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Abstract

Topological reasoning is important for speeding up spatial queries, e.g. in GIS or in Al
(robotics). While topological relations between spatial objects in the vector model (R?) are
investigated thoroughly, we run into inconsistencies in the raster model (22). But instead of
reducing our requirements in case of reasoning in raster images we change from simple raster to
a cellular decomposition of R? — what we call a hyper-raster — which is also discrete, but pre-
serves the topology of R?. The discrete representation reduces the computational effort against
the vector model.

We will introduce a data structure for the hyper-raster, which represents regions, curves and
points. Then we will present algorithms for digitization (vector/hyper-raster conversion). With
the hyper-raster the intersection sets, as needed for the determination of a topological relation
between two objects, are calculated simply by logical joins of binary images. Without extending
our model we can also compute further refinements of the relationships.

1 Introduction

Topological relations have been found useful for speeding up spatial queries, e.g. in GIS or in Al
(robotics). The analysis of topological relations may reduce the burden of geometric computations.
Sometimes they are solely sufficient, and no further geometric analysis is needed. Therefore, topology
should be taken into consideration in spatial data modeling.

While topological relations between spatial objects in the vector model (|R2) can be based on Euclidean
topology, which has lead to a symbolic reasoning framework (e.g. Egenhofer and Franzosa 1991,
Egenhofer and Herring 1991, Clementini and Di Felice 1994), the ’digital topology’ of the raster model
(22, Kong and Rosenfeld 1989, Latecki 1992) is not as powerful and needs conceptual extensions of
the cited framework (Egenhofer and Sharma 1993). Instead of reducing our requirements in case of
reasoning in raster images we propose to change from simple raster to a cellular decomposition of R?
(Kovalevski 1989) — what we call a hyper-raster —, which is also discrete, but preserves the topology

of IR%.

e We show that the hyper-raster is an intuitive and convenient model to describe topological
properties and relations, contrary to the raster. We demonstrate the suitability for topological
reasoning by applying Egenhofer’s framework of 9-intersections (Egenhofer and Franzosa 1991),
without any contradiction or conceptual difference to the vector model.

e The finiteness of the decomposition, in combination with a separate storage of hyper-raster
element types, allows to applicate image processing algorithms (Kovalevski 1989, Bieri and
Metz 1991). This will speed up the reasoning. We show in a practical example how to apply
the reasoning framework to the hyper-raster.
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In this paper we concentrate on relations between regions without holes. This is taken as an example,
because the hyper-raster is neither limited in representing spatial objects of other dimensions, or holes,
nor in topological properties. Both are pointed out in the corresponding sections. Also taking into
consideration holes, or lines and points, would only cause additional complexity in reasoning, and
would take away the intuitive clarity of this short paper.

This paper has the following structure. After an overview of the relevant notions of topology we
summarize the work of others in topological reasoning. Then we introduce the hyper-raster model
and a proper data structure for the representation of regions, curves and points. We will also describe
the vector-to-hyper-raster conversion. After transferring the 9-intersection to the hyper-raster we
specify the calculation of the 9-intersection. The calculation is reduced to logical joins of binary
images. Without model extensions we can also compute further refinements of the relationship by
image analysis, e.g. the number, the size, the dimension or the shape of intersection components.

An example will demonstrate the operability. The properties of the hyper-raster recommend it as a
possible component to integrate vector-based and raster-based spatial data models.

2 Topological Models for GIS

In this chapter we give a short summary of the notions of algebraic and digital topology, pointing
out the conceptional difference of vector and raster. Furthermore we introduce the hyper-raster as a
regular cellular complex.

2.1 Euclidean Topology

In R? we refer to Euclidean topology. Euclidean space is a topological space, that means (Janich

1994):

Definition 2.1: A topological space is a pair (X,0) of a set X and a set O of subsets of X, called
the open sets, which satisfy
1. the union of open sets is open,
2. the intersection of finitely many open sets is open,

3. § and X are open.

To become a metric space, a distance measure d has to be introduced additionally. Confining here to
Euclidean topology, the Euclidean distance is chosen.

Definition 2.2: If (X, d) is a metric space, then a subset V' C X is called open, if for all z € V an
¢ > 0 exists with the sphere K (z) := {y € X|d(z,y) < ¢} in V. The set O(d) of all open
subsets of X is called the topology of the metric space (X, d).

The topology of R? is used widely in data modeling (e.g. Herring 1987, Bennis et al. 1991, Pigot 1991,
Molenaar et al. 1994, Pilouk et al. 1994), and also in topological reasoning (Egenhofer and Franzosa
1991, Clementini and Di Felice 1994, and Herndndez 1994).

In R? Jordan’s curve theorem is valid, which is important in the following sections:

Theorem 2.1: A simple closed and continuous curve divides the plane into two regions, the interior
and the exterior.



2.2 Digital Topology

This short summary of topological deficiencies of raster images is to contrast with the hyper-raster,
which is based on Euclidean topology. The hyper-raster follows in the next section.

A raster is a two-dimensional array of elements with integer coordinates, which can also be interpreted
as a lattice Z x Z. The raster is only of trivial topology, because the definition of a distance notion
is possible, but all sets in a raster are open. Mathematicians speak of digital topology, but we have to
pay attention to the different meaning of the notion in image processing literature.

Because in a raster we can not distinguish between open and closed sets, the difference between the
closure of a pixel set and the open interior is empty, so we have no boundary in a raster. Also Jordan’s
curve theorem is only applicable with additional definitions of a neighborhood and a boundary curve

(Kong and Rosenfeld 1989).

The ’digital topology’, as surveyed by Kong and Rosenfeld (1989) for the use in binary image analysis,
differs from the above mentioned topology, because it does not refer to the definition of a topological
space. To avoid paradoxa, all topological notions were defined algorithmically, and not by a derivation
from the definitions of Sect. 2.1.

However, Kong and Rosenfeld discuss topological properties of binary image arrays. An interior
(resp. exterior) boundary curve is introduced as a sequence of interior (resp. exterior) border points.
These substitutes for boundary curves have a certain extent. Topologically they are 2D-sets, i.e. re-
gions. Only with different concepts of pixel neighborhood for foreground and background is Jordan’s
curve theorem valid in the raster model. But these definitions cause contradictions if we permute
foreground and background. Latecki et al. (1995) limit the raster model by excluding the pixel com-
positions which cause paradoxical interpretations, thus foreground-background contradictions will not
occur. However, in this limited model, curves have to be defined as two-dimensional structures.

This ’digital topology’ of Kong and Rosenfeld, further restricted by some conditions concerning the
size and shape of regions, is used by Egenhofer and Sharma (1993), as referred in Section 3.2. They
have to model the results of the topological deficiencies, while our proposal to use the hyper-raster
instead does not leave Euclidean topology.

2.3 Cellular Decomposition

We are now prepared to introduce the hyper-raster. Using notions from the Euclidean topology

(Sect. 2.1) we define (Janich 1994):

Definition 2.3: We call a topological space an n-cell, if it is homeomorphic to R™.

A cellular decomposition (X, £) of a topological space X is a decomposition of X into parts &,
which are cells by themselves.

We distinguish further:

Definition 2.4: The interior of a region R, 7?\’,, is a connected and open complex of dimension 2.
The closure of a region R, R, is the minimal sub-complex which contains the interior of R and
all faces of the elements of 703,
The boundary of a region R, IR, is now OR =R \703,
The complement R¢ of a region R is R® = X \ R.



It follows that the boundary of a region is at the same time the boundary of its complement.

For example, the wvector model of spatial databases is based on an irregular cellular decomposition
of a surface (2.5D) or a plane (2D). In the vector model boundaries of regions are represented as
closed polygons. Polygons are continuous curves by nature, because the line segments are connected
by common vertices. Therefore, Jordan’s curve theorem (Theorem 2.1) is valid for the vector model.

To overcome the topological problems with Z?, Kovalevski (1989) proposes a regular cellular decom-
position of the plane. This decomposition only limits the set of considered structures in R? to regular
shaped cells, but it preserves the topology of R?, as the decomposition is embedded in the continuous
plane (homeomorphism). This decomposition is able to substitute the image model® of Z* (raster).

To decompose the plane, we choose axis-parallel, open quadrangles of the side length 1 as 2-cells.
1-cells are faces of 2-cells, and 0-cells are faces of 1-cells (Fig. 1), the empty cell is admitted also. In
this cellular complex a curve is a connected chain of 1D- and 0D-cells.

Figure 1: A cell complex, replacing one pixel.

Kovalevski (1989) picks up the cellular decomposition for the use in image analysis, proposing a cell list
data structure and algorithms for image encoding, and Bieri and Metz (1991) apply a tree structure
for storing cellular decomposed binary images.

In the remainder of this paper we will call the regular cellular complex a hyper-raster, according to
Bieri and Metz. Also we will present an own data structure, which is to demonstrate the applicability
of topological reasoning more intuitively.

3 Topological Reasoning in GIS

The main use of topological reasoning in spatial databases is to analyze topological relationships before
extensive geometric computations. A symbolic reasoning method for the vector model, based on the
topology of cell complexes, has been built up by Egenhofer and Franzosa (1991) and Egenhofer and
Herring (1991), which we will summarize shortly.

3.1 The 9-Intersection Model in R?

Egenhofer and Franzosa proposed a method of representing topological relationships by calculating
the four intersection sets of the interior and the boundary of two regions without holes, i.e. regions
with connected boundaries (4-intersection model). They found eight unique and mutually exclusive
relations. Egenhofer and Herring expanded the model to a 9-intersection, also taking into consideration
the exterior of regions R, R¢. The 9-intersection can be denoted by a matrix Iss:

ANB  ANOB  ANB
Is=| 0ANB OANOB OANBC (1)
A°NB ANOB A NBE

11D-edge elements between raster pixels have already been used in image segmentation, there better known as crack
edges (see e.g. Ballard and Brown 1982, Béssmann and Besslich 1991.



The five additional intersection sets of the I3z also allow to handle relations between regions with
holes and relations between regions, lines and points (cf. Table 1). However, they do not allow to
refine the eight relations of regions with more details (cf. Table 2), as it is done by other indicators

(Sect. 3.3).

Table 1: Number of real relations between spatial objects (taken from Egenhofer and Herring (1991)).

The first item refers to simple objects, the second item (bracketed) to complex objects (complex
region: region with holes; complex line: line with more than two boundary points).

Relation between ... | region line point
region 8 (18) 19 (20) 3
line 33 (57) 3
point 2

Table 2: The eight topologic relations between two regions without holes, associated with the 9-
intersection Iss3.

0 0 -0 o 0 -0 /) -0 0 0
0 0 -0 0 -0 -0 /) 0 -0 0
-0 =0 =0 /) /) 0 0 -0
DisJoINT MEETS OVERLAPS EqQuaLs
=0 =0 -0 -0 0 0 =0 =0 -0 -0 0 0
0 -0 -0 /I /I o 0 -0 -0 0 0
o 0 -0 -0 =0 -0 o 0 -0 -0 =0 -0
COVERS CovEREDBY CONTAINS CoNTAINEDBY

Referring to the complex calculation of the additional sets — the exterior of the treated regions is much
larger, or goes to infinity, compared to the size of the treated regions themselves — Egenhofer and
Herring propose a combination of the 4-intersection and additional criterion to resolve ambiguities
in the extended analyses. Egenhofer et al. (1994a), who are also interested on regions with holes,
solve ambiguities by reasoning about generalized regions, neglecting the holes. But as we will see, the
complexity of calculation with the exterior of spatial objects can be eliminated (Sect. 4.4).

In this paper we confine ourselves to regions without holes. The hyper-raster would also work with ob-
jects of other dimensions, or with regions with holes, in full accordance to the vector model. However,
we prefer a clearly arranged example for topological reasoning, having only eight distinct relations.
Another reason is the reference to the work of Egenhofer and Sharma (1993), who adapted the 9-
intersection to the raster, for regions without holes. In principle, in the hyper-raster the 4-intersection
would be sufficient for representing the expected eight relations. But due to comparability to the raster
we will draw up the 9-intersection in the following. Should we ever want to extend the reasoning in
hyper-raster we would have to use the 9-intersection in any case.

3.2 The 9-Intersection Model in Z*

Egenhofer and Sharma (1993) applied the 9-intersection to raster regions, using a 4-adjacency and
the interior boundary (which has a diameter of one pixel), in concordance with the ’digital topology’
(Sect. 2.2). Constraints about consistent combinations in the 9-intersection reduce the number of
possible relations from 2° = 512 to 16, all with a geometric interpretation. These relations can be
ordered in a conceptual-neighborhood-graph, which has clusters comparable to the relations of R?.



The number of relations differs from those which occur in R?. The first reason is the two-dimensional
boundary, which allows intersection sets that would be inconsistent in R?. The second reason is the
conceptual deficiency in the limitation to interior boundaries, which leads Egenhofer and Sharma to
the interpretation that topology in the discrete space is based not only on coincidence of boundaries
but also on neighbored boundaries. This is a problematic point of view, because it is more the
deficiency of ’digital topology’ than of discretisation, as we will show for the hyper-raster.

3.3 Refinements of Topological Reasoning
The literature presented some ideas which described topological relations more detailed as by a binary
Is3. We will pick up them for reasoning in the hyper-raster.

One refinement of modeling topological relationships was the idea of replacing the binary intersection
matrix by a matrix indicating the dimension of an intersection set: -1D (for #), 0D, 1D, or 2D, cf. Table

3 (Clementini et al. 1993).

Table 3: The possible dimension of intersection sets.

| B o8 B
A | {=1Dv2D} {(-1DV 1D} {-1DvV2D}
dA | {=1DVID} {-1DVODVID} {-1DVI1D}
Ac | {-1DVv2D} {(-1DV1D} {-1DV2D}

Egenhofer (1993) also specifies topological relations in a more detailed way, by additional numerical
topological invariants: the dimension of intersections, and the number of components of an intersection
set. Other topological invariants are added in a multiple representation framework in Egenhofer et

al. (1994b).

4 The Hyper-Raster Model

Now we propose to applicate the cellular decomposition of R? (cf. Sect. 2.3) as a data model for digital
images. We develop here a data structure for the hyper-raster, which we will use later for topological
reasoning (Sect. 4.4).

A sketch of the hyper-raster shows 2D picture elements, enriched by edge and node elements (Fig. 2).
While the hyper-raster consists of elements with different dimensions, behavior and meaning, a data
structure for the hyper-raster should be able to distinguish between the element types, too. The data
structure should also be able to handle all spatial entities of the plane: points, curves and regions.
Furthermore we want to preserve the two-dimensional array structure to apply image processing
algorithms later.

Therefore, we now introduce a class hyperimage, which consists of separate matrices for the element
types, and of methods to handle the interrelation of the matrices and to adopt image processing
algorithms.

4.1 Hyperimage: a Hyper-Raster Data Structure

Data elements of the class hyperimage are a matrix C for the 2D-cells, a matrix E for the horizontal
and vertical edge elements, and a matrix N for the vertices. A cell decomposition of an area of



Figure 2: The hyper-raster with separable element types: picture elements, edges and vertices.

size n *+ m will lead to n * m 2D-cells, (n + 1) *x m horizontal edges, n x (m + 1) vertical edges, and
(n+ 1) * (m 4+ 1) vertices? (cf. Fig. 2).

Storing vertical edges and horizontal edges separately, e.g. in matrices V and H, has some disadvan-
tages?. But the unique matrix E we introduced instead of V and H maintains the connectedness of
the boundary, by 8-adjacency. E is built by resampling the hyper-raster into a matrix rotated by 45°
and scaled by v/2. Then each edge element is associated with one rotated pixel (Fig. 3, cf. also Fig. 6)
(Kropatsch 1985, Kropatsch 1986).

\\Q;Q\

Figure 3: A rotated matrix can store all edge elements.

While the size of H and V is together 2nm+n + m, the size of E is (n + m)2 = 2nm+n?+m?. So, if
memory becomes a problem, the implemented data model should be changed, e.g. to a list structure.

Separating the hyper-raster elements requires access methods (rules) to identify the faces of a single
element of C, ¢; ;, and vice versa. The four vertices of a picture element ¢; ; are found at n; ; (north-
west), nj41; (south-west), njyq ;41 (south-east), and n; ;41 (north-east). The upper edge of ¢; ; is
found at €;4; rows—i+j, the left edge is found at €;4 rows—it+j—1, and so on. The access rules are part
of the data encapsulation.

With this set of three separate matrices we have to model two different tasks:

e to represent the spatial entities (point, curve, region), we introduce a set of labeling matrices
C;, E;, and N;. C; contains region labels, with the condition that one pixel may only belong to
one label class, E; contains curve labels, and N; point labels, both with the same condition.

Because in this paper we concentrate on regions (without holes), in the remainder we only refer
to C;.

e to represent the boundaries of spatial entities, we introduce boundary matrices Cp, Ep, and Ny,
Because 2-cells are boundaries of volumes — which we exclude —, we can remove C; from this
set. Then E; contains the arcs of the boundaries of regions, and Ny contains both, the vertices
of the boundaries of regions, and the bounding vertices of curves. Storing a point’s boundary is
not necessary because it coincides with the point.

Also here the context of this paper allows us to confine ourselves to region boundaries in E, and
Np.

20n the other hand Bieri and Metz (1991) propose to normalize the hyper-raster, which yields other numbers.
3For example, a boundary of a rectangle splits in H into two components, the upper and the lower boundary, and
in V into the left and the right boundary. This is undesired in some applications, like contour detection.



The elementary data type of the labeling matrices depends on the maximum number of spatial objects
(# labels), while the type of the boundary matrices depends on the amount of information we wish
to store. In the simplest case binary matrices — (boundary element, not boundary element) — are
sufficient.

4.2 Digitization

To convert a vector data set into a hyper-raster, the digitization rules are slightly different from those
for the raster, with regard to curves and points. Digitizing a point means labeling the nearest 0-cell in
N;. Digitizing a curve requires to label a closed chain of 1-cells (in E;) between start and end vertex
(in Np). A region will be digitized by converting the boundary, a closed polygon, into E; and Ny, and
afterwards labeling the interior in C;. Some attention has to be paid to avoid degenerated regions.
A degeneration consists of 1-cells in the boundary (and, because of redundancy, also of 0-cells) which
have no 2-cell labeled as interior. This can occur, if the resolution of the discretisation is not sufficient

(cf. Fig. 4).

The digitization rules are implemented as a part of the constructor of a hyperimage. If a vector data
set of regions is digitized, the result is a fully segmented and classified matrix C;, and binary matrices
E; and Np. With regard to topological reasoning, the matrices E; and Np, although redundant to a
large degree, are both are necessary (cf. Table 4).

CT
O—@=—0—0—O
BEON
O—@—O0—0—O
BEEN
BN
O0—O0—0O0—0—-0

Figure 4: Degenerated region: a 1-cell of the boundary with no interior neighbor cells.

A topological relation is a binary relation, i.e. a relation between two spatial objects. Therefore, it is
sufficient to digitize the two regions in question (if we start with vector data sets), or to extract single
regions (if we start with hyper-raster maps). Such a set of (binary) extract matrices C., E., and N,
build for each of both regions, can be limited in size to a bounding rectangle of the region. In C, the
interior of the region is foreground, and the exterior of the region is background, and in E, and N,
the boundary of the region is foreground.

Our presented data structure is now complete for topological reasoning. The next step is to transfer
the 9-intersection to the hyper-raster and then to apply it in the hyperimage.

4.3 The 9-Intersection in the Hyper-Raster

In the hyper-raster, we find exactly the eight relationships between regions which exist in R?. Egen-
hofer and Sharma (1993) cite five conditions to select the relations which really occur in R? from the
512 possible states of the 9-intersection. In raster they may apply the first three conditions (which
leads to remaining 16 relations), but here also the latter two conditions can be applied (leaving the
known eight relations):

Condition 4.1: (4) If the interior of 4 intersects with the boundary of B then it must also intersect
with the exterior of B, and vice versa.



Condition 4.2: (5) If both interiors are disjoint then the boundary of A cannot intersect with the
interior of B, and vice versa.

Proof: Condition 4 follows from the hyper-raster property that intersections with boundary elements
can only exist of 1D- or 0D-cells. But if an 1D-cell (and the more a 0D-cell) belongs to the
interior of 4, then both neighbored 2D-cells belong to A, too. Compared to it an 1D-cell of the
boundary of B inevitably neighbors with one 2D-cell of the interior of B and one 2D-cell of the
exterior of B. Therefore, an intersection of the interior of A with the boundary of B implies that
at least one neighbored 2D-cell of the boundary must fall on the exterior of B, and one on the
interior of 5. O [ |

Proof: Condition 5 rests upon the same hyper-raster property. An 1D-cell of the boundary of A,
and more an 0D-cell, inevitably neighbors with one 2D-cell of the interior of A, and one 2D-cell
of the exterior of 4. If the boundary of A intersects with the interior of B, then at least one
2D-cell of the interior of A intersects with a 2D-cell of the interior of B. O [ |

In principle, conditions from the vector model to exclude inconsistent combinations of the 9-intersection
hold true for the hyper-raster analogously. That is because of the common spatial model of cellular
decomposition. A confinement to regular cells is invariant to topological modeling. With that we may
expect, that topological relations between spatial objects of other dimensions, or between regions with
holes, will coincide to the vector model, too.

4.4 The 9-Intersection in the Hyperimage

With the hyperimage the 9-intersection is very fast to compute, contrary to the situation in the vector
model. We have only to overlay the extracted object matrices (taking care of their different origin).
The overlay is done by joining them with a logical ’A’ pixel by pixel (this is equivalent to N in set
denotation). Then the foreground of the overlay represents an intersection set, or a part of it. As one
property of the 'A’-operator the overlay can be limited to the overlap of the bounding rectangles of
the considered regions.

Now we show how to enlarge the binary extracted matrices into three-valued matrices*, specifying the
interior, boundary, and exterior of a region R. For simplicity we omit the index e of the extraction
matrices in the following, and the foreground pixels of a matrix we denote by *F’.

C(R)
C(0R)
CR?) = Uejlea; @F=Ueci; \{C(R)}

C. contains no boundary information and is really binary, therefore.

Ueijlei; €F
0

(2)

ER) = Ueijllei; @F)AD (ex; €F) =o0dd), withk=0...i—1
E(OR) = Ueijlei; €F (3)
E(R) = Ueijl(eij @ F)A(X(enj € F) = even), with k=0...i—1 |

= Ulei; \{E(R), E(9R)

Since E. contains no degenerated elements (cf. Sect. 4.2), an element e; ; belongs to the interior of a
region, if it is not boundary and if an odd number of boundary elements precede in the row i.

Also, e; ; is interior if it is not boundary, and if at least one neighbored 2-cell belongs to the foreground
(interior).

4An alternative way is directly to extract ternary matrices (interior, boundary, exterior), but we are interested in
the binary matrices for further processing.



[
To determine N(R), we have to check for each n; ; if it is not boundary, and if at least one neighbored

2-cell belongs to the foreground (interior).

N((‘)R) = Uni,j | n; ;€ F

N(R®) = Un”\{N(fe),N(&R)} (4)

With that we can denote the three topological sets of a region R which occur in Is3 as:

R = C(R)UB(R)UN(R)
OR = C(0R)UE(IR)UN(IR) (5)
R° = C(R°)UE(R®)UN(R®)

These sets can be used to evaluate the intersection sets in Is3. Intersections between matrices of differ-
ent types are empty per definitionem, so we may reduce for example the interior-interior intersection
set between two regions .4 and B to the following equation:

[ 0 [ [ [

ANB = (C(A)NC(B) U (E(A)NE®B)) U (N(A)NN(B)) (6)

However, we are mainly interested in intersection sets being empty or not, and only less interested in
the completeness of an intersection set. Therefore, we now refer to the possible dimensions of the nine
intersection sets® (Table 3).

Proposition 4.1: If an intersection set is either of dimension 2 or empty, and if the intersection set
is not empty, there must exist a (non-empty) set C(A) N C(B).

Proposition 4.2: If an intersection set is either of dimension 1 or empty, and if the intersection set
is not empty, there must exist a (non-empty) set E(A) N E(B).

Proposition 4.3: If an intersection set is either of dimension 0 or empty, and if the intersection set
is not empty, there must exist a (non-empty) set N(.A) N N(B).

All three propositions are self-evident and do not need further proof. Now, following Table 3, Propo-
sition 4.4 is used for deciding about the intersection sets #11, i31, %13, and i33. With Proposition 4.4
we decide for the intersection sets 13, 721, 723, and i33. Only the boundary-boundary intersection is
not fixed in the dimension. It may be both, 1D or 0D. That means that Propositions 4.4 and 4.4 are
not applicable. Therefore, we need the

Proposition 4.4: If a non-empty boundary-boundary intersection set exists, there must also exist a
non-empty set N(9.4) N N(9B).

Proof: The boundary is foreground in E and N (see (3,4)). Then it follows from hyper-raster con-
sistency that each foreground pixel e; ; is bounded by two foreground pixels ng; and n,y, ,
(minimum condition for 1D-intersection). On the other hand, if the intersection is 0D, it is

evident that E(0.A) N E(0B) is empty, so there must exist a non-empty N(GA) NN(9B). O ®

With these considerations we can now reduce the calculations for the intersection sets of I3z to the

overlays given in Table 4. As one consequence we directly gather from that table that there is no
[

further need to build N(R) or N(R).

5Tn Sect. 4.3 we have shown that these dimensions will hold in hyper-raster, too.
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Table 4: Operations to calculate the intersection sets of Iz from hyperimage matrices.

| B o8 B
A | CyncB)  EA)NE@B)  CA)NCE)
9A | E(OA)NE(B) N(OA)NN@B) E(OA)NE(B)
A° | C(A)NC(B)  E(A)NE@OB) C(A°)NC(B)

4.5 Refinements in the Hyper-Raster

For transferring the refinements to the hyper-raster we will use the overlay of extraction matrices
more extensively. Several additional measures can be calculated:

e the dimension of an intersection set. As in the vector model, this concerns only the boundary-
boundary intersection, which can be 1D or 0D (or -1D, in case of f}). The dimension is determined
by the type of the matrix which contains the intersection set: if E(0.4) N E(dB) is not empty,
then this set is 1D, and if only N(9.A) N N(9B) is not empty, then the set is 0D. The dimensions
of the other intersection sets are fixed.

o the number of separations. This is done by counting the connected components (Lumia et
al. 1983, Bassmann and Besslich 1991) in the intersection matrices. The intersection matrices
of C’s and E’s are sufficient for this task, because a junction is at least 1D.

e component features. Performing feature extraction yields a list of further parameters, charac-
terizing the single intersection component: the size, the perimeter, the main axes, compactness,
the center of gravity, the orientation, and other features. These parameters are no topological
invariants (e.g. Bassmann and Besslich 1991).

e the type of boundary-boundary intersections (crossing / touching). This type follows from con-
tour tracking through both considered E matrices.

5 Example

We may be interested in the topological relation between the following regions A and B (Fig. 5).
Assume, that the two vector sets refer to the same real world object, but it is associated in one GIS
map with three boundary points, and in another with four boundary points.

o A W N e
o A W N e

Figure 5: A region in two different vector maps.

The digitization into discrete hyperimages (one per vector region) follows Sect. 4.2. The result are
three matrices C., E., and N, for each region (Fig. 6). With these matrices we create intersection
matrices (Fig. 7) and determine the topological relation between A (’the region from map A’) and B
(’the region from map B’).
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Figure 6: The hyperimage matrices C.(A), E.(A), and N.(A) (top line), C.(B), E.(B), and N, (B)
(bottom line). Foreground is bright. We can also see the rotatlon and scale of E.

From the intersection matrices we can derivate the 9-intersection matrix (the element izz is not
evaluated because it is never empty):

26 0 0
Lss|= | 10 24 0© (7)
9 12 —

This matrix is equivalent to the topological relation CovEREDBY (A, B) (cf. Table 2). A refined
description of the relation will contain:

e Dimension of boundary-boundary intersection: 1D.

e Number of components:

no_components (Is3) =

[ N

NN O
o
—
o
=z

Further attributes of the components are not evaluated here.

6 Conclusions

We have presented a model and a data structure to realize a topological reasoning between two regions
without holes in images within the topology of R?. Our model overcomes the topological defect of the
simple raster model, and is able to compute easily and quickly a detailed description of topological
relations. The model is capable of reasoning with objects of other dimensions, and with holes, which
has to be demonstrated later.
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I = e

Figure 7: The intersection sets of the C-; E- and N-matrices. The sets are differentiated by gray
intensities.

The proposed data structure is intuitively clear, and the adapted size of the reasoning area to the
overlap of bounding rectangles speeds up the reasoning enormously. Compared to the complex calcu-
lations in IR?, we are in advantage because binary images are discrete and the applied image processing
needs no higher computations than comparison and counting. The proposed hyperimage structure is
well suited for demonstrating intersection sets, but up to now is not optimized for memory and access.
Changing the structure is possible in the object-oriented paradigm.

Therefore, we propose to choose the hyper-raster as a general model for topological reasoning in spatial
databases and GIS. Some work is required to complete the model for curves and points, and to open
the model to the whole world of image processing tasks, e.g. for image segmentation, contour tracking
et cetera. But the advantages which compensate for this work, are, in particular, explicit elements for
edges and vertices, and a discrete computation space.
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