
Finding Poly-Curves of Straight Line
and Ellipse Segments in Images

Susanne Wenzel and Wolfgang Förstner

wenzel.susanne@uni-bonn.de

TR-IGG-P-2013-02

July 2013

Technical Report Nr. 2, 2013

Department of Photogrammetry
Institute of Geodesy and Geoinformation

University of Bonn

Available at
http://www.ipb.uni-bonn.de/technicalreports/

Finding Poly-Curves of Straight Line and Ellipse
Segments in Images

Susanne Wenzel and Wolfgang Förstner

susanne.wenzel@uni-bonn.de

July 2013

Abstract

Simplification of given polygons has attracted many researchers. Especially,
finding circular and elliptical structures in images is relevant in many ap-
plications. Given pixel chains from edge detection, this paper proposes a
method to segment them into straight line and ellipse segments. We propose
an adaption of Douglas-Peucker’s polygon simplification algorithm using cir-
cle segments instead of straight line segments and partition the sequence of
points instead the sequence of edges. It is robust and decreases the com-
plexity of given polygons better than the original algorithm. In a second
step, we further simplify the poly-curve by merging neighbouring segments
to straight line and ellipse segments. Merging is based on the evaluation
of variation of entropy for proposed geometric models, which turns out as
a combination of hypothesis testing and model selection. We demonstrate
the results of circlePeucker as well as merging on several images of scenes
with significant circular structures and compare them with the method of
Patraucean et al. (2012).

1 INTRODUCTION 4

1 Introduction

Polygon simplification is interesting from several points of view. First, in
terms of compact description of spatial data, e.g. in the context of image
description. Second, in terms of generalisation, e.g. in the context of cartog-
raphy or resolution dependent visualization of polygons.

On the other hand finding circular and elliptical structures in images
is relevant in terms of compact image description and further image inter-
pretation. Most image interpretation systems which use bottom up image
features, thus not just pure pixel information, are based on key point or edge
detection. Directly identifying circular and elliptical structure gives rise to
much more informative image features from bottom up (Chia et al., 2012;
Jurie and Schmid, 2004).

In this paper we propose a two-step polygon simplification algorithm that
approximates a given set of ordered points in 2D by a sequence of straight
line and ellipse segments. The poly-curves are intended to be at least C0,
thus positional continuous. Although the algorithm is applicable to any kind
of ordered 2D points we assume pixel chains within images, see Fig. 1. The
first intuition behind our approach is that arbitrary smooth curves can be
locally characterised by an osculating circle. We will use this in the first step
of the algorithm where we simplify the given set of points by a sequence of
circle segments.

But due to perspective distortions, in general there will be almost no
circles in images. All circles in object space are projected to ellipses in image
space, ellipses in object space are projected to ellipses, anyway. Only in
rare cases, the image of 3D circles or 3D ellipses are mapped to hyperbola,
namely in case they partially are behind the camera. The situation is different
if the circles are sitting in a set of parallel planes and the viewing direction
intentionally has been taken orthogonal to these planes or the image has been
rectified to mimic this situation. Then almost no ellipses will occur in the
images, and the proposed method can directly be transferred by replacing
ellipses by circles.

Figure 1: Finding line and ellipse sections. Left: pixel chains. Middle:
segmentation into circle chains using circlePeucker. Right: aggregation
and classification into straight line and ellipse segments. Blue: lines. Orange:
circular and elliptical arcs.

1 INTRODUCTION 5

Therefore eventually the pixel chain is represented by a sequence of straight
line and ellipse segments. This way we are more flexible representing curved
lines. Please note, that circles are part of the representation, as they are just
special ellipses.

The proposed method consists of two steps, see Fig. 1. Given the pixel
chains within the image, we first iteratively segment the region boundary into
circular segments. This yields an over-segmentation due to the non existence
of real circle segments. Second, we merge neighbouring segments to straight
line and ellipse segments based on statistical reasoning, namely hypothesis
testing and model selection. This step optimally estimates lines and ellipses
in a least squares sequence.

One might argue, why not directly segment a pixel chain into ellipses,
but first look for circle segments, and then group them to ellipses. There are
two main reasons for the two-step procedure:

1.) The slope, curvature or curvature change functions of the ellipse are
no simple functions, which allow to identify elliptical segments, as this is the
case for straight lines (constant slope) and circles (constant curvature), 2.)
there is no simple local measure telling whether a local segment belongs to
an ellipse or not: Analysing the curvature, distinguishes circles and straight
lines. One would need the second derivatives of the curvature to capture the
properties of a local ellipse element, as an ellipse has two more degrees of
freedom, than a circle. But determining fourth derivatives is very unstable.

There are two main contributions of this paper. First, for region bound-
ary segmentation we propose an adaption to Douglas-Peucker’s algorithm
(Douglas and Peucker, 1973) which is based on circles as basic geometric ele-
ments and partitions the sequence of points instead of the sequence of edges.
Second, we adapt the idea of variation of entropy by Beder (2005) and statis-
tically optimal merge neighboured segments while optimally fitting lines and
ellipses. The whole process depends on two parameters, namely the preci-
sion of the edge extraction and the expected accuracy of the straight line and
ellipse segments. The first one is an internal precision which guides the edge
extraction, the second one is what the user defines to be and might guide the
degree of generalization. Both can be estimated from training data.

Therefore setting these parameters once is sufficient: The process works
stable for all of our experiments using the same parameter set.

1.1 Related Work.

To our knowledge there is no work about an adaption of Douglas-Peucker’s
algorithm to the use of circles instead of lines as basic elements. However,
proposals exists to simplify polygons by sets of circular arcs for the efficient

1 INTRODUCTION 6

storage of polylines. Günther and Wong (1990) proposed the so called Arc
Tree which represents arbitrary curved shapes in a hierarchical data structure
with small curved segments at the leaves of a balanced binary tree. Moore
et al. (2003) proposed a method for polygon simplification using circles. They
aim on closed polygons given by a set of 2D points. Based on medial axis from
Voronoi polygons they propose a population of circles which they afterwards
filter to get a set of circles which best approximate the given polygon. The
final representation of the polygon consists of circles represented by centre
and radius and tangents which link neighbouring circles. No work on using
ellipses for improving storage requirements are known to us.

Finding ellipses in images has attracted many researchers. Some of them
use Hough-transform methods which tend to be slow. Most techniques start
from pixel chains. Early works focussed on ellipse fitting, e.g. Pavlidis (1983);
Porrill (1990), later focussed on unbiased estimates, e.g. Wu (2008); Libuda
et al. (2006). We are interested in the more general problem of describing the
pixel chains by sequences of line and ellipse segments, a problem already ad-
dressed in Albano (1974), however, neither enforcing ellipses, nor looking for
a best estimate for ellipses. West and Rosin (1992); Rosin and West (1995)
performed a segmentation of sequences into lines and ellipses in a multistage
process. They first segment a 2D-curve into straight lines. Afterwards se-
quences of line segments are segmented into arcs restricted to their endpoints.
One might interpret this step as merging sequences of lines to elliptical arcs.
Model selection is done implicitly by evaluating a significance measure to
each proposed segment, which is based on its geometry, purely. However
their criteria are non-statistical, thus cannot easily be adapted to varying
noise situations. Ji and Haralick (1999) criticised this and proposed a statis-
tically valid criterium. Starting from Rosin’s output of arc segmentation they
merge pairs of arcs belonging to the same ellipse. Moreover they also group
non-adjacent arcs and exploit the sign of the arcs for grouping. Proposals for
merging are validated via hypothesis testing. They showed only few results
on comparably easy images. Nguyen and Kerautret (2011) also addressed the
segmentation of pixel chains into lines and ellipses. It is based on a discrete
representation of tangents, circles, and an algebraic fitting through neigh-
bouring arcs only using some key points (boundary and midpoint, instead
of the complete pixel chain. Recently Patraucean et al. (2012) proposed a
parameterless line segment and elliptical arc detector. They use an ellipse
fitting algorithm which uses both, the algebraic distance of the conic equa-
tion and deviation from the gradient direction. Their model selection aims
at avoiding false negatives, by controlling the number of false positives. Re-
alizing the principle of ”non-accidentalness” their method adapts to noise,
which explains their visually appealing results. Their validation and model

1 INTRODUCTION 7

selection criteria, however, are based on fixed tolerance bands. Also they do
not enforce any continuity between neighbouring segments.

Our scope is to segment pixel chains into straight line and ellipse seg-
ments, exploiting the knowledge about their statistical properties both w.r.t.
detectability as well as w.r.t. accuracy.

1.2 Notation.

Geometric elements are named with calligraphic letters, e.g. x is the name
of a point, whereas x is its Cartesian representation. Homogeneous vectors
and matrices are denoted with upright bold letters, e.g. x and C.

The rest of the paper is organized as follows. First, we describe the
segmentation of region boundaries into circle elements based on the idea
of Douglas-Peucker’s algorithm. The merging procedure to obtain line and
ellipse segments is explained in Sec. 3. This section also gives details about
model selection by variation of entropy and by the principle of minimum
description length. Finally, Sec. 4 presents results on synthetic and real data
and compares them with the method of Patraucean et al. (2012).

2 REGION BOUNDARY SEGMENTATION 8

2 Region Boundary Segmentation

Given a set of ordered points in 2D we aim at a partitioning into groups
joining a common geometric element, specifically circular segments. We use
the feature extraction procedure as described in Förstner (1994) and Fuchs
and Förstner (1995). It includes an automatic noise estimation and an edge
preserving filter as described in Förstner (2000). In contrast to many other
procedures it delivers region boundaries as well as thin lines in the form of
chains of points with sub-pixel coordinates. For finding fine details, we use
0.7 pixel for the differentiation and 1.0 pixel for the integration scale. No
blow up of the images is performed, as proposed by (Köthe, 2003) for fully
exploiting the resolution.

2.1 Algorithm

Our concept of region boundary segmentation is based on the well known
Douglas-Peucker algorithm (Douglas and Peucker, 1973). This algorithm is
designed to simplify polygons. Therefore it recursively splits the sequence of
polygon edges into larger edges, until the distance of an eliminated point to
the corresponding edge is below a threshold t. Thus neighbouring edges share
a common point. In contrast, we want to recursively split the sequence of
points X = {xi} until each sub-sequence can be approximated by a circular
arc well enough. Thus neighbouring sequences are meant not to share a
common point.

We realize this by first determining the mid points x′i = 1
2
(xi +xi+1) , i =

1, ..., I − 1 , leading to a sequence X ′ = {x′i}, which is a factor 2 smoother in
variance, than the original. Each edge in the sequence X ′ corresponds to a
point xi in the original sequence, except for the start and the end point. We
now recursively partition the sequence of edges of X ′ into segments, which
approximate the points x′i by a circular arc up to a pre-specified tolerance t.
A segment is split at that point x′i where the distance to the circular arc is
maximum. In order to enforce continuity, we fix the start and end point of
the segments and determine the best fitting arc, see below. The algorithm
for approximating a polyline by a sequence of circles, called circlePeucker,
is given in Alg. 1. It uses (1) function fitArc(X) for fitting a circular arc
segment S to a given set of points X constraining it to the start and end
point, and (2) a function distXS(X , S) for determining the index ib and the
distance dmax of the point with the largest distance of the points X to an
arc segment S . The algorithms recursively splits the chain until the largest
distance of a point to the corresponding arc is below a pre-set threshold t.
As result we get a list O of N circle segments, each segment represented as

2 REGION BOUNDARY SEGMENTATION 9

In: Ordered set of points X = {x1 . . . xI}, tolerance t
Out: List of segments O

1 if I = 2 then O = {1, I}, return;
2 S = fitArc(X);
3 (dmax, ib) = distXS(X , S);
4 if dmax > t then
5 partition at ib:

X1 = {x1 . . . xib},
X2 = {xib . . . xend};

6 O1 = circlePeucker(X1, t);
7 O2 = circlePeucker(X2, t);
8 O = O1 ∪ O2;

9 end
10 return

Algorithm 1: function circlePeucker

a list of indices {i′n}, n = 1, ..., N . Thus we call O ′=circlePeucker(X ′, t).
The edges (i′, i′+1) of the segments in O ′ correspond to the sought points xi,
except for the start and the end point, which are added to the first and the
last segment. This yields the required partitioning O of the original point
sequence.

2.2 Fitting Circle Segments

The algorithm fitArc(X), needed in Alg. 1 line 2, constrains the circle to
the starting and the endpoint of the current polygon segment. Additionally,
we determine the distances d = [di] of the involved points xi to the arc
segment between x1 and xI of S , not to the whole circle. Thus, the distance
of a point to a segment is the minimum of the distance to the footpoint on
the segment or the distance to the start or endpoint.

A circle usually has three degrees of freedom, but by restricting the arc
to two points there is just one degree of freedom left. We parametrize the
arc segment by its height h and solve the following optimization problem

ĥ = argminh (‖d(X , S(xs,xe, h))‖L) . (1)

For a robust estimate we choose the L1-norm (L = 1), thus we optimize h
such that the sum of absolute distances of all points to the arc segment is
minimized.

3 MERGING 10

3 Merging

Given the pre-segmentation O of Sec. 2 which is assumed to be over-segmented,
we aim at a simplification by merging neighbouring segments which share the
same model.

The pre-segmentation is based on circles, but in general there are almost
no circles in natural images as they suffer from perspective distortions. Thus,
our final segmentation is meant to consist of segments of straight lines and
ellipses. From the pre-segmentation we just take the information about which
points belong to one segment and ignore the parameters of the fitted circles.

The final representation is achieved by fitting straight lines and ellipses
through neighboured segments and single segments using all points belonging
to them. This is different from Rosin and West (1995) who only use the
endpoints from the pre-segmentation.

3.1 Fitting Ellipses

We perform maximum-likelihood estimations for fitting lines and ellipses,
respectively, to the data. For line fitting we refer to standard literature, e.g.
(McGlone, 2004).

Fitting ellipses is not trivial. We have to make sure an arc segment to be
an ellipse and not a parabola or hyperbola.

We represent conics with the symmetric 3× 3-matrix

C =

[
Chh ch0

cT0h c00

]
using homogeneous coordinates x for the points on the conic

xTCx = 0.

To ensure the conic to be an ellipse the homogeneous part of the conic must
fulfil |Chh| > 0. Therefore we use Fitzgibbon’s constraint (Fitzgibbon et al.,
1999) which is equivalent to

|Chh| = 1 . (2)

This is a valid choice, as the conic representation is homogeneous. We end
up with a maximum likelihood estimation following a Gauss-Helmert model
with the constraint (2). Parameters are initialized using the direct method
of Fitzgibbon (Fitzgibbon et al., 1999).

As a result we not only obtain the ellipse parameters but also the esti-
mated variance σ2 of the data and covariance matrix Σ of the parameters,
which we use for the subsequent tests.

3 MERGING 11

3.2 Merging Segments Based on Variation of Entropy

Deciding whether two neighbouring segments belong to the same model may
be based on a statistical hypothesis test. As hypothesis tests aim at reject-
ing the null hypothesis, they can be used as sieve for keeping false hypothe-
sis: Therefore we use hypothesis testing for reliably identifying breakpoints
between segments not belonging to the same model, by testing the null-
hypothesis that they belong to the same segment.

Deciding which model fits the data best, i.e. whether a curved line is best
approximated by a line or an ellipse, is a typical model selection problem and
may be solved by the principle of minimal description length (MDL). This
may be directly applied to isolated segments.

Merging segments based on hypothesis testing lacks on the risk of accept-
ing large changes in geometry, in case the parameters of the proposed model
are very uncertain. Therefore, we follow the idea of variation of entropy by
Beder (2005). He derives an information theoretical measure for the increase
of uncertainty of a model due to adding new observations. This is equivalent
to the change of entropy of the probability density function of the model’s
parameters. Following Beder (2005), the change of entropy can be split into
two parts. One depends on the increase of randomness due to new observa-
tions and is related to hypothesis testing. The other depends on the change
of geometric uncertainty due to new data, respectively.

The differential entropy of a probability density function p(x) is given by

h(p) = −
∫
p(x) log p(x)dx. (3)

It reflects the randomness of a stochastic variable x. In case of aD-dimensional
normally distributed random variable x ∼ N (µ,Σ) the entropy is given by
(Cover and Thomas, 1991)

h(p) = 0.5 log
[
(2πe)D |Σ|

]
. (4)

Now, assume a segmentation O of points X = {X1 ∪ . . . ∪ XN} into N
segments. Further assume, we already found a model Mn fitting the points
Xn of segment n, e.g. a line Mn = ln. Now we propose the points Xn+1

of the neighbouring segment to belong to model Mn, too. Without loss of
generality we might argue on the neighbouring segments n = 1 and n+1 = 2.
Now, let the parameters of proposed model M1 be θ̂1 ∼ N (µ̂1, Σ̂1), with

the empirical covariance matrix Σ̂1 = σ̂2
1Σ1 of the parameters, depending

on the theoretical covariance matrix Σ1 and the estimated variance factor
σ̂2

1 = Ω1/R1, derived from the weighted sum Ω1 of the squared residuals and
the redundancy R1 of the estimation process.

3 MERGING 12

When adding new observations Xn+1 we estimate θ̂2 ∼ N (µ̂2, Σ̂2) from
Xn,n+1 = {Xn ∪ Xn+1} and obtain σ̂2

2 and the theoretical covariance matrix
Σ2.

To validate the agreement of such two groups of observations concerning
one of the two models M1 and M2 we analyse the change of entropy caused
by adding new observations:

∆hM = h(N (µ̂2, Σ̂2))− h(N (µ̂1, Σ̂1)) (5)

The parameters of a model M typically are given by adjustment theory.
Thus, we know the variance factor σ̂2 and the empirical covariance matrix
Σ̂ = σ̂2Σ. Using (4) we get

∆hM = 0.5 log
(
σ̂2

2/σ̂
2
1

)︸ ︷︷ ︸
∆h0

+ 0.5 log(|Σ2|/|Σ1|)︸ ︷︷ ︸
−∆hg

(6)

The first term ∆h0 is closely related to the Fisher test statistic

σ̂2
2/σ̂

2
1 ∼ F(∆R,R1) (7)

with redundancy R1 and ∆R = R2 − R1, which is used to test whether the
second set of observations fits the model estimated by the first set. It reflects
the increase of randomness due to including new observations. The term
∆hg reflects the increase in randomness due to the geometric change of the
model.

Therefore, we argue in the sense of hypothesis testing. Given a thresh-
old TS = F−1(S,∆R,R1) with significance level S by the inverse of Fisher
distribution, there is no statistical reason to reject the hypothesis that both
sets of observations fit the model if

∆h0 < 0.5 log TS (8)

which means that both sets of observations fit the model due to uncertainty
in estimated parameters.

To bound the risk of large changes in geometry we further bound the
increase of entropy by ∆hg. Beder (2005) found this bound to be at the
same order of magnitude as the increase of ∆h0. We use Tg = T0 + 1

2
log TS

with a model dependent additional constant T0 which we empirically found
to be equal to the number of parameters of the current model, e.g. T0 = 2
in case of lines or T0 = 5 in case of ellipses. This compensates for a decrease
in condition number of the covariance matrix caused by merging, therefore
increasing with the number of parameters.

3 MERGING 13

In case R1 = 0 we cannot use an estimated variance factor σ̂2
1, but use

the theoretical value σ2
1 instead. Thus, (6) degenerates to

∆hM = 0.5 log
(
σ̂2

2/σ
2
1

)
+ 0.5 log(|Σ2|/|Σ1|). (9)

Now the ratio σ̂2
2/σ

2
1 ∼ χ2

R2
and we derive the threshold TS from the inverse

of χ2distribution.
Please note, that the proposed approach is asymmetric in evaluation

of Xn,n+1 and Xn+1,n. The asymmetry is compensated by always checking
whether the smaller of two neighbouring segments can be merged with the
larger one, thus the larger segment is taken to be M *

1 .

3.3 Model Selection

We have seen how to use the variation of entropy to merge neighbouring
segments to lines or ellipses, respectively. But the entropy criterion may
not favour one of these two models. Then we select the one with smallest
description length. This happens in case of long segments having very small
curvature. Here the segments may be approximated either by a long line or
by an ellipse segment having small curvature.

We evaluate the description length for merged models from their residuals.
We use the modified Akaike criterion (Akaike, 1974)

MDLAIC = −2 log p(l|θ̂) + 2U (10)

using the log-likelihood function of data l and estimated parameters θ̂ and
the number of parameters U . In case of normally distributed observations
the log-likelihood function is equal to the sum of weighted squared residuals
and we get

MDLAIC = Ω2 + 2U. (11)

Now, after having collected all criteria, we start the simplification of the
given pre-segmentation. This is done in a greedy manner where we try to
simplify the polygon while considering given pixel chains and while keeping
the change of geometry slow.

3.4 Algorithm

For each segment on ∈ O we initialize lines ln and ellipses Cn, if possible, i.e.
we estimate model parameters {θ̂1}n, covariances {Σ1}n and residuals {v}n.
Let us call them models M l

n and M C
n , respectively. For all neighbouring

elements we propose merging, i.e. estimate parameters {θ̂2}n,n+1, covariances

3 MERGING 14

{Σ2}n,n+1 and residuals {v}n,n+1 of all potentially merged models. Let us
call them models M l

n,n+1 and M C
n,n+1, respectively. For these models M *

n

and M *
n,n+1 we evaluate TS = F−1(S,∆R,R1), ∆h0 and ∆hg using (6) or

(9). To simplify notation, we avoid the index (n, n + 1) in the following. If
∆h0 < 1

2
log TS and ∆hg < T0 + 1

2
log TS we add the proposed model to the

set of merging proposals P .
We require the geometrical change to be as small as possible when merging

two segments. Therefore we may choose the model M from P with smallest
∆hg. But note that we can not compare changes in entropy between line
and ellipses. These are different models of different complexity, thus we are
not allowed to pick the model with smallest ∆hg from the whole set P . In
a greedy process we start with lines, i.e. first merging all lines, which fulfil
the requirements and afterwards merging all ellipses. More precisely, we pick
these proposed merged line l ∗ from segments on and on+1 with smallest ∆hg.
If merging these two segments to an ellipse is a valid choice, too, we choose
the line model if MDL(l ∗) < MDL(C ∗).

After merging two segments, we update ∆h for all affected segments and
again pick the best proposal concerning ∆hg. If there are no line proposals
left we continue with ellipses the same way, except from evaluating MDL.

All segments left, e.g. those segments that could not merge, are tested
whether their curvature is significantly different from 0. If so, they become an
ellipse, if not they become a line. To be precise, we perform variance propa-
gation on the curvature and perform hypothesis tests on the 95% significance
level.

4 RESULTS 15

a1 e1 i1 a2 e2 i2

b1 f1 k1 b2 f2 k2

c1 g1 l1 c2 g2 l2

d1 h1 m1 d2 h2 m2

Figure 2: Comparison to ELSD under different noise conditions (Best viewed
in colour). a∗: given image. b∗ - d∗: σn = 10, 20, 40 grayvalues. e∗ - h∗: our
final results. Colours, see Fig. 1. i∗ - m∗: results of ELSD. Red - elliptical
arcs. Blue - circular arcs. Green: lines.

4 Results

This section presents some results. We give details about parameters, show
the resulting segments and discuss the success of the merging step by means
of some statistics. We compare our results to those from ELSD (elliptical
line segment detector) (Patraucean et al., 2012) as this is state of the art
and there exists code as well as an online demo exists to process own images
using fixed parameters.

4.1 Parameter Setting.

There are just a few parameters to choose and these are well understandable
and stable for all tested images.

From experiments we found the standard deviation of edge pixels σe = 0.1[pixel].
For this we set the tolerance t for the pre-segmentation using circlePeucker

to t = 3 · σe. Due to compression artefacts and image distortions, lines in im-

4 RESULTS 16

ages often are not that smooth and we set the variance for grouping a factor
three larger than σe. Thus, for fitting and merging lines and ellipses, the
uncertainty of each pixel is assumed to be isotropic Σpp = (3 · σe)2I2.

The significance level for the Fischer-test-statistic in (8) is set to S = 0.95.
The additive constant for evaluating the bound of ∆hg in (6) is set to the
number of parameters of the current model, T0 = U .

As our purpose is the segmentation of given pixel chains and not the
interpretation of the image the identification of spurious scatter is out of
scope. Our algorithm works stable even for very small chains. Nevertheless,
to simplify the visualization we do not show short pixel chains, say shorter
than 10 or 20 [pixels], depending on the structure of the image.

4.2 Synthetic data.

First we investigate the noise sensitivity of the procedure using synthetic
images, see Fig. 2. When changing the noise σn of an image from σn(0) to
σn(k) we adapt the standard deviation of edge pixels by

σe(σn(k)) =

√
1 +

σ2
n(k)

σ2
n(0)

· σe(0), (12)

where we assumed the noise of the image to be σn(0) = 2 [gr]. The parameters
of edge detection are not changed.

Please note that the proposed algorithm works quite stable up to a certain
degree of noise. As long as the contrast is high, geometric elements are
reliable and accurate detected.

4.3 Douglas-Peucker vs. circlePeucker.

Next we show the effect of the circle-version of the Peucker-Algorithm. We
compare the results of circlePeucker to the original Douglas-Peucker algo-
rithm when used as pre-segmentation for the final merging step. The results
are given in Fig. 3 and Tab. 1.

Fig. 3 shows the results for two natural images when using the classical
Douglas-Peucker algorithm and the new circlePeucker, respectively, as pre-
segmentation for the final merging step as described in Sec. 3. We see that
both algorithms perfectly approximate the given data. This is due to the
tight threshold for the maximum distance to a fitted geometric element which
is the same in both cases. But we realize, just by visual inspection, that
our new segmentation reduces the number of segments significantly. For
a quantitative evaluation of this reduction, we count the total number of

4 RESULTS 17

Table 1: Statistics of simplification. The number of objects in first column
refers to the number of evaluated pixel chains per image. The second col-
umn gives the number of line segments using the classical Douglas-Peucker
(DP) algorithm. The third column gives the number of circle segments using
circlePeucker (new). Fourth and fifth column give the number of number
of segments for the final segmentation results.

No. segments
No. pre-segm. final

objects DP new DP new

worm (Fig. 3) 187 1961 834 839 613
stop (Fig. 3) 159 1233 560 608 458
window (Fig. 4) 331 2226 868 941 726
icosah. (Fig. 4) 1071 8991 6177 4517 3235
arcade (Fig. 5) 844 5908 2563 4675 2242

segments for each processed image when using the original Douglas-Peucker
and our new segmentation, respectively. Tab. 1 gives these numbers for each
processed image together with the total number of evaluated pixel chains
and the final number of segments after the merging step. We see that the
new circle-based pre-segmentation reduces the number of segments by almost
50 % compared to the line-based Douglas-Peucker algorithm. The merging
step further reduces the number of segments by about 25 %.

We show some of the advantages of pre-segmentation using circlePeucker
by some details. E.g. the capital O of the STOP-sign actually consist of four
arcs instead of one ellipse. When using circlePeucker we get this result
exactly. While using Douglas-Peucker tends to approximate arcs by lines,
obviously. The main reason for this is the identification of break points can-
didates when evaluating the pre-segmentation. Obviously, circlePeucker
identifies points of changing curvature more likely than Douglas-Peucker.
The same effect can be observed for the boundary lines around the worm.

4.4 Comparison to ELSD.

We give two more results on natural images in Fig. 4 and 5. and compare
our results to those from from ELSD (Patraucean et al., 2012) in Fig. 2 to
5. Let us take the worm of the book cover shown in Fig. 3. ELSD resolves
nearby edges, e.g. the black boundaries of the worm. The pre-processing of
our method identifies these as (dark) lines, which are then simplified. The

5 CONCLUSION 18

slightly curved boundaries of the letters W or B are straightened by ELSD,
while better resolved by our method. ELSD simplifies too much, e.g. the
ellipse of O in the STOP-sign. While ELSD detects the lines independently,
our method segments the edge pixel chains, therefore at sharp corners occa-
sionally an additional short segment is preserved, e.g. the rectangles within
Fig. 2.

To summarize we see, the pre-segmentation using circlePeucker cor-
rectly identifies arc segments and especially their breakpoints. By itself
these are promising results and improve the standard algorithm in terms
of reducing the number of breakpoints of a given polygon while preserving
the geometry.

The merging step identifies elliptical arcs correctly and further reduces
the number of segments of most given pixel chains. Lines are identified in
most cases, if not this might be due to distortions, especially for long lines.

5 Conclusion

We presented a line simplification approach which approximates given pixel
chains by a sequence of lines and elliptical arcs. For this we proposed an adap-
tion to Douglas-Peucker’s algorithm for the use of circles instead of straight
lines. Furthermore, we developed an approach for the simplification of such
a segmentation by merging neighbouring segments due to their agreement
to a joint geometric model in terms of bounded variation of entropy. The
approach depends on just a few parameters which are clearly explained by a
priori knowledge about edge detection accuracy. Depending on the assumed
edge accuracy we showed very accurate results. We showed the effects of
polyline segmentation and simplification on several images with comparable
good results referring to an state of the art algorithm. We proved the success
of merging in terms of the reduction rate of number of segments per object.
We believe that the final segmentation gives rise to useful high level image
features as input for an image interpretation system.

5 CONCLUSION 19

a1 b1 c1

d1 e1 f1

a2 b2 c2

d2 e2 f2

Figure 3: Pre-segmentation circlePeucker vs. Douglas-Peucker (Best
viewed in colour). a∗: Given images as used in (Patraucean et al., 2012).
b∗: Pre-Segmentation using Douglas-Peucker. c∗: Pre-Segmentation using
circlePeucker. e∗ and f∗: Final segmentation using b∗ and c∗, respectively.
d∗ results by ELSD. Colours, see Fig. 1 and 2.

5 CONCLUSION 20

Figure 4: More results on real images (Best viewed in colour). Left: Gothic
window. Right: cropped icosahedron. From top to bottom: given image,
our final result using circlePeucker for pre-segmentation, result of ELSD.
Colours, see Fig. 1 and 2.

5 CONCLUSION 21

Figure 5: More results on real images (Best viewed in colour). Arcade. From
top to bottom: given image, our final result using circlePeucker for pre-
segmentation, result of ELSD. Colours, see Fig. 1 and 2.

REFERENCES 22

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE
Trans. Automatic Control, AC-19:716–723. System identification and time-
series analysis.

Albano, A. (1974). Representation of digitized contours in terms of conic
arcs and straight-line segments. Computer Graphics and Image Processing,
3(1):23 – 33.

Beder, C. (2005). Agglomerative grouping of observations by bounding en-
tropy variation. In Proc. of DAGM, number 3663, pages 101–108.

Chia, A., Rajan, D., Leung, M., and Rahardja, S. (2012). Object recognition
by discriminative combinations of line segments, ellipses and appearance
features. PAMI, 34(9):1758–1772.

Cover, T. M. and Thomas, J. (1991). Elements of Information Theory. Wiley.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature.
Cartographica, 10(2):112–122.

Fitzgibbon, A. W., Pilu, M., and Fisher, R. B. (1999). Direct least-squares
fitting of ellipses. PAMI, 21(5):476–480.

Förstner, W. (1994). A framework for low-level feature extraction. In Proc.
of ECCV, volume 801/1994, pages 383–394.

Förstner, W. (2000). Image preprocessing for feature extraction in digital
intensity, color and range images. In Geomatic Methods for the Analysis
of Data in Earth Sciences, volume 95/2000, pages 165–189. Springer.

Fuchs, C. and Förstner, W. (1995). Polymorphic grouping for image segmen-
tation. In Proc. of ICCV.

Günther, O. and Wong, E. (1990). The arc tree: An approximation scheme
to represent arbitrary curved shapes. CVGIP, 51(3):313–337.

Ji, Q. and Haralick, R. M. (1999). A Statistically Efficient Method for Ellipse
Detection. In Proc. of ICIP, pages 730–734.

Jurie, F. and Schmid, C. (2004). Scale-invariant shape features for recognition
of object categories. In Proc. of CVPR, volume 2, pages II–90 – II–96.

Köthe, U. (2003). Edge and Junction Detection with an Improved Struc-
ture Tensor. In Krell (Eds.): Pattern Recognition, Proc. of 25 th DAGM
Symposium, Springer LNCS 2781, pages 25–32. Springer.

REFERENCES 23

Libuda, L., Grothues, I., and Kraiss, K.-F. (2006). Ellipse detection in digital
image data using geometric features. In Proc. of VISAPP, pages 175–180.

McGlone, J. C. (2004). Manual of Photogrammetry. American Society for
Photogrammetry and Remote Sensing, 5th edition edition.

Moore, A., Mason, C., Whigham, P. A., and Thompson-Fawcett, M. (2003).
The use of the circle tree for the efficient storage of polygons. In Proc. of
GeoComputation.

Nguyen, T. P. and Kerautret, B. (2011). Ellipse detection through decompo-
sition of circular arcs and line segments. In Proc. of ICIAP, pages 554–564.

Patraucean, V., Gurdjos, P., and von Gioi, R. G. (2012). A parameterless
line segment and elliptical arc detector with enhanced ellipse fitting. In
Proc. of ECCV, volume 7573, pages 572–585.

Pavlidis, T. (1983). Curve fitting with conic splines. ACM Trans. Graph.,
2(1):1–31.

Porrill, J. (1990). Fitting ellipses and predicting confidence envelopes using
a bias corrected kalman filter. Image and Vision Computing, 8(1):37 – 41.

Rosin, P. L. and West, G. A. W. (1995). Nonparametric Segmentation of
Curves into Various Representations. PAMI, 17(12):1140–1153.

West, G. A. W. and Rosin, P. L. (1992). Multi-stage Combined Ellipse and
Line Detection. In Proc. of BMVC, pages 197–206.

Wu, J. (2008). Robust Real-Time Ellipse Detection by Direct Least-Square-
Fitting. In Proc. of Int. Conf. on Computer Science and Software Engi-
neering, volume 1, pages 923–927.

