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ABSTRACT: We present a concept for representing uncertain topological relations and their derivation from uncertain
sets, useful for spatial and temporal reasoning in GIS. The concept is based on the notion of a stochastic boundary of
a geometric set and on tests performed to decide the validity of relations between the sets. It uses the power-function
to derive the probabilities of the found relations. The concept is applicable to all questions where uncertain geometric

queries or analysis have to be performed.

1 Introduction

1.1 Motivation

Geometric data are uncertain by nature. E.g. two points
in a database representing the same real world object will
nearly never be captured with identical coordinates for sev-
eral reasons

o the abstraction of the real world into the nominal
ground during the measurement process is uncertain
(object identifiability),

e the data capturing from the nominal ground is bur-
dened with random errors (imprecision),

o the representation of real numbers in a computer is
discrete at least, due to data processing, rounding and
due to data formats (resolution).

Spatial queries in GIS are based on the model of point sets
and, if available, given topological relations. The quality
of the result is hard to evaluate without knowledge of the
quality of the given data, the quality of the used algorithm
and of the sensitivity or the propagation of imprecision
through the analysis process.

The demand for explicitely representing data quality in
the data model of the GIS seems to be a consensus in the
research community (cf. Chrisman 1988, Goodchild and
Gopal 1989, Caspary 1992). Methods of error propaga-
tion from statistics are expensive and not adaptable to
every type of (spatial) reasoning in GIS. However, sta-
tistical methods seem to be the only way to consistently
reason about spatial or temporal objects and they do not
appear to be fully exploited yet. Efforts are made to visu-
alize quality of results (e.g. Beard et al. 1991, Fisher 1993,
Kraus and Haussteiner 1993, van der Wel and Hootsmans
1993) and also to use simulations (Veregin 1994) instead
of analytical error propagation.

If data uncertainty is explicitly given, for example by vari-
ances and covariances, or a covariance function, it also
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should be possible to represent the uncertainty of the topo-
logical relations. There are attempts to express uncer-
tainty of data and relations in fuzzy constraints of space
and time using the fuzzy set theory (Dutta 1991), however
lacking an observation theory.

1.2 The Role of Topology

Topological relations have been found useful for speeding
up spatial queries. At times they are sufficient for them-
selves and no geometric analysis of the the data need be
performed. Often the analysis of topological relations may
reduce the burden of geometric computations.

A formal analysis of relations between sets has been pro-
vided by Egenhofer in several publications (Egenhofer and
Franzosa 1991, Egenhofer 1991, Egenhofer 1993, Egenhofer
et al. 1994). The idea is to represent the mutual relations
of two sets A and B by a 2 by 2 matrix, called the 4-
intersection F, which is given by

A° 9B A°NB° (1)

Fo < dANIB IANB° )
where 9.4, 9B denote the boundaries, .A°, B° the interi-
ors of the regions .A and B, and the matrix elements can
have the values empty set (@, 0) and non-empty set (=,
1). From the 2* = 16 possible matrices F only 8 can
be realized by simply connected regions in 2D, which are
DissuncT, MEETS, OVERLAPS, EQuaLs, CoveErs, Cov-
EREDBY, CONTAINS, and CONTAINEDBY (cf. Table 1).

One goal is to predict possible values for a relation R(A, C)
in case R(A,B) and R(B,C) are given (Egenhofer 1991).
E.g. from CoNTAINS(A,B) and CoNTAINS(B,C) follows
CoNTAINS(A, C) without geometric analysis.

The relations are assumed to be crisp. No order, link or
relation between these relations themselves is established.

1.3 Scope of the Paper

The scope of this paper is to add uncertainty to the rep-
resentations. This is done by two steps:



Relation R; F Example 1D
DisjuncT < g 8 ) A b
MEETS < ﬁg g > I ——
OVERLAPS ( :8 :g > [
COVERS < :g ﬂg > [
CoVEREDBY ( ﬁg :g > JE—
EqQuALs < ﬁg ﬁg ) -
CONTAINS < ﬁg ﬁg > [
CONTAINEDBY < g :g ) I

Table 1: Topologic relations in 1D and in 2D.

1. We investigate the effect of small changes of two sets
on their relations. This will reveal a network of likely
changes between the relations.

2. We present a probabilistic description of the uncer-
tainty of the relations, which allows to derive the prob-
ability of a certain relation given the boundary of a
set and its uncertainty.

2 A Partial Order of Topologic Relations

For dynamic systems, Galton discusses an order of topo-
logic relations which a body (a region, a line, a point)
must pass to change a position relatively to other bodies
(Galton 1994). Although he argues within a framework
for space and time sequences we can adopt his idea to a
static situation in a GIS database because the uncertainty
of a decision about the mutual relation between two sets
can be seen to be a random perturbation of the sets within
time.

Assume two regions (sets) A and B move towards each
other (cf. Fig 1). When observing MEETS(.A, B) it actually
is uncertain whether still A is DISJUNCT from B, whether
A MEETS B or whether already .A OVERLAPS B. On the
other hand, if we state D1sJTUNCT(A, B) by some observa-
tion then we implicitely state that OVERLAPS(A, B) is very
unlikely. This idea gives us the possibility to introduce a
transitional order between Egenhofer’s relations.

Galton introduces three notions which specify the mutual
relation between two relations R; and R;.

Figure 1: The time sequence DisiuNcT, MEETS, OVER-
LAPS, with dominance of MEETS indicated by the arrows.

1. A relation R; is a bounding relation of R; if R; holds
at an instant which bounds an interval throughout R;

holds.

2. A relation R; is dominantif R; is a bounding relation
of R; but R; is no bounding relation to R;.

3. Perturbation, if R; and R; are mutually dominant, a
notion we do not use here.

Observe that Galton’s definition of dominance does not
refer to any uncertainty.

In the example of fig. 1 there will be an interval where
Di1sJUNCT holds, one crisp point of meeting ({9.ANIB} =
—0) and next an interval OVERLAPS holds. We say the
crisp relation MEETS dominates the relations DissuncT
and OVERLAPS.

If we now analyse the eight relations between two sets, we
find conditions for a relation dominating another, which
can be seen in the 4-intersections F;; for the corresponding
relations.

1. The element F1; = AN 3B changes from 1 to 0, thus
the boundaries of A and B separate (e.g. MEETS —
DI1sJUNCT).

2. The elements F12 = dANB° or F2; = . A°NJB change
from 0 to 1, thus the boundary of one set penetrates
the interior of the other set (e.g. COVERS — OVER-
LAPS).

3. The element Fa23 = A° N B° changes from 0 to 1,
thus the interiors of A and B penetrate each other
(e.g. MEETS — OVERLAPS).

4. The combination of two of the previous transitions 1
or 2 reveal EQUALS also to dominate CONTAINS and
CoNTAINEDBY, and EQUALS to dominate OVERLAPS.
However we will see that these dominations are weak
ones. Table 2 shows the dominance relations as 8 x 8
matrix, Fig 2 as a directed graph.

3 Uncertain Geometry and Topology

Topologic relations are independent on the geometry.
However, topologic relations usually are derived from ge-
ometric descriptions. This is also necessary when taking
the uncertainty of the geometric entities into consideration
which of course leads to derived quantities of uncertainty
of the topologic relations.

Remark: Uncertainty of relations is already used in GIS
during data acquisition. E.g. if two polygons as in fig. (3)



Di|ME|Ov|Cv|CvB|Eq| Ct | CTB
D1 ®
ME ® O] ®
Ov ©
Cv ® | © ®
CvB ® © ®
Eq X | ® ® ® | x X
Cr O]
CtB ©

Table 2: Transition matrix: the left columned relations ful-
fill the marked dominance conditions to the top line rela-
tions. @: F;; identity, ®: relation dominates, x: relation
dominates by at least two conditions (weak dominance).

Disjunct
A
Meets
Y
7 D
p— Overlaps
A
CoveredBy \ / Covers
1 / Equals \ Y
ContainedBy Contains

Figure 2: Directed graph of the partial order of topologic
relations. The direction is derived from the dominance of
relationships.

are given to a GIS it may report overlap between the two
regions but also indicate that the error band of one poly-
gon contains some part of the boundary of the other one,
asking the user to decide on the true relation, MEETS or
OVERLAPS. This indication is based on some tolerance,
say 6, which the user can specify, which however is not
really related to the accuracy of the data within the GIS.
It obviously would be better to store the uncertainty of
the polygon as meta-data and to use this information for
a consistency check. This of course requires consistent rep-
resentation and use of the uncertainty. O

Figure 3: Are the two polygons overlapping, or meeting?

3.1 Uncertain Sets and Regions

A crisp set A may be defined by the indicator function

I(x):{ :

Similarly, we are able to define an uncertain set A :

i @

Definition 1: An uncertain set A is defined by the prob-
ability function

I(x)=P(x € A) (3)
with P € [0,1].

In case of P € {0,1} this reduces to a crisp set .A. Defini-
tion 1 implies that P(x ¢ A)=1— P(x € A).

This allows to define uncertain regions. We assume a re-
gion be a realization of a stochastic process describing
the set of all regions of that geometry but with uncertain
boundary. Therefore we define

Definition 2: An uncertain region is a random vector
or process describing the boundary of the region in some
suitable representation.

Example 1: A connected uncertain region A = A(z;,z,)
in 1D is described by the random vector x = (z,, z,)

together with the joint probability function Pi(z1,z2).

Example 2: A connected uncertain polygon A in 2D is
described by the random vector (gl,gl, ceZ, gn)T of its
boundary points together with their covariance matrix, as-
suming the coordinates to be normally distributed.

Example 3: A connected uncertain region A in 2D with
a smooth boundary is described by the possibly infinite
number of coefficients of its Fourier descriptors, together
with their variances, assuming normally distributed coef-
ficients.

We follow the notion of a random variable in statistics:
The actual data A are certain without any ambiguity, as
they are treated as an outcome of a certain experiment (in
statistical terms). The uncertainty relates to the variable
A defined by the experiment, i.e. to the set of all possible
outcomes of the experiment. In the above mentioned ex-
ample a measured region might be A = [3.1, 4.9] whereas
the uncertain region is A = [z, z,] with x ~ N (s, 2Xzz)
and p, = (3.0, 5.0), £;, = Diag(0.25, 0.25). An element
belongs to A or to =4, z € A xor z € —.A, however these
statements are uncertain. This is in contrast to Fuzzy-
Logic where the degree of z belonging to A is measured by
u(z € A), there for p(z € A) = 0.6 does not necessarily
vield to pu(z € = A)=1—-0.6 = 0.4.

3.2 Uncertain Relations

We are now prepared to define the notion of an uncertain
relation:

Definition 3: An uncertain relation is a relation which
exists with a certain probability.

This definition does not specify how to determine the ex-
istence nor its probability.



The goal now is to show how to derive the uncertainty of
topological relations from the uncertainty of the underly-
ing sets.

Deriving the validity of a topologic relation from uncertain
regions is a classification problem, as any procedure leads
to an assignment to one of the eight relations which itself
is uncertain, i.e. may be wrong. The 8 x8 confusion matrix

C = P(R: | R;) contains the probabilities of obtaining a
certain relation R; while R; holds true.

In case the boundary of the sets concerned is uncertain
without any limit, e.g. in case of assuming a Gaussian for
the coordinates of a polygon, all relations will always be
valid with a probability > 0. This may be relevant in case
the uncertainty of the boundary or the position of a set
is large compared with its size. Typically, however, the
uncertainty of the boundary is small compared with the
size of the region, a condition we intuitively used in the
argumentation above. We therefore use the following

Assumption: The uncertainty of the boundary is small
compared with the size of the region, i.e. A©D, and ADD,
are topologically equivalent to A4, where © and @ denote
to erosion and dilation, and D, a disk with a sufficiently
small radius g.

This is to ensure local analysis of spatial relations.

Based on this assumption, the confusion matrix C con-
tains entries with very small values < g, e.g. n = 107°,
as it could happen e.g. for P(R; = EquaLs | R; = Dis-
JUNCT). Replacing these low probabilities by 0 leads to a
sparse confusion matrix C with entries at the same places
as the transition matrix in fig. 2, which may be represented
by a undirected graph (i.e. the graph of fig. 2 without di-
rections). The edges of this graph connect neighbouring
relations, i.e. relations which may be confused during clas-
sification.

Moreover, the relations are of different type with respect
to their classification: MEETS, COVERS and COVEREDBY
require at least one point of the two boundaries 9.4 and
9B to be equal, EQUALS requires all boundary points to
be equal. On the other hand, the relations DIisJuNcT,
OVERLAPS, CONTAINS and CONTAINEDBY put no geomet-
ric restriction on the boundary. This suggests to treat
the relations MEETS, CovERs, COVEREDBY and EQUALS
differently than the other relations, and to develop the
classification scheme sequentially, starting from the rela-
tion which put the strongest condition onto the geometry
of the two sets in concern, using hypothesis testing.

4 Classifying Uncertain Topological Relations

We now want to investigate the derivation of proba-
bilities of relations for connected sets in 1D. For this
purpose we define crisp and uncertain sets in a uni-
fied manner. The classification of a situation into
the relation MEETS(A, B) and its neighbouring relations
Di1sjuncT(A, B) and OVERLAPS(A, B) is analysed in de-
tail using an hypothesis test on the distance between the
borders of .A and B and the corresponding power functions.
The tests on CovERS, COVEREDBY and EQUALS then can
easily be derived and analysed similarily. The analysis
will suggest the use of the power of the test on a point z
sitting at the border A as probability P(z € 9.4), and

consequently lead to explicit expression for the probability
the eight relations hold.

4.1 Crisp and Uncertain Sets in 1D

We define two crisp sets Ra(z) and Lq(z) in the following
manner:

=
=
B
o
I

{e|e>a} (4)
{z|z<a} (5)

with the corresponding indicator functions

H(z —a) (6)
1—H(z—a) (7)

Igay(z) =
Ie(ay(z)

where H(z) is the Heavyside-function

1 x>0
Hiz)=q 1/2 5 2=0 (8)
: r <

being the integral of the é-function

H(z)= / 5(t)dt. (9)
R and £ are sets with elements right and left of z = a.
In order to be symmetric we use I(a) = 1/2 instead of
I(a) = 1 (cf. eq. (2)), which is irrelevant when applying
this concept.
A crisp set A(b,€)

Albe) = {z | b< s <e) (10)

can be written as

A(b,e) = R(b) N L(e) (11)

with indicator function

gy (2) - Loy (2) (12)
H(z—b)-(1- H(z—¢)  (13)

Tap,ey(z) =

We now interprete Ir(ay(z) = H(z — a) (eq. (6)) as prob-
ability function:

Ir(a)(z) = P(a < z) = P(z € R(a)) (14)

measuring the probability that for a given z the stochastic
position a of the boundary of the set R is left of z, which
is equivalent to saying z can be found to be an element of
R(a). Because of the steepness of the Heavyside function
the transition is from the left side to the right side of z = a,
thus changing the probability from 0 to 1 is instantaneous.

It is now easy to change to uncertain sets by replacing
the §-function defining the Heavyside-function in (9) by a
density function f(z) with the corresponding distribution
function F(z).

Thus we obtain the uncertain set

R(fa) ={{z | a<z},a~ fu(z)} (15)

where we assume E(a) = pq is the mean value for the left
boundary of R(f.). Eq. 15 states the probability that for



a given z we will find z € R(a) where a is a sample of a,

thus R(a) is a sample of R(fa).

The indicator function for R(f.) is now given by

/ falt (16)

cf. Fig. 4a with f, being a box function.
In the following we will write

Ir(py =

IR(a) = Ir(ta) (17)

in short. Furthermore we will restrict the discussion to f.
being a Gaussian. With

(x/d)z) (18)

-exp(— 5

and
D,(z) = / 0o (t) dt (19)
the indicator function reads as
Ir(a) = Po(z —a) (20)

Analogeously we obtain the indicator function of the un-
certain set for a left-sided region

Ié(a) =1- (I)g(l‘ — a) (21)

and of the uncertain set A(b, e) (cf. Fig. 4)

I PR A
— Plb<z) Pz <e) (22)
= Pz Afh, o))

showing the indicator function to represent the probability
that for a given z we will find z to be right of the beginning
point b and left of the end point e thus element of A(b, €).

We assumed equal standard deviations for b and e and
independence for simplicity.

A
Y

J‘K
>

|
|
|
t
X

2

Figure 4: An uncertain 1D region derived from one-sided
regions (here using a box function (z1 = b, z2 = e) for f,).

We now are able to test dominant relations with respect
to dominated relations in order to arrive at probabilities
for relations.

4.2 Test for MEETS

We first want to test the relation MEETS against the rela-
tions DIsJuNcT and OVERLAPS.

Let set LA(ba, e.4) beleft of set B(bs, es) then MEETS(.A, B)

can be tested using the distance
s=bs—e4 (23)
Thus the test scheme is as follows:
Ho = MEETS(A,B) : s=0 (24)

is tested against the two alternatives

Ha, = OVERLAPS(A,B) : s <0 (25)
and
H,, = D1sjuNcT(A,B) : s >0 (26)
The test uses the test statistic
T= ai ~ N(0,1) (27)

assuming o to be derivable from the given standard devi-
ations 0y, and o ,.

s<0

Figure 5: The power of testing MEETS vs. DISJUNCT and
OVERLAPS: graphic of probabilities for all decisions.

Specifying a significance number « leads to an acceptance
region N = [—k(«), k(«)] and two rejection regions Ry =
(=00, —k(a)) and R2 = (k(a),+oc). k(«) is the critical
value depending on «. For the discussion we use oo = 0.05
thus £ = 1.96 =~ 2. The decision of the test yields

TEN — R=m (28)
TeRi — R=o (29)
TeR: — R=d (30)

where m, o, d stand for MEETS, OVERLAPS, and DISJUNCT.
The probability of correct and incorrect decision is col-
lected in the 3 x 3 confusing matrix shown in table (3)
being a submatrix of C. Figure (5) shows the probabilities
P(o|s), P | s) and P(d | s) depending on the distance
s. Obviously the decision is (nearly) a maximum likeli-
hood decision as the most likely relation is selected by the
hypothesis test:

o The correct decisions are selected with probabilities
between 0.5 and 1. The relation MEETS is only se-
lected with a probability up to 1 — a (= 0.95).

e In case the two regions meet (R = m,s = 0) the
likelihood of erroneously deciding them to overlap or
as being DISJUNCT is a//2 (= 0.025).



R\ R R=o0(s< —ko,) R=m(|s|< ko) R=d (s> ko)
R=o P(d|o(s)) > 0.5 P(o|m(s)) > 5 P(o|d(s)) <e
correct incorrect incorrect
R=m P(m|o(s))<05—¢ | Ph|m(s))<1—a | P(rh]|d(s)) <05—¢*
incorrect correct incorrect
R=d | P@lots)<e | P@Im(s)>2 | P@lds)>05
incorrect incorrect correct

*e = ®s(—2k(a)), for @ = 0.05 we obtain e < 0.0001.

Table 3: Confusion matrix C for test on MEETS, OVERLAPS and DISJUNCT.

e The relation D1SJUNCT can be detected with a prob-
ability > 50% only if s > ko,. Therefore if | s |< ko
it is more likely that we will decide the regions to
meet. The probability of erroneously deciding MEETS
through 0 < s < ko, is between oz/2 and 0.5.

o Ifthe relation D1sJuNCT holds, it is extremely unlikely
that the test yields R = OVERLAPS. This probability
is less than

e = B, (—2k(a)) (31)

which for o = 0.05 is ¢ < 0.0001. This goes with in-
tuition and is the reason for exploiting the sparseness
of the confusion matrix.

e The reasoning for R = OVERLAPS follows a similar
line of thought.

We now can use the power function in the areas where
the decisions are correct as probabilities that the relation
actually holds. Strictly we must take into account the
probabilities of the two other boundary points of .A and B
respectively not being near to the tested boundary points,
a situation we explicitely excluded. These probabilities are
assumed to be 1. Thus we say

e The probability that OVERLAPS(A, B) holds is P(d |
o(s)) = P(& | s) with s < —ko.. .

e The probability that MEETS(A,B) holds is P(r
m(s)) = P(i | s) with | s |< kos.

e The probability that DissuNcT(A, B) holds is P(d |
d(s)) = P(d| s) with s > ko..

In all cases s = b — e 4 1s taken from the actual values of
the sets A(ba, e4) and B(bg, en).

4.3 Tests for COVERING

The tests for COVERING work similarly. E.g. the test for
CovERs(A(ba,en),B(bs, ep)) uses the distance

s=bs —by (32)
if e € eq (cf. table (1)), or
s=ep—ey (33)

if by < b3.

4.4 Test for EQUALS

The test for A = B can be accomplished by testing the
identity of the complete boundary thus 8.4 = dB. In our
case of 1D this reduces to the test

Hy = EQuALS(A, B) : ( 2 ) = < g ) (34)
A B

against the alternative

H, = ~EQuUALS(A, B) : < 2 ) # < 2 ) (35)
A B

An optimal test is based on the difference vector s = (b —
ba, en — eA)T and its covariance matrix, leading to the
test statistic

T= ~ Fa .00 (36)

In case of T' < F3 o,a We have no reason to reject the
hypothesis EQUALS(A, B). If T' > F3 o no indication on
the alternatives is available from T alone. This needs to
be taken from individual tests on the boundary.

Observe that the dimension of this test is 2 in 1D and
equal to the number of boundary points for regions in 2D.
Therefore an adaption of critical values or significance lev-
els would be necessary (cf. Baarda 1967, Baarda 1968)
in order to obtain the same power of the test on MEETS
etc. and EQUALS.

It seems however to be better to perform two independent
tests on the two boundary points. With the distances

St by — b

Se = ep—ez (37)
we have the two tests
H01 18y = 0
Hai:8#0 (38)
Hoz 18 = 0
Hao:8.#0 (39)

which can use the reasoning from section 4.2.

In case both hypothesis are accepted the probability of
EqQuaLs(A, B) is given by

P(EQUALS(A,B)) = P(Ho1 | sp) - P(Hoz | se)  (40)

This idea can be generalized to derive the probability for
all relations.



4.5 Probability for Relations in 1D

We now can give explicit expressions for the probability
of all relations between two connected 1D-sets. We refer
to table (1) where the sets A(ba, e4) and B(bs, ep) are
shown with a thin and a thick line respectivly. We obtain

P(DissuncT(A,B)) = Pea <bg)
P(MEETS(A, B)) = P(es =bn)
P(OVERLAPS(A,B)) = P(ba < bg)
P(bzg < EA)'
P(ea < en)
P(CoVERs(A, B)) P(ba = bs)- (41)
P(en < e4)
P(EqQuaLs(A, B)) = P(ba =b5)
Ples =en)
P(CoNTAINS(A,B)) = P(ba < bg)
P(en < e4)

CoVvEREDBY and CONTAINEDBY are treated similarily.
Observe that the number of conditions which have to hold
is different for the different relations. This results from the
assumption on the relative uncertainty of the boundaries
and the condition e > a. The probabilities on the right
side are again taken from the power of tests. The power
only depends on the significance number of the tests, which
has to be specified by the user.

The weak dominance of e. g. EQUALS over OVERLAPS
stems from the fact that

P(bs <bp|ba=bp)-Plea<ep|ea=ep) < (a/Z()2 :

42

which with e. g. 0.000625 is an order smaller than a(=
0.05).

5 Conclusions and Future Work

We have presented a technique for representing the uncer-
tainty of uncertain sets and for deriving the uncertainty
of the topological relations between points of sets. The
basic idea was to treat the boundary as stochastic process,
in 1D as stochastic variable, and to use the power of the
test on identity of boundary points as probabilities of the
decisions. Combining the outcomes of different tests lead
to explicit expressions for the probability of a relation.

The concept is a first step towards a joint treatment of
continous and discrete variables for representing complex
patterns in space and time.

Various extensions are obvious and have to be worked out:

o The extension to non-connected sets in 1D is simple,
as all boundary points can be treated as has been
shown in section (4). This especially may be mean-
ingful in modelling uncertain time-intervals.

o The extension to 2D-regions is more involving. In
case of polygons the tests can easily be adapted. The
derivation of probabilities, however, has to take mul-
tiple connections of the boundaries of the sets into
account.

e The symbolic reasoning on more than two uncertain
sets, e.g. to predict the relation R(A,C) and its un-
certainty from R(A, B) and R(B, C) (Egenhofer 1991),
will lead to similar structures which may speed up the
rigorous evaluation of uncertainties.

o A raster implementation may simplify the evaluation
of the probabilities which may be useful in case of
given raster data.

e It has to be investigated in how far the simplification
about independence, or the elimination of relations
with very low probability lead to serious disturbations
or biases in the results.

o The close relation to Fuzzy-Sets revealed by Fig. 4
has to be investigated.
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