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ABSTRACT:

Our objective is the interpretation of facade images in a top-down manner, using a Markov marked point process formulated as a Gibbs
process. Given single rectified facade images, we aim at the accurate detection of relevant facade objects as windows and entrances,
using prior knowledge about their possible configurations within facade images. We represent facade objects by a simplified rectangular
object model and present an energy model, which evaluates the agreement of a proposed configuration with the given image and the
statistics about typical configurations, which we learned from training data. We show promising results on different datasets and provide
a qualitative evaluation, which demonstrates the capability of complete and accurate detection of facade objects.

1. INTRODUCTION

Our objective is the interpretation of facade images by combining
evidence from bottom up and prior knowledge from top-down.
Given single rectified facade images, we aim at the accurate de-
tection of relevant facade objects as windows, entrances, and bal-
conies.
Object detection in a sliding window approach yields reliable re-
sults, but lacks on accuracy and completeness. Therefore, prior
knowledge about the arrangement of facade elements needs to be
introduced. This might be achieved in different ways. Already
on the pixel level, Markov random fields are used to model prior
knowledge about the objects layout (Čech and Šára, 2008). On
the entity level, rules on the facade’s attributes (Ripperda, 2008;
Müller et al., 2007) or the object’s neighbourhood relations (Tyle-
cek and Sara, 2010) are used. Related to the last one, we in-
corporate prior knowledge about typical arrangements of facade
elements. We denote a set of such elements, describing the fa-
cade, a configuration of facade objects. We evaluate spatial in-
teractions between neighbouring objects, such as alignment, size
differences, or distances and use them to enforce the detection
results to configurations, which fit typical facades. Typical con-
figurations might by modelled manually, but this inherently lacks
in generality, needs a huge amount of rules, increasing with the
number of objects classes, and needs to be well tuned to each
type of facade. We propose to learn spatial interactions for each
combination of neighbouring object classes from training images.
This might be restricted to a certain type of facades.

The task is to combine evidence from bottom-up, for each single
object proposal, given by a suited classifier, with prior knowl-
edge from top-down, given by learned configuration properties.
Markov random fields (MRF) are widely used in image pro-
cessing for such tasks. Instead, we use marked point processes
(MPP), which can be seen as natural extension of MRFs, not
only due to the freedom of the underlying graph structure and
its dimensionality, but also due to the way they handle parametric
objects. MPPs have shown competitive results in several object
detection problems (Lafarge and Gimel’farb, 2008; Lafarge et al.,
2010b; Börcs and Benedek, 2012; Bredif et al., 2013; Ortner et
al., 2007, 2008; Tournaire et al., 2007, 2010; Verdie and Lafarge,
2013). While MRFs are restricted to labelling problems in static
graphs, MPPs, as introduced by Baddeley and Lieshout (1993),

handle parametric objects within dynamic graphs. A MPP is a
random variable whose realizations are configurations of para-
metric objects. Thus, we use the term point synonymously for
objects, represented by points in R2, attached with additional
parameters, e.g., width and height. The number of objects is a
random variable, too, and needs not to be defined beforehand in
contrast to modelling as MRF. Further, we are able to incorporate
complex spatial interactions. Typically, this is designed manu-
ally (Ortner et al., 2007, 2008; Lafarge et al., 2010b; Börcs and
Benedek, 2012; Verdie and Lafarge, 2013). We propose to learn
properties of typical configurations in terms of spatial interactions
of neighbouring objects from training images. This way, we are
able to combine the initial belief from bottom-up image catego-
rization and the prior knowledge we have about typical configu-
rations of facade objects.
The whole process is specified by three key elements:

• The object model. We model objects in images as axis-
parallel rectangles, thus, points attached with marks for
width and hight. Additionally, each point is given a class
label. This leads to the definition of the configuration
space, which is the space of all possible arrangements of
parametrized objects, fulfilling certain semantic and geo-
metric relations.

• The energy. We model the MPP as Gibbs process, thus,
its distribution is given in terms of an energy. The energy
validates the quality of a configuration according to the im-
age content and the spatial interaction of objects in a limited
neighbourhood.

• An optimization method. We aim at minimizing the energy,
which is complex and of varying dimensionality. There-
for, we sample the configuration space by rjMCMC coupled
with simulated annealing.

1.1 Related Work

Our field of interest is facade interpretation, thus, we will give a
brief synopsis of recent work in this field and review related work
in the application of MPPs.
Main objects of interest, when dealing with facade images, are
windows. At mid-level, many works deal with window detection
(Lee and Nevatia, 2004; Ali et al., 2007; Recky and Leberl, 2010)



or exploit repetitive structures to capture grids of windows (Wen-
zel et al., 2007; Tylecek and Sara, 2010; Wendel et al., 2010;
Park et al., 2010). In contrast to object detection, pixelwise la-
belling is used to yield a facade segmentation. Fröhlich et al.
(2010) combine of a strong pixelwise classification, using ran-
dom forests (RF), with an unsupervised segmentation. Teboul et
al. (2010) use the pixelwise classification as low-level input for
a shape grammar. They formulate a constrained generic shape
grammar to express special types of buildings and train a RF
classificator to determine the relationship between semantic el-
ements of the grammar and the observed image support. Mar-
tinović et al. (2012) start from an oversegmentation of a facade
and produce probabilistic interpretations for each segment, using
Recursive Neural Networks, which they merge with the output
of a specialised facade component detectors formulating a MRF.
Other works deal with 3D information, either as additional input
data or as intermediate or final results, respectively. To model the
structure of facade objects, they use grammars, too (Werner and
Zisserman, 2002; Dick et al., 2004; Alegre and Dellaert, 2004;
Ripperda, 2008). Parameters of the grammar are estimated either
with MCMC or directly determined during a recursive splitting
and merging procedure. But, all these grammar approaches lack
the restricted domain of valid facades that the grammar rules are
designed for.
Recently, Cohen et al. (2014) propose to use dynamic program-
ming for efficiently parsing facade images. Instead of using rules
of a grammar, they sequentially parse the individual classes ac-
cording given constraints, which make the process more flexible
to different types of facades.
While Teboul et al. (2010) and Cohen et al. (2014) rely on strong
architectural constraints, Martinović et al. (2012) and Koziński
et al. (2015) avoid strong prior assumption about the structure of
facades and introduce weak architectural knowledge, which en-
forces the final reconstruction to be architecturally plausible and
consistent. Koziński et al. (2015) propose to express architec-
tural prior knowledge into a set of hierarchical rules over differ-
ent semantic classes that specify, which pairs of classes can be
assigned to pairs of vertically- and horizontally-adjacent pixels.
They transfer those rules into the structure of a MRF. They han-
dle occlusions, and therefore, are able to recover partly occluded
facades and to infer their structure.

In our work, we are dealing with MPPs, which were introduced
by Baddeley and Lieshout (1993) to the field of stochastic ge-
ometry. In conjunction with reversible jump MCMC methods,
introduced by Green (1995) and Geyer and Møller (1994), they
became popular for several tasks of image processing and inter-
pretation.
To the best of our knowledge, around 2001 the group at INRIA
around Josaine Zerubia and Xavier Descombes, start to introduce
the topics of stochastic geometry and point process theory to the
field of image processing in terms of structure extraction and ob-
ject detection. They aim at the detection of buildings and road
networks in digital aerial images (Garcin et al., 2001; Descombes
et al., 2001) or rectangular road markings (Tournaire et al., 2007).
Ortner et al. (2003) continue the work on detecting parametrized
objects and introduce a proposition kernel that allows to sam-
ple objects in the neighbourhood of existing objects. Ortner et
al. (2007, 2008) use this technique for the extraction of build-
ing footprints from altimetric data in dense urban areas and the
extraction of road networks and buildings from digital elevation
models, which is done again by Tournaire et al. (2010) in a more
efficient way to speed up the process. Lafarge et al. (2010a) ex-
tend this work to 3D and propose to reconstruct building from
DSM based on a library of 3D models. These model suffer from
a lack of generality, they aim at specific applications and the
complexity of interactions between the objects does not gener-

alize to another application. Most of them rely on many tunable
parameters. Lafarge et al. (2010b) propose a more generalized
MPP called multi-marked point process, which can be applied
to a large range of applications without changing the underlying
model. Verdie and Lafarge (2013) build on former approaches,
but aim at their large-scale applications by introducing an effi-
cient parallelization scheme. Chai et al. (2012) propose an hybrid
representation of MRFs and MPPs to represent both, low-level
information and high-level knowledge to provides a structure-
driven approach for detecting buildings in aerial images. Lafarge
and Gimel’farb (2008) and Lafarge et al. (2010b) provide a gen-
eral model for extracting different types of geometric features
from images, as line, rectangles and disks and propose jump-
diffusion dynamic as alternative to the commonly used rjMCMC
sampling with simulated annealing, cf. Sec. 2.5. Jump-diffusion
adds to the reversible jumps of the MCMC process a stochas-
tic diffusion dynamic within each continuous subspace. At high
temperature of simulated annealing the diffusion performs large
random steps to avoid trapping into local optima while at low
temperature it acts as gradient descent. Jump-diffusion is an in-
teresting development to speed up convergence tremendously and
to increase the accuracy of the final solution. But, it assumes the
energy landscape to be smooth near the optimum and an energy,
for which we can evaluate the gradient efficiently. Both is not
given in our application: the energy landscape is rough and the
energies gradient can not be evaluated analytically. We may ob-
tain the gradient from numerical differentiation, but this is slow
and contradicts the desired speed-up. Therefrom we do not use
jump-diffusion.

We are aware of two works, dealing with MPPs in the context of
facade image interpretation. Burochin et al. (2014) formulate a
stochastic process to sample rectangles, in order to detect open-
ings in facades as indicator for the classification of blind facades,
As the detection results are dedicated as indicator for the classi-
fication of blind facades, beside other features, they obviously do
not require complete and precise detections.
Wang et al. (2015) aim at the detection of window grids in images
using a Marked Point Processes. They propose structure-driven
sampling in order to yield the assumed grid structure of windows
and use an energy formulation whose data term depends on a
probability map given by a pixelwise classification and whose
prior term consist on a repulsive term scoring interacting rect-
angles in terms of their horizontal and vertical distance. Their
results are not convincing compared to state of the art results, but
to the best of our knowledge, this is the first approach dealing
with marked point processes in the context of facade image inter-
pretation.

1.2 Marked Point Processes

MPPs are statistical models for the analysis of observed patterns
of points represented by the location of objects. They are of spe-
cial importance in stochastic geometry for handling random sets
of objects.
We call a set of objects X = {x1 . . .xn} a configuration. The
point process X is a random variable, whose realization X is a
configuration of objects. The theory of MPPs allows to define
a probability density f (X ) on configurations of objects. There-
from, we may identify the most probable configuration by maxi-
mizing this density. We model our objects as points in S ⊂ R2,
attached with additional parameters from an arbitrary spaceM,
called marks. Then, f(X ) is the density of a point process, with
respect to an underlying Poisson process with intensity µ that
refers to the product space S ×M . To get a more detailed intro-
duction into point processes, we strongly recommend Baddeley
(2007).



Markov point processes (Baddeley and Lieshout, 1993) are de-
fined in terms of local interactions between points of the config-
uration. We use the symbol ∼ to denote neighbouring objects.
It is a symmetric and reflexive relation, thus, for xi ∼ xj ⇔
xj ∼ xi ∀xi,xj ∈ S, xi and xj are said to be neighbours.
The neighbourhood of an object y contains all its neighbours
Ne(y) = {x ∈ S : x ∼ y} . Given the Markov property and
using the Hammersley-Clifford theorem, we model the density
of the Markov marked point process X as finite Gibbs process.
Thus, we express f(·) in terms of a Gibbs energy U(X ), such
that f(X ) = 1

Z
e−U(X ) . Instead of maximising f(X ) we mini-

mize the energy U(X ). The advantages are obvious. We get rid
of the normalizing constant Z. Further, the energy needs not be
probabilistic. It is a matter of design to express the fitness of the
configuration according the given image and expected configura-
tions, and we will introduce our energy formulation in the next
section.

2. ENERGY MODEL FOR FACADE INTERPRETATION

2.1 The Object Model

We model an image as continuous bounded set S = [0, IR] ×
[0, IC ] ⊂ R2, using the number of rows IR and columns IC of
the image. Objects in the image, we search for, are modelled
as axis-parallel rectangles x = [x, y, w, h, c], with centre point
[x, y] ∈ S attached with marks [w, h, c] ∈M ⊂ R×R×N for
width, height, and class. As classes we consider c ∈ {1, 2, 3},
standing for window, entrance, and balcony.
We represent the image interpretation as unordered set of of ob-
jectsX = {x1 . . .xn}, using n = N (X ), the number of objects
in the configuration. We consider the MPP X to determine the
configuration that best describe the image.

2.2 Energy Formulation

The energy should allow us to evaluate spatial interactions of ob-
jects and the consistency of single objects concerning the given
image. We express the energy as sum of four terms

U(X ) = Udata(X )+λ1 Ugeom(X )+λ2 Uconf(X )+λ3 Unum(X )
(1)

where Udata is the unary energy or the data term, which expresses
the local energy of all single objects in the current configuration
X . In our case, given the output of a classifier, it measures how
well the objects fits the image content. This energy will be de-
signed, such that attractive objects contribute negative energies,
whereby we call an object attractive if its a posteriori probabil-
ity is high. We denote Ugeom the geometric energy and Uconf
the configuration energy, which are given by prior knowledge
from training data about typical geometry of objects or object
pairs. The former expresses an additional unary energy, in terms
of the objects size and location. The latter expresses the energy
of neighbouring objects given by their spatial interaction. The
structure of prior energies will be designed, such that configura-
tion, not fitting the learned configuration statistics, get positive
energies, thus, get punished. Finally, Unum represents an addi-
tional prior on the number of each classes objects. In contrast to
the basic idea of a point process, which is guided by the refer-
ence density of the Poisson process, whose intensity reflects the
accepted mean number of objects, this is an alternative model for
the prior. Due to the different mean numbers of each classes ob-
jects, one underlying reference measure is not suited to reflect
these numbers, wherefrom we decide to introduce this as a more
adequate prior. Finally, the single terms are weighted relative to
each other by positive constants λi. We detail each term in the
next subsections.

2.3 Data Energy

We use the output of a classifier to capture evidence from bottom-
up, from which we obtain an initial belief about its class. There-
for, we need a classifier, which yields a reliable estimate of the
posterior probability P (c | x) for the class, given the image
data. We use an import vector machine (IVM) classifier (Zhu
and Hastie, 2005; Roscher et al., 2012a,b) that was shown to get
a state of the art classification performance. It is a discriminative
classifier, therefore, usually ensures better discriminative power
than generative models and it produces classwise probabilities
for test samples. We train the IVM from given annotated train-
ing images. As features we use pairs of adjacent line segments
(Wenzel and Förstner, 2012; Ferrari et al., 2008), from which we
have learned representative shapelets from training images, again.
The descriptor of an image patch, then, is given as histogram of
shapelets, which serves as input for the classification.

The data term uses the output of the classifier to assign an energy
to each object of a configuration. Thereby, we consider an object,
x ∈ X , having class label c ∈ {1 . . . C}, attractive if its a poste-
riori probability P (c | x) is large, preferably near 1. Vice versa,
such objects should contribute a local unary energy Φ (x) < 0 to
the overall energy. Therefrom, exploiting the Markov property,
the overall data energy is given by the sum of each objects local
energy

Udata(X ) =
∑
xi∈X

Φ (xi) , (2)

whereby, we use the reward function

Φ(x) = − logC P (c | x)− 1, Φ ∈ [∞,−1] (3)

to express the object’s local energy. Please note, the number of
classes C as basis of the logarithm. This way, we ensure prob-
able samples to get a negative local energy, while objects with
rather uncertain class labels or objects even not belonging to the
given class, thus, having a posteriori probability below 1/C, get
positive local energy. Nevertheless, the decrease of local energy
is bounded, which is important to ensure stability of the Markov
chain.
Obviously, the overall data energy might decrease infinitely by
superimposing infinite copies of an attractive object x. We avoid
this by including a strong penalty term for overlapping objects in
the pairwise prior energy, see below.

2.4 Prior Energy

The prior energy terms evaluate different aspects of the configu-
ration, concerning the geometry of each single object or the ge-
ometric relation of neighbouring objects. In the following, we
introduce our configuration model to describe these neighbour-
hood relations and derive the according terms of the prior energy.

2.4.1 The Configuration Model. We learn typical configura-
tions of objects from training images. Thereby, we characterize
a configuration by properties of single objects as width w, height
h and location x and y and properties of neighbouring objects as
intersection, distance, alignment, and size differences.

Interacting Objects. Usually, the neighbourhood relation
xi ∼ xj is defined in terms of a distance, such that all objects
within a ball of given radius are said to be neighboured. In our
application, it is not possible to define such a fixed distance, it
would differ from image to image and if the number of objects
is low, objects even could be on opposite sides of the image. We
define the neighbourhood relation in terms of a Voronoi diagram.
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Figure 1: Properties of neighbouring objects.

Therefor, we reduce all rectangles to their center points and eval-
uate the according adjacency graph. Objects, neighboured within
the adjacency graph, are said to be neighbours in image space.
The reason, not to use the exoskeleton of the objects themselves
is, that at high temperature of simulated annealing the objects
might overlap, thus, get merged to one component for processing
the exoskeleton.

We define different measures on interacting objects to describe
the overall configuration. Not all of them are taken into account
for each neighbouring object pair, e.g., we do not measure the ver-
tical alignment for objects neighboured horizontally. In the fol-
lowing, we first describe the interacting measures and then detail,
which measures are taken into account under which constraints.

Interacting Distances. Assuming the image scale s [px/m] to
be known, we take into account the following properties of inter-
acting objects xi ∼ xj , cf. Fig. 1:

• intersection area

d∩(xi,xj) =
area (xi ∩ xj)

min(wi · hi, wj · hj)
d∩ ∈ [0, 1] (4)

Objects not intersecting at all, get an intersection area of 0,
while objects superimposed get an intersection area of 1.

• minimal distance dd(xi,xj), which is given by the mini-
mal distance between any two points of the objects bound-
ing box, normalized by the image scale s.

• alignment horizontal and vertical, referred to the centre of
objects

d↔(xi,xj) =
|yi − yj |

s
dl(xi,xj) =

|xi − xj |
s

(5)

• size difference in height and width

d∆h(xi,xj) =
|hi − hj |

s
d∆w(xi,xj) =

|wi − wj |
s

.

(6)

In order to shorten the notation, we denote d(i,j)
k := dk(xi,xj)

the value of the k-th distance between two objects xi and xj , i.e.
k ∈ {∩, d,↔, l,∆h,∆w}.

As already mentioned, we do not take into account all distances
for all interacting objects. To denote this special behaviour, we
specialize the neighbourhood relation to xi ∼dk xj , to declare
objects xi and xj neighbours with respect to distance dk. There-
for, we define the following neighbourhood relations

xi ∼d↔ xj , xi ∼d∆h xj if d(i,j)
↔ ≤ d(i,j)

l (7)

xi ∼dl xj , xi ∼d∆w xj if d(i,j)
↔ > d

(i,j)

l .

This way, we take into account the size difference in height and
the horizontal misalignment, only, if the objects are roughly be-
side each other. Vice versa, we take into account the size differ-
ence in width and the vertical misalignment, only, if the objects
are roughly on top of each other. Further, the neighbourhood rela-
tions (∼d∆h ,∼d∆w ) and (∼d↔ ,∼dl), respectively, are pairwise
exclusive each, i.e. two neighbouring object can interact only in
terms of one of them.

2.4.2 Learning the Configuration Statistics. Given anno-
tated training data, we collect all bounding boxes of our tar-
get classes, and collect for all annotated objects their location
(x, y), width w, and height h and for all interacting objects dis-
tances dd, and d∩. Further, for each possible combination of
object classes, we store distances d↔, dl, d∆h and d∆w for all
pairs of objects, interacting in terms of the according neighbour-
hood relation and according class combination. We represent
these statistics by their histogram, which we denote hk(· | ·),
k ∈ {x, y, w, h,↔, l, d∆h, d∆w}. We smooth the histograms,
using a kernel density estimator, and to enable scoring of these
properties, we normalize each histogram, such that max(h) = 1.
The minimal distance between neighbouring objects is an excep-
tion. We just store the minimal value td (c1, c2), we have seen
during training, according to each possible combination of object
class c1 and c2.

2.4.3 Prior Energy Terms. The prior energy is represented
by an unary termUgeom(X ) and a pairwise termUconf(X ), which
represent the confidence of proposed samples to the learned
statistics over size and location of single objects and the local
arrangement of neighboured objects. The former is given by the
sum of local energies of single objects

Ugeom(X ) =
∑
i

∑
k∈{x,y,w,h}

Ψ (hk (xi | ci)) , (8)

using the penalty function

Ψ(h) = − log (2 · h) , Ψ ∈ [∞,− log(2)] . (9)

Thus, for each object, we sum up the contributions of each part
of the configuration model. Using Eq. (9), objects not fitting the
learned function hk get punished and contribute a positive energy,
while objects near the global maximum of hk, which is 1, even
contribute a negative energy.
We denote E = {eij | xi ∼ xj} the set of all neighbouring
objects and define the prior energy regarding interacting object
pairs by

Uconf(X ) =
∑

(i,j)∈E (Ψ∩ (xi,xj) + Ψd (xi,xj | ci, cj) +

1
N(Ne(xi))

·
∑

k∈{↔,l,∆w,∆h}Ψ (hk (xi,xj | ci, cj))
)

(10)

where we use the same penalty function Ψ(·) as before for align-
ment and size differences, while intersection and distance get
punished more strongly. We use a hard core penalty function for
overlapping rectangles

Ψ∩ (xi,xj) = −a · log(1− d(i,j)
∩ ) , Ψ∩ ∈ [∞, 0] , (11)

using a constant, e.g., a = 100. The function prevents to in-
crease the overall energy by superimposing infinite many objects
at medium and low temperature, nevertheless, it allows small
overlaps at hight temperature, which is important to explore the
state space. If d∩ = 0 the objects do not overlap, then there is no
penalty.
To penalize neighboured objects with distance below the class
specific minimal distance td(ci, cj), we use a function similar to
the hat-function



Ψd(xi,xj |ci,cj)=−b·log

(
1−max

(
0,
td(ci,cj)−d(i,j)

d
td(ci,cj)

))
, Ψd∈[∞,0],

(12)
using a constant b = 100. Distances, slightly below td(ci, cj),
get a small positive energy, which strongly increases with de-
creasing distance. Distances, above td(ci, cj), do not influence
the overall energy.
Again, Eq. (10) sums up for each object the contribution of each
interacting distance. To make the configuration energy indepen-
dent on the number of interacting neighbours Ne(xi), we nor-
malize by their number N (Ne(xi)).

Finally, in order to define a prior on the number of objects, we
store the minimal and maximal numbers cmin and cmax, respec-
tively, of objects per class, we have seen in single images during
training. Configurations fitting these numbers should not influ-
ence the overall energy, while deviations should get a punish-
ment. Therefrom, we define the prior on the number of objects
by

Unum(X ) =
∑

y=1...C

Ψn ({x ∈ X | c = y}) , (13)

using

Ψn (X ) =

{
0 if N (X ) ∈ [cmin, cmax]

log ε otherwise .
(14)

This term is of special interest for low frequent classes, such
as entrances. We observed that the regular structure of window
grids, in most cases, overvotes the existence of a single entrance,
which we avoid by using this prior.

2.5 Optimization

Our task is to find the configuration X , which maximizes the un-
normalized point process density or minimizes the energy U(X ),
respectively. It is a complex function with rough landscape. Even
its dimensionality is unknown due to the unknown number of ob-
jects. We optimize with rjMCMC coupled with simulated an-
nealing to find the global optimum. Introducing the temperature
parameter T , the optimizer is given by

X̂ = argmax
X

f(X )
1
Tt = argmin

X

U (X )

Tt
, lim

t→∞
Tt = 0 .

(15)
Geyer and Møller (1994) propose the so called Birth an Death
algorithm to sample point processes, which turns out to be a spe-
cial type of Green’s rjMCMC sampler (Green, 1995). Given a
point process X with points xi in S, distribution FX (·), density
f(·), and intensity µ(·) of the reference Poisson process, Geyer
and Møller (1994) built a Markov Chain that, provided f(·) ful-
fils the stability condition, given by what is called the Papangelou
conditional intensity, was proven to build a Markov Chain that is
FX (·) invariant, thus, simulates the point process X (Geyer and
Møller, 1994; Ortner et al., 2003). Furthermore, it was proven
that it simulates a FX (·) irreducible Markov chain that is recur-
rent and ergodic, which guarantees its convergence to its target
distribution FX (·).
To improve the mixing properties of the Markov chain, Ortner et
al. (2003) extende this algorithm and introduce additional propo-
sition kernels for the moves within the Markov chain. Beside the
basic birth and death, they proposed to use birth and death in a
neighbourhood and non jumping transformations, such as trans-
lation, rotation or dilation of existing objects of the configuration.
In our work, we use two types of moves: (1) dimensional jumping
transformation: birth and death, (2) non jumping transformations:
translation, dilation, switching. The latter randomly selects an
object from the current configuration and randomly perturbs its
marks. The generic point process sampler algorithm is given in

Alg. 1, which is equivalent to Hasting’s and Green’s Algorithm.
Having M different moves, we take the proposition kernel of the
Markov chain as a mixture of m = 1 . . .M proposition distribu-
tions, each having a probability jm(X ) to choose move type m
being atX . The kernelQm can be interpreted as instruction, how
to throw a new sample x being at X , using move type m, which
we define in more detail, in the following.
We set S = {[1, IC ] × [1, IR]}, usingM = {[Wmin,Wmax] ×
[Hmin, Hmax] × [1, C]}, using ranges [Wmin,Wmax] and
[Hmin, Hmax] for width and height, respectively, taken from the
training sample’s sizes. In order to clarify the notion, we de-
note the move types not by numbers. We use m ∈ {b, d, nj} to
denote birth, death, and non jumping moves, whereby the latter
comprises different move types leading to the same Green ratio.

Birth and Death. In case of birth, we create a new object
x ∈ S × M and propose Y = X ∪x. Noting f (Y) /f (X ) =

e−U(Y)/e−U(X ) = eU(X )−U(Y), and introducing the tempera-
ture parameter Tt, of simulated annealing, we obtain Green’s ra-
tio for birth and death kernels

Rb(X ,Y)=
µ(S)
N(Y)

e
(
U(X)−U(Y)

Tt

)
Rd(X ,Y)=

N (X )

µ(S)
e
(
U(X)−U(Y)

Tt

)
.

(16)
Non Jumping Transformations. With this type of moves, we
randomly perturb the marks of an existing object. Therfor, we
uniformly select an object x ∈ X and throw random numbers
u ∼ Z(X ,u) according a suitable distribution, usually uniform in
a certain range of values. Given a function g : y = g(x, u),
which transforms the object we propose Y = (X \ x) ∪ y.

• Translation: manipulates the centre of an object x. We
throw u ∈ R2, u ∼ U ([−∆x,∆x]× [−∆y,∆y]).
g : y = g(x,u) = [x+ ux, y + uy, w, h, c]

T .

• Dilation: manipulates width and height of an object x. We
throw u ∈ R2, u ∼ U ([−∆w,∆w]× [−∆h,∆h]).
g : y = g(x,u) = [x, y, w + uw, h+ uh, c]

T .

• Switching: changes the label an object x. We throw
u ∈ N, u ∼ U ({1, . . . , C} \ c), thus, we throw a random
number out of C classes, which is not the current one c.
g : y = g(x, u) = [x, y, w, h, u]T .

We fix control parameters ∆x, ∆y, ∆w, and ∆h to 1/8 of the
image’s height and width, respectively. In each case, the inverse
transformation x = g−1(y,u) exist and is as possible as g is,
which ensures reversibility. Thus, if the translation and its in-
verse are equally probable and the according perturbation vari-
ables where thrown from the same distribution, Green’s ratio sim-
plifies to

Rnj (X ,Y) = e
(
U(X)−U(Y)

Tt

)
, (17)

Algorithm 1: Generic point process sampler

Input: state X(t) = X of the Markov chain at time t,
probabilities jm for choosing move type m

Output: Xt+1

1 with probability jm (X ) choose proposition kernelQm

2 sample x ∼ Qm (· | X )
3 propose Y = X ∪ x
4 compute Green’s ratio Rm (X ,Y) c.f. (16), (17)
5 sample α ∼ U(0, 1)
6 if α < min(1, Rm) then
7 X(t+1) = Y // accept the move

8 else
9 X(t+1) = X(t) // reject

10 end



Figure 2: Sample images from used datasets. From top to bottom:
Basel old town, Basel row houses, City houses with balconies.

which was shown by Ortner et al. (2003) and completes Alg. 1.

Exceptions. Impossible proposals for moves, i.e. y /∈ S ×M,
are not used. In that case, we reject the according proposition,
without any impact on the invariant distribution as pointed out by
Ortner et al. (2003).

3. EXPERIMENTS

This section shows result for the proposed MPP for facade inter-
pretation. We learn the model on three different datasets, showing
different characteristics. The goal is to show that we are able to
learn a model from few images that we can use to evaluate new
images with similar characteristics. To prove the learned prior
model, we simulate configurations, ignoring bottom up evidence
from image data. We visualize successful interpretation results
and provide a qualitative pixelwise evaluation.

3.1 Datasets

From eTrims image database (Korc and Förstner, 2009), we as-
sembled different image collections, which are characterized by
similar facade structure and as similar as possible appearance of
addressed facade objects. Fig. 2 shows samples of datasets we use
for this work. The first dataset consist of six images from Basel
old town, characterized by a medium number of highly structured
facade objects, which are regularly arranged. There are just win-
dows and entrances. Due to different decorations, the appearance
of facade objects differ between the images. The second dataset
consist of 11 images showing Basel row houses, characterized
by a sparse configuration of few facade objects, which are win-
dows and entrances. The configuration of facade objects is ho-
mogeneous within the dataset, while the appearance differ due to
occlusions and decorations. The last dataset consist of 8 images
showing apartment houses, characterized by a large number of
facade objects, which are 135 windows and 52 balconies in total.
Although the windows are regularly arranged, which seems to be
easy to evaluate, the configuration of balconies differ between the
images of the collection, which results in less distinctive config-
uration statistics.

3.2 Simulation

To asses our concept of learning the configuration statistics and
the modelling of the Gibbs energy, we initially simulate configu-
rations based on individually learned configuration statistics, ig-

Figure 3: Simulations without using bottom up evidence by
an image, just based on learned configuration statistics from
datasets: Top: two images each: Basel old town, Basel row
houses. Bottom city houses with balconies. Colours: Blue: win-
dows. Orange: entrances. Green: balcony.

noring the dataterm in Eq. (1). We fix Udata = −1 for all propos-
als and simulate the Markov chain, using a fast geometric temper-
ature schedule with Tt+1 = T0 ·αt with fixed parameters T0 = 2
and α = 0.9999 for all runs. Fig. 3 shows samples based on
the configurations statistics learned from each given image col-
lection. Actually, we simulate configurations similar to those of
the given images, which reflect the characteristics of underlying
training images. Samples of the balcony dataset are more variable
due to the diversity of configurations of given training images.
Nevertheless, homogeneity of window lattices is realized.

3.3 Evaluation

For evaluation on real images, we perform object detection in a
leave-one-out cross-validation setting, i.e. we use one image of a
dataset for testing and all other for learning the classifier and the
configuration statistics. For all experiments, we use a slow geo-
metric temperature schedule, using α = 0.999999 and T0 = 2.
The latter was determined empirically, such that the average ac-
ceptance rate at beginning was around 70%. The weights λi, c.f.
Eq. (1), were set empirically, too. Up to know, we did not learn
them from data, which is planned using cross validation. The
weight λ3, for the prior on the number of objects, is set to 1 for
all experiments, while the weights λ1 and λ2 were individually
set for each dataset. The range of marks, thus, range of width
and hight for sampling new or manipulating existing objects, is
given by the training data. The optimization needed on average
7 million iterations.
Fig. 4 visualize exemplary results. For shown samples of datasets
Basel and Basel row houses, the detection of facade objects is
complete, thus, we do not miss any object, except few small win-
dows. This is stressed by their confusion matrices, cf. Tab. 1,
which provide a qualitative evaluation in terms of pixelwise com-
parison to ground truth for each pixel and all images of the ac-
cording dataset. Shown numbers proof high detection rates up
to an accuracy of 94%. Anyway, deviations in the objects out-
line, especially for class windows, result in a pixelwise accuracy,
which is lower.
The dataset city houses with balconies is more challenging. We
miss some windows, which, due to protrusion of balconies and
perspective distortion, overlap with bounding boxes of neigh-
bouring balconies. As our energy is designed to prevent over-
lapping objects, the process at equilibrium does not accept these
object proposals. Further, we miss some windows or do not get
their exact outline. Both might be explained by the loose struc-
ture of neighbouring objects. For example, the height of windows



Table 1: Confusion matrices for for pixelwise evaluation. Numbers are given as percentage of pixels that belong to the according class.
Left: Basel old town. Middle: Basel row houses. Right: City houses with balconies.

prediction
bg win entr

tr
ut

h bg 90.29 8.68 1.03
win 16.39 83.61 0.00
entr 10.75 0.00 89.25

prediction
bg win entr

tr
ut

h bg 94.12 4.45 1.43
win 13.05 86.95 0.00
entr 5.10 0.00 94.90

prediction
bg win balc

tr
ut

h bg 91.55 5.02 3.43
win 16.61 83.13 0.26
balc 10.94 3.43 85.63

image ground truth result image ground truth result image ground truth result

image ground truth result image ground truth result

image ground truth result image ground truth result

Figure 4: Sample results. 1st row: Basel old town dataset, using weights λ1 = λ2 = 0.3. 2nd row: Basel row houses dataset, using
weights λ1 = λ2 = 0.4. 3nd and 4th row: city houses with balconies, using weights λ1 = λ2 = 1/5. Colours as given in Fig. 3.

is wrongly detected if they do not have horizontally neighboured
windows, whose hight supports them. The same holds for few
missing windows. Their appearance differs from common win-
dows of this dataset, thus, their data energy is weak, and their
existence is not supported by vertically neighboured windows.
These effects show that the energy should take into account
global neighbourhood relations. The pairwise energy term we
use, takes into account objects, which are directly adjacent. In
this dataset we may argue that the regular window grid is dis-
turbed by balconies in between. Thus, we should model the
global layout of each individual class, which is not the case in
our model.
In order to demonstrate the sensitivity of the approach w.r.t.
weights λi, we show variations in Fig. 5. We observe that increas-
ing weights of the prior energy lead to hallucinations of missing
objects, e.g. additional windows, or even overvotes the prior on
the number of objects per class, which leads to an additional win-
dow instead of an entrance.

4. SUMMARY AND CONCLUSION

In this paper, we proposed a novel method for facade image in-
terpretation based on a marked point process, combining bottom

up evidence, given by an object classifier, and prior knowledge,
about typical configurations of facade objects, from top-down.
We represent facade objects by a simplified rectangular object
model and present an energy model, which evaluates the agree-
ment of a proposed configuration with the given image and the
learned statistics about typical configurations. Due to the learned
prior energies, our model is almost free of tunable parameters,
in contrast to other approaches, dealing with marked point pro-
cesses. We show promising results on three datasets and pro-
vide a qualitative evaluation, which demonstrates the capability
of complete and accurate detection of facade objects.
However, we are not competitive to state of the art results, e.g.
Teboul et al. (2010) in terms of complexity. In contrast to them
we deal with few classes per image. We are aware on the weak-
ness of our evaluation: We proved our approach on few datasets
with small sample size. Their appearance as well as structure of
facade objects are homogeneous within each dataset. But, as soon
as more training data are available and the procedures are paral-
lelised for GPU processing, we may evaluate more data and may
learn the remaining weights from data, e.g., by cross validation.
Nevertheless, compared to grammar based approaches, we are
more flexible in terms of underlying structure of facade objects
and even able to deal with very sparse structure. We believe that



Figure 5: Results for varying parameters. From left to right:
groundtruth | results, using the datasets setting λ1 = λ2 = 0.3 |
λ1 = λ2 = 1 | λ1 = 0.5, λ2 = 0.1.

we prospectively may overcome the limitations of grammar based
approaches, which have to be designed individually for each type
of facade and are dedicated for large, regularly structured types
of facades, such as Hausmanian, cf. Teboul et al. (2010).
In future work we will try to enhance the energy model to express
the structure of more complex facades, including more classes,
especially balconies. Nonetheless, we will implement methods
to learn the remaining weights from data.
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