et al. (2008) propose hierarchical support vector random fields that SVM is

used as a classifier for unary potentials in conditional random field framework.

While the training and cross-validation steps in SVM are time consuming, ran-

domized decision forest (RDF) (Breiman, 2001) is introduced to significantly

speed up the learning and prediction process. Existing work has shown the power

of a randomized decision forest as a classifier (Bosch et al., 2007; Lepetit et al.,

2005; Maree et al., 2005). The use of a randomized decision forest for semantic

segmentation was previously investigated in Shotton et al. (2008); Dumont et al.

(2009); Fröhlich et al. (2010). These approaches utilize simple color histogram

features or pixel differences. Fröhlich et al. (2010) present an approach using

an randomized decision forest and local opponent-SIFT features (van de Sande

et al., 2010) for pixelwise labeling of facade images. Teboul et al. (2010) perform
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multi-class facade segmentation by combining a machine learning approach with

procedural modeling as a shape prior. Generic shape grammars are constrained

so as to express buildings only. Randomized forests are used to determine a rela-

tionship between the semantic elements of the grammar and the observed image

support. Drauschke and Mayer (2010) also use random forest as one of the clas-

sifiers to evaluate the potential of seven texture filter banks for the pixel-based

classification of terrestrial facade images.

3. Feature sets

Image classification are critically dependent on the features that they use,

which must capture the information needed to identify objects of the class despite

highly variable object appearance, lighting, clutter, background texture, etc. Ad-

vances in feature sets have been a constant source of progress over the past decade.

In this work, we derive 6 feature sets from each region obtained from some un-

supervised segmentation algorithms, such as mean shift (Comaniciu and Meer,

2002), watershed (Vincent and Soille, 1991), or graph-based method (Felzen-

szwalb and Huttenlocher, 2004).

Basic features f 1. First feature set f 1 are basic features including (1). number of

components of the region (C); (2). number of holes of the region (H); (3). Euler

characteristic for planar figures (Lakatos, 1976) (E = C −H); (4). area (A); (5).

perimeter (U ); (6). form factor (F = U2/(4πA)); (7). height of bounding box;

(8). width of bounding box; (9). area ratio between region and its bounding box;

(10). height portion of center; (11). width portion of center.
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Color features f 2. For representing spectral information of the region, we use

9 color features (Barnard et al., 2003) as second feature set f 2: the mean and

the standard deviation of R-channel, G-channel and B-channel respectively in the

RGB color space; and the mean of H-channel, S-channel and V-channel respec-

tively in the HSV color space.

Histogram features f 3. We also include features derived from the gradient his-

tograms as third feature set f 3, which has been proposed by Korč and Förstner

(2008). We determine gradient and its orientation and its magnitude. The his-

tograms are determined for the 3 colors R, G and B respectively in the region.

Then, we derive the mean, the variance and the entropy from each histogram as

features.

Peucker features f 4. Peucker features are derived from generalization of the re-

gion’s border as fourth feature set f 4, and represent parallelity or orthogonality of

the border segments. We select the four points of the boundary which are farthest

away from each other. From this polygon region with four corners, we derive 3

central moments, and eigenvalues in direction of major and minor axis, aspect ra-

tio of eigenvalues, orientation of polygon region, coverage of polygon region, and

4 angles of polygon region boundary points.

Texture features f 5. We use texture features derived from the Walsh transform

(Petrou and Bosdogianni, 1999; Lazaridis and Petrou, 2006) as fifth feature set

f 5, as features from Walsh filters are among the best texture features from the

filter banks (Drauschke and Mayer, 2010). We determine the magnitude of the
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response of 9 Walsh filters. For each of the 9 filters, we determine mean and

standard deviation for each region.

SIFT features f 6. Sixth feature set f 6 are mean SIFT (Scale-Invariant Feature

Transform) descriptors (Lowe, 2004) of the image region. SIFT descriptors are

extracted for each pixel of the region at a fixed scale and orientation using the fast

SIFT framework found in Vedaldi and Fulkerson (2008). The extracted descrip-

tors are then averaged into one l1-normalized descriptor vector for each region.

These features are roughly listed in Table 1.

Table 1: List of derived features from image regions. The number indicates feature numbers in

each feature set.

f 1 basic features (11)

region area and perimeter, compactness and aspect ratio, etc.

f 2 color features (9)

mean and standard deviation of the RGB and the HSV color spaces

f 3 histogram features (9)

mean, variance and entropy of histogram from region’s gradients

f 4 peucker features (12)

moments and eigenvalues of a region as orthogonality or parallelity

f 5 texture features (18)

texture features derived from the Walsh transform

f 6 SIFT features (128)

mean SIFT descriptor features
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4. Randomized decision forest

Features are evaluated by a classifier which operates on the regions defined by

unsupervised segmentation. we take randomized decision forest (RDF) (Breiman,

2001) as the classifier for performing feature evaluation. In order to train the clas-

sifier, each region is assigned the most frequent class label it contains. Existing

work has shown the power of decision forests as classifiers (Bosch et al., 2007;

Lepetit et al., 2005; Maree et al., 2005). We begin with a brief review of random-

ized decision forest (Amit and Geman, 1997; Geurts et al., 2006). As illustrated in

Figure 2, a decision forest is an ensemble of T decision trees. A learned class dis-

tribution P (c | n) is associated with each node n in the tree. A decision tree works

by recursively branching left or right down the tree according to a learned binary

function of the feature vector, until a leaf node l is reached. The whole forest

achieves an accurate and robust classification by averaging the class distributions

over the leaf nodes L = (l1, · · · , lt, · · · , lT ) reached for all T trees:

P (c | L) =
1

T

T∑
t=1

P (c | lt) (1)

We use the extremely randomized trees algorithm (Geurts et al., 2006) to learn

binary forests. Each tree is trained separately on a small random subset I ′ ⊆ I of

the training data I . Learning proceeds recursively, splitting the training data In at

node n into left and right subsets Il and Ir according to a threshold δ of some split

function g of the feature vector h.

Il = {i ∈ In | g(hi) < δ} (2)

Ir = In \ Il (3)
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Figure 2: Decision forest. A forest consists of T decision trees. A feature vector is classified by

descending each tree. This gives, for each tree, a path from root to leaf, and a class distribution at

the leaf. As an illustration, we highlight the root to leaf paths (yellow) and class distributions (red)

for one input feature vector. (Figure courtesy by Jamie Shotton (Shotton et al., 2008).)

At each split node, several candidates for function g and threshold δ are generated

randomly, and the one that maximizes the expected gain in information about the

node categories is chosen (Lepetit et al., 2005):

∆E = − Il
In
E(Il)−

Ir
In
E(Ir) (4)

where E(I) is the Shannon entropy of the classes in the set of examples I . The

recursive training continues to a maximum depthD or until no further information

gain is possible. The class distributions P (c | n) are estimated empirically as a

histogram of the class labels ci of the training examples i that reached node n.
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5. Experimental Results

We conduct experiments to evaluate the performance of different image fea-

ture sets on the recently published dataset: the 8-class eTRIMS Database (Korč

and Förstner, 2009). In the experiments, we take the ground-truth label of a region

to be the majority vote of the ground-truth pixel labels. We randomly divide the

images into training and test data sets.

5.1. eTRIMS Database

We start with the eTRIMS 8-class database which is a comprehensive and

complex dataset consisting of 60 building facade images, mainly taken from Basel,

Berlin, Bonn, and Heidelberg, labeled with 8 classes: building, car, door, pave-

ment, road, sky, vegetation, window. These classes are typical objects which can

appear in images of building facades. The ground-truth labeling is approximate

(with foreground labels often overlapping background objects).

We segment the facade images using mean shift algorithm (Comaniciu and

Meer, 2002), tuned to give approximately 480 regions per image. In all 60 images,

we extract around 29 600 regions. We have following statistics. Almost 33%

of all the segmented regions get the classlabel building. 25% of all regions get

the classlabel window. These statistics are very comprehensive, because facade

images typically show buildings typically contain many windows. Furthermore,

19% of the regions get the classlabel vegetation, and 2% belong to sky, and the last

21% of the regions are spread over most of other classes. In all these experiments,

we randomly divide the images into a training set with 40 images and a testing set

with 20 images.
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Table 2: Average accuracy of RDF classifier on each feature set of eTRIMS database (Korč and

Förstner, 2009).

feature set f 1 f 2 f 3 f 4 f 5 f 6

accuracy 43.8% 49.6% 36.5% 40.9% 27.9% 54.1%

5.2. Evaluation with RDF classifier

In the following, we first evaluate with RDF classifier on each feature set

f 1,f 2,f 3,f 4,f 5, and f 6. Then, we evaluate with RDF classifier on the com-

bination of feature sets, and show that RDF gives fair results on building facade

images.

The overall classification accuracy is listed in Table 2, when applying RDF

classifier on each feature set. The number of decision trees is chosen as T =

250. In all the following experiments, we always assume maximum depth of each

decision tree D = 7. A random classifier for 8 classes, the expected classification

accuracy is 12.5%. Fig. 3 shows the corresponding classification results over all 8

classes. Each class is normalized to 100%.

From Fig. 3, we observe that each feature set performs reasonable results on

building, window, and vegetation classes. Color features f 2 perform better than

other features on vegetation class because most vegetation parts are homogeneous

regions. For other classes, each feature set performs not good. Relatively, peucker

features f 4 perform better than other feature sets on minor classes. SIFT features

f 6 perform better than other features on average.

We also make the experiments using leave-one-out method. The overall clas-
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(a) On feature set f1 (Left), f2 (Right)

(b) On feature set f3 (Left), f4 (Right)

(c) On feature set f5 (Left), f6 (Right)

Figure 3: Accuracy of each class on each feature set, with each class is normalized to 100.
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Table 3: Average accuracy of RDF classifier on the feature sets. Feature sets −f i mean the rest of

all 6 feature sets except f i is used, i = 1, · · · , 6.

feature sets −f 1 −f 2 −f 3 −f 4 −f 5 −f 6

accuracy 58.1% 57.2% 58.8% 58.1% 58.3% 53.0%

sification accuracy is listed in Table 3. Feature sets −f i mean the rest of all 6

feature sets except f i is used, i = 1, · · · , 6. The number of decision trees is

chosen as T = 250.

In the following, we make use of all the feature sets f 1,f 2,f 3,f 4,f 5,f 6.

We run experiments 5 times, and obtain overall averaging classification accuracy

58.8% (±0.24). The number of decision trees is also chosen as T = 250. Fig. 4

shows the classification results over all 8 classes. The classification accuracy with

Figure 4: Accuracy of each class (a median accuracy result is shown here). All feature sets

f1,f2,f3,f4,f5,f6 are used, with each class is normalized to 100.
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respect to numbers of decision trees T for training are shown in Fig. 5. While

increasing the number of decision trees, the classification accuracy also increases.

After 250 iteration, the accuracy converges. So we choose T = 250 for perform-

ing experiments above.

Figure 5: Classification accuracy with respect to numbers of decision trees for training. All feature

sets f1,f2,f3,f4,f5,f6 are used.

Fig. 6 and Fig. 7 present some result images of RDF method. The black re-

gions in all the result images and ground truth images correspond to background.

The quality inspection of the results in Fig. 6 shows that RDF classifier yields good

results. In Fig. 7, there exists some misclassification for each class. For example,

the incorrect results at windows are often due to the reflectance of vegetation and

sky in the window panes. Most sky regions are classified correctly. However, sky

region is assigned label car in one image (last row in Fig. 7). This can be resolved

simply by introducing some kind of spatial prior (Gould et al., 2008), such as sky
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Table 4: Accuracy of RDF classifier on the eTRIMS 8-class database (Korč and Förstner, 2009).

The confusion matrix shows the classification accuracy for each class (columns) and is column-

normalized to sum to 100%. Column labels indicate the true class, and row labels the predicted

class.

build. car door pave. road sky veget. window

build. 60 22 46 40 40 29 11 24

car 8 40 0 16 20 2 5 1

door 2 1 15 0 0 0 1 2

pave. 2 3 0 12 14 5 1 0

road 2 1 0 4 23 2 1 0

sky 1 2 0 4 3 48 0 1

veget. 9 29 8 16 0 7 76 4

window 16 2 31 8 0 7 5 68

is above the building, road and pavement are below the building, car is above the

road, and window is surrounded by building. A full confusion matrix summariz-

ing RDF classification results over all 8 classes is given in Table 4, showing the

performance of this method.

5.3. Classification results with watershed segmentation and RDF classifier

To test whether the classification result mainly benefits from the mean shift

segmentation method, not the feature sets we use, we also employ another un-

supervised segmentation method, i.e. watershed algorithm (Vincent and Soille,

1991), to segment the facade images.
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Figure 6: Example images of eTRIMS database and classification results based on a randomized

decision forest. (Left: test image, middle: result, right: ground truth.)
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Figure 7: Example images of eTRIMS database and classification results based on a randomized

decision forest. (Left: test image, middle: result, right: ground truth.)
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The overall classification accuracy is 60.3%, with RDF classifier on all the

feature sets and the number of decision trees chosen as T = 250. Fig. 8 shows

the classification results over all 8 classes. In comparison with Fig. 4, accuracy

for each class remains similar, which shows that feature sets are robust to produce

good classification results.

Figure 8: Accuracy of each class. All feature sets f1,f2,f3,f4,f5,f6 are used, with each class

is normalized to 100.

5.4. Discussion

With respect to the three most important classes building, window, and vegeta-

tion, we are satisfied with our classification results. But our multi-class approach

does not perform very well for most of the other classes. Our classification scheme

is faced with a dramatic inequality between the sizes of the classes. Almost 60%

of the data is covered by only 2 classes, and the rest is spread over the rest classes.

And for the classes like car and door, Gestalt features (Bileschi and Wolf, 2007)
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may play major role in a good classification performance. We also believe sym-

metry and repetition features are vital for classifying window class.

In this paper, features are extracted at local scale. Classification results are

achieved from bottom up on these local features by classifiers. This factor leads

to noisy boundaries in the example images. To enforce consistency, a Markov or

conditional random field (Shotton et al., 2006) is often introduced for refinement,

which would likely improve the performance.

6. Conclusions

We evaluate the performance of seven feature sets with respect to region-based

classification of facade images. The feature sets include basic features, color fea-

tures, histogram features, peucker features, texture features, and SIFT features.

We use randomized decision forest (RDF) to perform the classification scheme.

In our experiments on eTRIMS dataset (Korč and Förstner, 2009), we have shown

that RDF produces fair classification results.

The results show that these features and a local classifier are not sufficient. As

future work, we are interested in evaluating more features, such as Gestalt features

(Bileschi and Wolf, 2007) and other descriptor features (van de Sande et al., 2010),

for building facade images. In order to recover more precise boundaries, we will

put our current work into conditional random field framework (Shotton et al.,

2006) by including neiboring region information in the pairwise potential of the

model, which allows us to reduce misclassification that occurs near the edges of

objects.
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