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Abstract

Plane detection is a prerequisite to a wide variety of vision tasks. RANdom
SAmple Consensus (RANSAC) algorithm is widely used for plane detection
in point cloud data. Minimum description length (MDL) principle is used to
deal with several competing hypothesis. This paper presents a new approach
to the plane detection by integrating RANSAC and MDL. The method could
avoid detecting wrong planes due to the complex geometry of the 3D data.
The paper tests the performance of proposed method on both synthetic and
real data.

1.1 Introduction

Due to their abundance in man-made environments, as well as to their at-
tractive geometric properties, planes are commonly used in various vision
tasks. As reported in the literature, planes have been successfully employed
in diverse applications such as grouping (Van Gool et al., 1998), 3D recon-
struction and scene analysis (Kaucic et al., 2001; Kahler and Denzler, 2006),
object recognition (Rothwell et al., 1995), segmentation (Biosca and Lerma,
2008), and augmented reality (Simon et al., 2000). A plane segmentation of
point clouds based on fuzzy clustering methods is proposed in (Biosca and
Lerma, 2008). (Kahler and Denzler, 2006) presents a method to detect physi-
cally present 3D planes in scenes imaged with a handheld camera. (Poppinga
et al., 2008) proposes a fast plane detection and polygonalization in noisy 3D
range images. (Leonardis et al., 1997) finds shapes by concurrently growing
different seed primitives from which a suitable subset is selected according
to minimum description length (MDL) criterion.

In computer vision, one of the most widely known methodologies for plane
detection is the RANdom SAmple Consensus (RANSAC) algorithm (Fischler
and Bolles, 1981). It has been proven to successfully detect planes in 2D as
well as 3D. RANSAC is reliable even in the presence of a high proportion
of outliers. Its principle is well explained by (Fischler and Bolles, 1981;



Figure 1.1: 14 points in a plane: 9 points on a straight line and 5 outliers?

McGlone et al., 2004). In the field of automatic buildings modeling based on
Lidar data, many authors suggest its use for achieving different tasks. For
example, (Brenner et al., 2001) use RANSAC algorithm for detecting the
building roof planes. (Schnabel et al., 2007) use RANSAC to detect basic
shapes, such as planes, spheres, cylinders, cones, in point clouds. In our case,
RANSAC algorithm is used with the aim of plane detection.

The following paper presents a new approach to the plane detection in
point cloud data by integrating RANSAC and MDL. In section 1.2 we first
introduce the principle of MDL encoding using a simple example for inter-
preting a set of points in a plane. In section 1.3 we derive the description
length of interpreting points in 3D space as a generalization of section 1.2.
Section 1.4 gives the basic approach of RANSAC algorithm for plane detec-
tion. Section 1.5 gives the proposed plane detection method by integrating
RANSAC and MDL. The experimental result is given in section 1.6, followed
by the concluding remarks.

1.2 Interpreting a Set of Points in a Plane

We first introduce the principle of minimum description length (MDL) en-
coding using a simple example. Let n0 points xi, yi in a plane be given as in
Fig. 1.1. The scope is to explain the data in the most intuitive manner. This
figure suggests the larger number n = 9 of the n0 = 14 points to approxi-
mately sit on a straight line, while the other n̄ = n0 − n = 5 points do not
belong to this line. Fig. 1.2 shows a different pattern, where we are not sure
whether we should assume the 5 points in the middle of the figure to belong
to a straight line or whether we rather should treat the figure as consisting
of 14 randomly distributed points or even 3 vertical nearly straight lines.

The situation is representative for a large class of interpretation tasks: 1.
We have to deal with several competing hypothesis which have a different
structure; 2. We have to deal with a significant amount of spurious data;



Figure 1.2: 14 points in a plane: random set or 5 points on a straight line
and 9 outliers?

3. There may be no explanation of the data within the assumed set of
hypothesis.

The problem of explaining the data sets in Fig. 1.1 and Fig. 1.2 lies in
the fact that the pure fit between a selected number of data points and a
set of hypothesized straight lines, say, is not sufficient as a quality measure,
as this fit can be made perfect by restricting to just 2 data points or by
increasing the number of postulated straight lines. Therefore the evaluation
of an explanation has to balance the fit between data and model and the
complexity of the model. The principle of description length encoding fulfills
these requirements.

We want to derive the description lengths in bits for the case when no
model, only outliers, is assumed with the case when the data essentially
are assumed to consist of points sitting approximately on a straight line
admitting some outliers. Let the coordinates be given up to a resolution of ε
(e. g. 1 pixel) and be within a range R (e. g. 256 pixel). Then lb(R/ε) bits
are necessary to describe one coordinate, here lb(·) = log2(·). The description
length for the n0 points, when assuming outliers (O), therefore is

Φ0 = #bits(points | O) = n0 · 2lb(R/ε) (1.1)

thus 2 ·n0 · 8 = 16n0 in the case of no points in a 256 · 256 pixel image or 224
bits on the plot of Fig. 1.1.

If we now assume n points to sit on a straight line and the other n̄ = n0−n
points to be outliers (1L+O), we need

Φ1 = #bits(points | 1L+O) = n0 + n̄ · 2lb(R/ε) +[
n · lb(R/ε) +

n∑
i=1

{
1

2ln2
· (vi
σ

)2 + lb(σ/ε) +
1

2
lb2π

}]
+ 2lb(R/ε) (1.2)

where the first term represents the n0 bits for specifying whether a point is
good or bad, the second term is the number of bits to describe the bad points,



the third term is the number of bits to describe the good points and the last
term is needed to describe the 2 parameters of the straight line, which is the
number of bits to describe the model complexity, a variation of (Rissanen,
1978). We assumed the good points to randomly sit on the straight line which
leads to the first term in the brackets, and to have Gaussian distributed
derivations vi from the line with standard derivation σ. (Förstner, 1989)
shows that 1

2ln2
· (x−µ

σ
)2 + lb(σ/ε) + 1

2
lb2π bits are necessary to describe a

Gaussian variable x ∼ N(µ, σ2), when µ and σ2 are given and if it is rounded
to multiples of ε.

In the example of Fig. 1.1, with n = 9 and n̄ = 5 we on an average need:

Φ1 = n0 + n̄ · 2lb(R/ε) + n

(
lb(R/ε) + lb(σ/ε) +

1

2
lb2π

)
+ 2lb(R/ε)

= 14 + 5 · 2 · 8 + 9 · (8 + 1 + 2.04) + 2.8 ≈ 209bits (1.3)

to code the point set, when assuming a straight line with outliers. This is less
than the 224 bits, thus supporting this explanation. For Fig. 1.2 we however
need 229 bits, assuming 5 points sitting on a straight line, which obviously
is no explanation for the data.

1.3 Interpreting a Set of Points in 3D Space

In this section, we want to derive the description length of interpreting points
in 3D space. Given a set of points, we assume several competing hypothesis,
here namely, outliers (O), 1 plane and outliers (1P+O), 2 planes and outliers
(2P+O), 3 planes and outliers (3P+O), ect..

Let n0 points xi, yi, zi be given in a 3D coordinate and the coordinates be
given up to a resolution of ε and be within range R. The description length
for the n0 points, when assuming outliers (O), therefore is

Φ0 = #bits(points | O) = n0 · (3lb(R/ε)) (1.4)

where lb(R/ε) bits are necessary to describe one coordinate.
If we now assume n points to sit on a plane and the other n̄ = n0 − n

points to be outliers, we need

Φ1 = #bits(points | 1P +O) = n0 + n̄ · 3lb(R/ε) + 3lb(R/ε) + n · 2lb(R/ε)[
n∑
i=1

{
1

2ln2
· (x− µ)TΣ−1(x− µ) +

1

2
lb(|Σ| /ε6) +

k

2
lb2π

}]
(1.5)

where the first term represents the n0 bits for specifying whether a point
is good or bad, the second term is the number of bits to describe the bad



points, the third term is the number of bits to describe the 3 parameters of
the plane, which is the number of bits to describe the model complexity, a
variation of (Rissanen, 1978). We assumed the good points to randomly sit on
the plane which leads to the fourth term, and to have Gaussian distribution
x ∼ N(µ,Σ). We show in Appendix that 1

2ln2
· (x − µ)TΣ−1(x − µ) +

1
2
lb(|Σ| /ε6) + k

2
lb2π bits are necessary to describe a Gaussian variable x ∼

N(µ,Σ), where x = (x1, · · · , xk), µ and Σ are given, and if it is rounded to
multiples of ε.

If we now assume n1 points to sit on a plane, n2 points to sit on the
second plane, and the other n̄ = n0 − n1 − n2 points to be outliers, we need

Φ2 = #bits(points | 2P +O) = n0 + n̄ · 3lb(R/ε) + 6lb(R/ε)

+n1 · 2lb(R/ε) + n2 · 2lb(R/ε)[
n1+n2∑
i=1

{
1

2ln2
· (x− µ)TΣ−1(x− µ) +

1

2
lb(|Σ| /ε6) +

k

2
lb2π

}]
(1.6)

where the first term represents the n0 bits for specifying whether a point
is good or bad, the second term is the number of bits to describe the bad
points, the third term is the number of bits to describe the parameters of
two planes. We assumed the n1 good points to randomly sit on one plane
which leads to the fourth term, and the n2 good points to randomly sit on the
other plane which leads to the fifth term, and to have Gaussian distribution
x ∼ N(µ,Σ) which leads to the sixth term.

Similarly, assume n1 points to sit on a plane, n2 points to sit on the second
plane, n3 points to sit on the third plane, and the other n̄ = n0−n1−n2−n3

points to be outliers, we need

Φ3 = #bits(points | 3P +O) = n0 + n̄ · 3lb(R/ε) + 9lb(R/ε)

+n1 · 2lb(R/ε) + n2 · 2lb(R/ε) + n3 · 2lb(R/ε)[
n1+n2+n3∑

i=1

{
1

2ln2
· (x− µ)TΣ−1(x− µ) +

1

2
lb(|Σ| /ε6) +

k

2
lb2π

}]
(1.7)

where the first term represents the n0 bits for specifying whether a point
is good or bad, the second term is the number of bits to describe the bad
points, the third term is the number of bits to describe the parameters of
three planes. We assumed the n1, n2, n3 good points to randomly sit on
respective planes which leads to the fourth, fifth, and sixth terms, and to
have Gaussian distribution x ∼ N(µ,Σ) which leads to the seventh term.

This procedure can generalize to other shape primitives, such as sphere,
cylinder, cone, ect..



1.4 RANSAC Algorithm for Plane Detection

The principle of RANSAC algorithm consists to search the best plane among
a 3D point cloud. In the same time, it reduces the number of iterations, even
if the number of points is very large. For this purpose, it selects randomly
three points and it calculates the parameters of the corresponding plane.
Then it detects all points of the original cloud belonging to the calculated
plane, according to a given threshold. Afterwards, it repeats these procedures
N times; in each one, it compares the obtained result with the last saved one.
If the new result is better, then it replaces the saved result by the new one.

This algorithm needs four input data which are:

• The 3D point cloud (point-list) which is a matrix of three coordinate
columns X, Y and Z;

• The tolerance threshold of distance t between the chosen plane and the
other points. Its value is related to the altimetric accuracy of the point
cloud;

• The forseeable-support is the maximum probable number of points be-
longing to the same plane. It is deduced from the point density and
the maximum foreseeable roof plane surface.

• The probability α is a minimum probability of finding at least one good
set of observations in N trials. It lies usually between 0.90 and 0.99.

Algorithm 1 details the pseudocode of RANSAC algorithm.
In Algorithm 1, ε is a percentage of observations allowed to be erroneous;

the function pts2plane calculates the plane parameters from three chosen
points. The function dist2plane calculates the signed distances between point
set and given plane.

1.5 Proposed Plane Detection Algorithm

In this section, we show how we detect planes in 3D point cloud. RANSAC is
applied to extract planes. The basic idea is to estimate the model parameters
using the minimum number of data possible and then to check which of the
remaining data points fit the model estimated, as shown in section 1.4.

Based on the observation that RANSAC may find wrong planes if the data
has a complex geometry, we use the following scheme for plane extraction:

• The point cloud is partitioned into small rectangular blocks to make
sure that there will be a maximum of three planes in one block.



Algorithm 1 RANSAC for plane detection

1: bestSupport = 0; bestPlane(3,1) = [0, 0, 0]
2: bestStd = ∞; i = 0
3: ε = 1 - forseeable-support/length(point-list)
4: N = round(log(1− α)/log(1− (1− ε)3))
5: while i ≤ N do
6: j = pick 3 points randomly among (point-list)
7: pl = pts2plane(j)
8: dis = dist2plane(pl, point-list)
9: s = find(abs(dis) ≤ t)

10: st = Standard-deviation(s)
11: if (length(s) > bestSupport) or (length(s) = bestSupport and st <

bestStd) then
12: bestSupport = length(s)
13: bestPlane = pl; bestStd = st
14: end if
15: i = i+ 1
16: end while

• RANSAC is applied to extract planes in each block.

• The MDL principle is employed to decide how many planes are in each
block. Eventually, there are zero to three planes in each block.

Further, we can apply region growing to merge the neighboring planes within
certain local range. Geometric features are then extracted for interpreting
man-made objects (Schmittwilken et al., 2009).

Algorithm 2 details the pseudocode of above proposed algorithm.

1.6 Experimental Results

In this section, we illustrate the results of the proposed plane detection
method obtained with some synthetic and real data. The real-world en-
trance stair data is acquired from a terrestrial laser scanner. The synthetic
building facade data is derived from the attribute grammar by a random
based derivation (Schmittwilken et al., 2009).

We have applied our plane detection method to real 3D range data of an
entrance stair. We present some of the results of a data set of about 16473
points (cf. Fig. 1.3). Fig. 1.4 shows the results of three planes detected
by our method. The points belonging to the detected plane are removed, as



Algorithm 2 Proposed algorithm for plane detection

1: partition point cloud into rectangular blocks
2: Assume: a maximum of three planes in each block
3: Initialize: Φ0,Φ1,Φ2,Φ3

4: for each block do
5: calculate Φ0, as in eq. 1.4
6: apply RANSAC 1 to extract a plane
7: calculate Φ1, as in eq. 1.5
8: remove the points belonging to the first plane
9: apply RANSAC to extract a plane

10: calculate Φ2, as in eq. 1.6
11: remove the points belonging to the second plane
12: apply RANSAC to extract a plane
13: calculate Φ3, as in eq. 1.7
14: calculate i∗ = argi max exp(−Φi)∑3

i=0 exp(−Φi)
, i∗ planes detected

15: end for

stated in Algorithm 2. Fig. 1.5 shows the results of two planes detected by
our method.

We have also tested our algorithm on several synthetic building facade
data sets. We exemplarily present one of the tested synthetic data sets (cf.
Fig. 1.6). With original building facade of 0.4 Million points, Fig. 1.6 top
left, 2165 planes are detected, Fig. 1.6 top right. The point cloud is divided
into nonoverlapping 32×32 rectangular blocks. Fig. 1.6 bottom shows zoom-
in planes of a window and the entrance. The plane normal vectors are also
shown and colors here are for visualization purpose.

1.7 Conclusion

We propose a new approach to the plane detection in point cloud data. We
derive the description length of interpreting points in 3D space, and review
the basic RANSAC approach for plane detection. By integrating RANSAC
and MDL, the approach could avoid detecting wrong planes due to the com-
plex geometry of the 3D data. The proposed approach shows good perfor-
mance on both synthetic and real data. Future work will be establishing a
unified description length framework of other basic shape primitives, such as
sphere, cylinder, and cone.
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Figure 1.3: Input point cloud of a stair.
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RANSAC results for 3D plane estimation
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RANSAC results for 3D plane estimation

 

Estimated Iniliers
Estimated Outliers

5.08
5.1

5.12
5.14

5.16
5.18

5.2

6.68

6.7

6.72

6.74

6.76

6.78

6.8

6.82

6.84

6.86

6.88

−1.18

−1.16

−1.14

−1.12

−1.1

 
RANSAC results for 3D plane estimation

 

Estimated Iniliers
Estimated Outliers

Figure 1.4: Left: First plane detected in one block of stair (Fig. 1.3).
Middle: Second plane detected. Right: Third plane detected
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RANSAC results for 3D plane estimation
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Figure 1.5: Left: First plane detected in one block of stair (Fig. 1.3).
Right: Second plane detected.

Appendix

The theory of information was developed by Shannon (Shannon, 1948) for
analyzing communication systems. Specifically it deals with measuring the
information content of a message and the efficiency of sending the message
over a channel which possibly is noisy. The theory is of a statistical nature
as it only is concerned with the statistical properties of the message not with
its meaning.

According to Shannon a discrete information source can be modeled as a
Markov-Process, which randomly selects letters out of a prespecified alpha-
bet. The information, which is transmitted per letter, is the larger the less
likely the letter is selected and can be interpreted as the degree of surprise
when the letter reaches the receiver or as the uncertainty when no knowledge
about the letter is available. In the most simple case the transmitted letters
are independent. Let P (a = wi) be the probability that the letter a (a ran-
dom variable) is equal to the value wi. Then the gain of information when
being told wi, i. e. the information of wi is

I(a = wi) = I(wi) = −lbP (wi) (1.8)

The unit of information is ’bit’ here.
In a similar manner one can measure the information which is obtained

when being told wi, but already knows the value of another letter b = wj.



Figure 1.6: Top Left: Input point cloud of building facade, with color coded
ground truth. Top Right: Planes detected of building facade. Bottom
Left: Zoom-in part of window planes. Bottom Right: Zoom-in part of
stair and door planes.



With the conditional probability P (wi | wj) we obtain the conditional infor-
mation

I(wi | wj) = I(wi, wj)− I(wj) (1.9)

In case the events a = wi and b = wj are independent, P (wi | wj) = P (wi),
the information we obtain is identical to that without preknowledge. If how-
ever, the events are dependent the information obtained when being told wi
is smaller than without preknowledge.

Assume a random variable being uniform distribution x ∼ U [a, b], ac-
cording to Eq. 1.8, we have

IU(x | a, b) = lb(b− a) (1.10)

Similar way, assume a random variable being Gaussian distribution x ∼
N(µ, σ2), we have

IN(x | µ, σ2) =
1

2ln2
· (x− µ

σ
)2 +

1

2
lb2πσ2 (1.11)

If we round a Gaussian random variable x to a resolution of ε, yielding
xr, then, using Eq. 1.9,

Ir(x | µ, σ2, ε) = IN(x | µ, σ2)− IU(− ε
2
,
ε

2
)

=
1

2ln2
· (x− µ

σ
)2 + lb(σ/ε) +

1

2
lb2π (1.12)

Observe that Ir only represents the bits necessary to code the difference,
x − µ, to the mean, as we have assumed the mean, the precision, and the
resolution to be known. As could be expected, minimizing the number of bits
when presenting a random number corresponds to only state the necessary
digits with respect to its precision.

Assume a random variable being Gaussian distribution x ∼ N(µ,Σ), we
have

IN(x | µ,Σ) =
1

2ln2
· (x− µ)TΣ−1(x− µ) +

1

2
lb(|Σ|) +

k

2
lb2π (1.13)

where x = (x1, · · · , xk).
If we round a Gaussian random variable x to a resolution of ε, yielding

xr, then, using Eq. 1.9,

Ir(x | µ,Σ, ε) = IN(x | µ,Σ)− k · IU(− ε
2
,
ε

2
)

=
1

2ln2
· (x− µ)TΣ−1(x− µ) +

1

2
lb(|Σ| ε2k) +

k

2
lb2π (1.14)
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