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ABSTRACT:

Our objective is the categorization of the most dominant objects in facade images, like windows, entrances and balconies. In order
to execute an image interpretation of complex scenes we need an interaction between low level bottom-up feature detection and high-
level inference from top-down. A top-down approach would use results of a bottom-up detection step as evidence for some high-level
inference of scene interpretation. We present a statistically founded object categorization procedure that is suited for bottom-up object
detection. Instead of choosing a bag of features in advance and learning models based on these features, it is more natural to learn
which features best describe the target object classes. Therefore we learn increasingly complex aggregates of line junctions in image
sections from man-made scenes. We present a method for the classification of image sections by using the histogram of diverse types
of line aggregates.

1 INTRODUCTION

Our objective is the interpretation of facade images that leads to a
detailed description including dominant objects such as windows,
entrances and balconies. Image interpretation of complex scenes
in general needs an interplay between some high-level model for
the co-occurrence of these objects and some low-level model for
the appearance of these objects. This paper focuses on the catego-
rization of objects in a facade, which is meant to serve a top-down
module as a link to the image data. The scope of the paper is to
classify subsections of images based on the histogram of relevant
aggregates of straight line segments in a bag of words approach.
To motivate the idea of learning a feature representation for fa-
cade objects we will give a brief synopsis of recent work in the
field of facade image interpretation.

We divide recent approaches into several fields of interests. The
first group deals with the task of window detection from single
images. There are two main approaches, either using gradient
projection to find aligned edges (Lee and Nevatia, 2004; Recky
and Leberl, 2010) or using a classificator that detects regions of
interest by searching over the image (Ali et al., 2007; Jahangiri
and Petrou, 2009). The first approach is restricted to facade types
of which windows fulfil the alignment assumption, while the sec-
ond approach does not take any alignment or structure assump-
tion respectively into account. The work of Tylecek and Sara
(2010) is an exception. Their work can be seen in between win-
dow detection and exploiting repetitive structure. They propose a
complex generative model in which they include object geometry
as well as neighbourhood relations.

The next group of works performs a pixel wise labelling or facade
segmentation. One powerful direction is the combination of a
strong pixel wise classification like Random Forests (RF) with an
unsupervised segmentation (Fröhlich et al., 2010). Teboul et al.
(2010) formulate a constrained generic shape grammar to express
special types of buildings. They train a RF classificator to deter-
mine a relationship between semantic elements of the grammar
and the observed image support. Thus, a pixel wise classification
is used as low-level input for the grammar. Another interesting
approach is the hierarchical segmentation proposed by Berg et al.

(2007). They first parse the image into a coarse set of classes
which are further parsed into more detailed classes using meta
knowledge from a coarse level of detail. Both are handled within
an MRF framework. This can be directly transferred to rules of a
grammar, although not done in this work.

We believe that explicit modelling dominant facade objects gives
much better evidence to guide a top-down interpretation system.
In contrast to these approaches which deal with pixel wise evi-
dence to guide top-down methods, we propose to learn generic
parts of facade objects to allow object categorization from object
specific image sections1, not whole scenes yet, see Figure 1 for
some examples of given data. Object detection is easily realized
afterwards by constructing a sliding window over whole facade
images.

Widely used object categorization methods either use a number
of object specific features (Fergus et al., 2003) or they learn a
huge codebook of local image patches (Leibe et al., 2004) which
results in a huge search space for matching image features within
this codebook. Recently there are new approaches that deal with
learning the parts that represent individual object classes, (Amit
et al., 2004; Fidler et al., 2006, 2009; Gangaputra and Geman,
2006), thus avoiding fixed and pre-selected features.

Inspired by ideas of Fidler et al. (2009) and guided by the special
structure of facade objects we propose a bottom-up approach to
learn generic parts of object structure from given training image
sections of these facade objects. We learn increasingly complex
aggregates of lines from image sections showing individual ob-
jects of the target classes. Finally we use learned line aggregates
to classify new unseen image segments of learned target classes
using the histogram of diverse types of line aggregates.

The paper is organized as follows. In Section 2 we propose our
method for facade object categorization. We explain the defini-
tion of aggregates and how to use them for object categorization.
Learning of aggregates is shown in Section 2.2 and Section 2.3

1Imagine those image sections are given by any region detector or
from a sliding window.



Figure 1: For each row some examples of given image sections for class balcony, entrance, arc-type windows, rectangular windows
and background.

shows how to select the relevant aggregates. Section 3 explains
our experiments and used data which are discussed in Section 3.2.
We conclude with Section 4.

2 APPROACH

The basic idea of our approach is to classify rectified image sec-
tions based on the histogram of relevant aggregated straight line
segments.

2.1 Overview

Straight line segments reveal a large invariance to shadows and
changes in illumination. Especially windows show a large variety
in appearance, in particular due to the mirroring of other objects
in the window panes, which let line segments appear as promising
image features. Line aggregates show a large distinctiveness for
certain object categories of facades, in case not only pairs of lines
are taken into consideration. Therefore we use larger aggregates,
say up to five lines, in order to arrive at rich image primitives.
We allow aggregates to contain smaller ones as parts. Aggre-
gates show typical configurations depending on the angles, see
Figure 3. Not all aggregates are relevant for the classification.
We therefore select those aggregates that help the classification.
These learned aggregates show structures that are typical for cer-
tain objects at facades, see Figure 4. We use the histograms of
these relevant aggregates as features for classification. The com-
plete approach is sketched in Figure 2, p. 3. We start from given
training image sections, together with their labels, see top row of
Figure 2. From these images we first collect all possible aggre-
gates A = {Ak} of lines. The aggregates are partitioned into
subsets Ad of aggregates consisting of d lines. Each aggregate
Ak has a certain type tk ∈ T which is a function of the num-
ber d of lines and their directions, rounded to multiples of π/8.
The set T of all possible types of aggregates can be seen as the
language for describing our objects. Learning which types are
relevant for describing the target classes results in the vocabu-
lary V = {vi} ⊂ T . Classification is done by a simple bag of
words (BoW) approach: we interpret identified aggregates of type
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Figure 3: (Best viewed in colour) Toy example to visualize the
meaning of aggregates of lines. We start from lines collected
in the set A1. Aggregates of A2 are given by line junctions;
each aggregate is shown in a different colour. Aggregates of
A3 are groups of three lines, thus elements of A2 joining one
line. They are visualized by two A2 aggregates joining the same
colour. Overlapping aggregates are shown behind each other. Ag-
gregates A4 with four lines are built accordingly to the previous
lines, adding one line to all elements in A3. Thus they are junc-
tions of four lines, visualized by three A2 aggregates joining the
same colour.

vi as words of a vocabulary V as it is usually done in BoW ap-
proaches. Thus an image section is represented by the histogram
h(vi), vi ∈ V of aggregate types restricted to the learned vocabu-
lary. Taking this as feature vector x = [h(vi)] we train an import
vector machine (IVM), as proposed by Roscher et al. (2012). This
was shown to get a state of the art classification performance. It
is a discriminative classifier, therefore usually ensures better dis-
criminative power than generative models and it produces class
wise probabilities for test samples.

Having learned the vocabulary V and the IVM model, we clas-
sify a new image section (bottom row of Figure 2) by detecting
aggregates of the vocabulary, taking its histogram and estimating
its most probable class using the IVM model.

Next we describe how to build the aggregates.

2.2 Building the aggregates

We are looking for certain geometries dominated by straight lines,
sometimes round arches but not arbitrary curves. Thus we start
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Figure 2: The scheme: Starting from labelled training images, we derive a set {Ak} of aggregates Ak with general type tk ∈ T for
each image and select those aggregates that belong to relevant types tk ∈ V . The vocabulary V has I elements. We use the histogram
h = [h(vi)] of the aggregates of each image as a feature vector for the supervised classification. Given a test image we derive the
relevant features and use their histogram for deriving its label.

Figure 4: (Best viewed in colour) Detected aggregates from the
learned set of relevant aggregate types for one given image sec-
tion. Left: lines detected by FEX, A1. Middle: relevant line
junctions, A2 aggregates. Right: relevant aggregates from five
lines,A5 aggregates. As aggregates are possibly mutual overlap-
ping, not all junctions are visible.

from straight line-features together with their adjacency graph
structure using FEX as described in Förstner (1994) and Fuchs
and Förstner (1995). This is different to Fidler et al. (2006) and
Fidler et al. (2009), in which they preferably use Gabor-wavelets
as they try to model arbitrary object classes. The benefit of using
the FEX-procedure is the additional information about the neigh-
bourhood relations of pair wise lines without having to depend on
their distance and size. Thus we become independent of a certain
neighbourhood size. The neighbourhood of two lines is defined
with the Voronoi-diagram of extracted lines. Those lines who join
a Voronoi-edge are said to be neighboured.

All neighbouring lines are combined to A2 aggregates in case
they are not parallel, thus building junctions which are the inter-
section points of the lines. The junctions of two neighbouring
lines have two types τ of relation to the lines: Either the inter-
section point is outside of a line, then τ = 1, otherwise τ = 2.
An instance of an A2 aggregate is parametrized by its orienta-
tion φ ∈ ] − 180◦ . . . 180◦], thus the direction of the first
line, the angle α ∈ [0 . . . 180◦[ between the two lines and the
types (τ1, τ2) ∈ [1, 2] of their mutual connectivity. Please note
that connectivity (middle-middle) is not allowed, as this would
be a crossing that is no valid outcome from edge extraction. All
angles are discretized in π/8 = 22.5◦ steps, thus we have 16
bins for orientation and 8 bins for the angle. Together with three
possible values for line connectivity, we have 384 different line
junctions. Given these definitions we code the geometry of A2

aggregates by unique numbers between 1 and 384, which define
all possible types ofA2. Detected instances ofA2 aggregates are

stored as a list A2 =
{
a2k
}

with a2k = (tk;xk) where tk ∈ T is
a type of the language and xk the position in the image section.

To get aggregates of the next level of complexity we sequentially
add neighbouring lines to already existing aggregates. The type t
of aAd part is coded by the type names of involvedA2 parts and
the angle ω between the added line and the existing configura-
tion, again discretized into 16 bins, which gives about 2 million
possible configurations forA3 parts, more than 14 billion forA4

etc.

Please note that there is neither a scale nor any other configuration
details, except for directions, included. Due to a high variability
of facade objects, the clustering of dominant distances between
neighbouring line junctions fails. Thus, we ignore distances and
just collect co-occurrences of line-junctions and cluster directions
between them.

Next we describe how we learn the relevant aggregates.

2.3 Feature selection

In the beginning we just know the language T = ti, thus all pos-
sible aggregate types. Now we are looking for a subset V ⊂ T
of relevant aggregates. The histograms using all types are of a
very large dimension, usually contains many zeros and further-
more not all types are relevant for the classification. We therefore
identify those bins of the histogram that are informative in terms
of classification, which is a typical feature selection problem.

Let X be the set of all available features xi = h(ti), i.e. the
number of occurring aggregates of type ti. The task of feature
selection is to find a set S ⊂ X of m features xi ∈ X which
have the largest dependency on their individual target class c. As
a measure for dependency, correlation and mutual information
are widely used. It is known that feature sets chosen this way
are likely to have high redundancy, thus the dependency between
individual features is high, and they are therefore not informa-
tive. Following this argumentation Peng and Ding (2005) pro-
posed a feature selection algorithm called Max-Relevance Min-
Redundancy (MRMR). To describe dependency between features
or features and labels, they use mutual entropy which is given by
the expectation of the mutual information and defined by

H(x; y) = −
∑
x

∑
y

p(x, y) ln
p(x, y)

p(x)p(y)
(1)
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Figure 5: Feature selection, error curves depending on the number of selected features. gray: classification error for different testsets,
red: mean error, green: 1σ band.

for two random variables x and y. The maximal dependency be-
tween an individual feature xi and label c is given by the largest
mutual entropy H(xi; c). To select a set Ŝrel of features with the
largest dependency on labels c one searches for features satisfy-
ing the so-called Max-relevance condition.

Ŝrel = argmax
S

1

|S|
∑
xi∈S

H(xi; c) (2)

But for selecting mutual exclusive features Ŝred one can use the
condition called Min-Redundancy

Ŝred = argmin
S

1

|S|2
∑

xi,xj∈S

H(xi;xj) (3)

In both cases, solving the minimization and maximization prob-
lem, respectively, is intractable due to the huge number of possi-
ble combinations of features.

Therefore Peng and Ding (2005) propose an approximation by a
sequential forward selection. Assume we already have a set Si,
initialized by using Equation 1, thus selecting the feature with the
highest mutual entropy with its class label

S1 = argmax
x

H(x; c) (4)

In each step that feature is added, which maximizes the MRMR-
criterion

Si+1 = Si ∪ argmax
xj∈X\Si

Q (5)

for which Peng and Ding (2005) propose to use either the differ-
ence

Qmid = H(xi, c)−
1

|Si|
∑

xj∈Si

H(xj ;xi) (6)

or the quotient

Qmiq =
H(xi, c)

1
|Si|

∑
xj∈Si H(xj ;xi)

(7)

forQ, between relevance and redundancy. In our experiments we
tested both criteria and got slightly better results using (7).

We use a Matlab implementation provided by Peng and Ding
(2005) to successively select most relevant but less redundant
parts. Thus, in the learning step, after collecting all Ad parts
for each training image we perform MRMR feature selection to
get those Ad types that fulfil these requirements.

Unfortunately one needs to define the number of features to be
selected before hand, which is one of the main unknown parts of
our procedure, as we know neither types nor number of relevant
features. We solve this by selecting a sufficiently large number

of parts by MRMR, which gives a ranking of best suited features
and estimate the classification error depending on the number of
features. Usually the classification error decreases while added
features are still informative and stagnates or even increases. We
therefore successively add one feature after the other and esti-
mate the classification error using a simple k-nearest neighbour
classifier with a five-fold cross validation on given training sam-
ples. After smoothing we choose the number of features with the
lowest estimated classification error. Figure 5 shows the average
(red) classification error depending on the number of features for
four different levels of complexity of the vocabulary.

3 EXPERIMENTS

3.1 Experimental setup

We choose a challenging dataset with five classes namely bal-
conies, entrances, arc-type windows, rectangular windows plus
background samples with 400, 76, 198, 400 and 400 samples
per class, respectively, see Figure 1, p. 2 for some examples.
For each sample image its target class c is given. These sam-
ples are taken from annotated rectified facade images, such that
each sample image contains exactly one object of its given target
class. Background samples are sampled randomly from rectified
facade images. Samples taken this way that accidentally con-
tain too large parts of foreground objects are removed manually.
Please note that they are not resized to have an equal size.

The classification task is to learn a representation of this target
class, in a way that we are able to classify new and unknown
images to one of these classes.

We perform a five-fold cross validation. The dataset is equally
split into five groups, such that different sample sizes per class
are equally split, too. In each cross validation step we choose
four of the groups for learning the relevant aggregates by using
feature selection and the IVM model. The remaining group is
used for testing, thus detecting proposed aggregates and testing
the IVM model.

For learning we first collect all line pairs (junctions) for all im-
ages from the learning set. Performing the feature selection over
histograms from these aggregates define the vocabulary of aggre-
gatesA2. For each following level of complexity d and again for
every image section from the training set we further combine the
already learned aggregates with new neighbouring lines. The fea-
ture selection gives the set of learnedAd aggregates and therefore
the words of the vocabulary that best describes the target classes.
For classification each image is described by one single feature
vector which is the number of occurring parts that belong to the
vocabulary. Using feature vectors extracted from the training im-
ages we train the IVM classifier. For testing we extract aggregates
belonging to the learned vocabulary and build their histogram of
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Figure 6: Feature selection, examples for the first 49 selected parts of A2 to A4, extracted from one cross validation step. Please note
that these results are similar in all cross validation steps.

words. Using the learned IVM model we got a prediction of the
target class, which we compare to the given label to build the
confusion matrix.

Next we show results of these experiments

3.2 Results and discussion

First we show some learned types of the vocabulary in Figure 6
for A2 to A4.

Having the geometry of the target classes in mind this is a rea-
sonable collection. For A2 we got rectangular junctions and ag-
gregates that are suited to be part of an arc. Also A3 and A4

aggregates are reasonable parts of the target geometries. In or-

balc entr win-a win-r bg

balc 88.0 0.8 0.0 6.3 5.0
entr 48.7 18.4 3.9 28.9 0.0
win-a 11.1 4.0 72.2 5.1 7.6
win-r 32.8 3.5 1.0 53.3 9.5
bg 14.0 0.0 2.5 11.5 72.0

Table 1: Confusion matrix in [%] for learning and testing just
using aggregates of A2, mean values from five-fold cross valida-
tion, accuracy 68.5. Lines: ground truth, rows: prediction,
balc: balcony, entr: entrance, win-a: arc-type window, win-r:
rectangular window

balc entr win-a win-r bg

balc 85.3 2.3 1.0 7.0 4.5
entr 36.8 19.7 6.6 30.3 6.6
win-a 3.5 1.5 70.7 13.6 10.6
win-r 16.5 3.0 3.0 69.0 8.5
bg 8.8 1.0 2.0 4.2 84.0

Table 2: Confusion matrix just using aggregates of A3, accuracy
75.2, see Table 1

der to test the classification performance we first use each subset
Ad separately. Results in terms of confusion matrices are shown
in Table 1 to 4. By just using line junction, aggregates ofA2 give
a reasonable classification performance. Balconies are classified
with an 88% true positive rate. Note that we are dealing with
single images, thus we have no 3D information, which usually
guides recognition of balconies. The confusion matrix proves
that classification of entrances is a challenging task; they are
mostly classified as balconies. The confusion between rectangu-
lar and arc-type windows is low, which shows that just using line

balc entr win-a win-r bg

balc 79.5 3.0 2.0 9.0 6.5
entr 25.0 22.4 9.2 38.2 5.3
win-a 3.0 2.5 69.2 12.6 12.6
win-r 9.0 3.8 4.5 74.5 8.2
bg 4.5 0.0 2.0 5.5 88.0

Table 3: Confusion matrix just using aggregates of A4, accuracy
76.1, see Table 1

balc entr win-a win-r bg

balc 80.0 3.0 1.3 10.0 5.8
entr 44.7 4.0 6.6 36.8 7.9
win-a 6.1 5.6 25.3 37.4 25.8
win-r 17.8 8.5 4.5 56.8 12.5
bg 6.0 0.5 2.5 6.5 84.5

Table 4: Confusion matrix just using aggregates of A5, accuracy
63.6, see Table 1

junction, thus identifying rectangles and curves, generates good
discriminative power for these classes. Using the other subsets
separately for classification got slightly better results, except A5

where the classification performance significantly drops. Results

balc entr win-a win-r bg

balc 92.3 1.0 0.3 2.0 4.5
entr 40.8 26.3 3.9 26.3 2.6
win-a 8.1 6.6 74.7 5.6 5.1
win-r 22.0 7.5 1.0 63.0 6.5
bg 10.0 1.3 2.5 8.5 77.8

Table 5: Confusion matrix using aggregates ofA2 andA3, accu-
racy 74.6, see Table 1

for testing the classification performance using several subsets
Ad are shown in Table 5 to 7. We see that using aggregates of
different complexity significantly increases the classification per-
formance. Using aggregates from A2 up to A5 gives an overall
classification accuracy of almost 80%. Please note that we cor-
rectly identify balconies, rectangular and arc-type windows with
89%, 81% and 74%, respectively. Due to noise and occlusions
we clearly missed parts of the geometry some times. Thus, when
ignoring aggregates of lower levels we miss information about
parts of the fine geometry. On the other hand, when ignoring ag-
gregates of higher levels, we miss information about the coarse
geometry. Therefore we accept redundancy in features to capture
both.



balc entr win-a win-r bg

balc 89.3 2.0 0.5 3.0 5.2
entr 34.2 26.3 2.6 28.9 7.9
win-a 5.1 4.5 78.8 6.6 5.1
win-r 13.3 7.0 1.7 71.8 6.3
bg 10.3 0.0 1.0 4.8 84.0

Table 6: Confusion matrix using aggregates of A2,A3 and A4,
accuracy 78.4, see Table 1

balc entr win-a win-r bg

balc 88.5 1.5 0.5 2.0 7.5
entr 28.9 34.2 3.9 23.7 9.2
win-a 4.0 3.5 81.3 4.5 6.6
win-r 9.8 8.5 1.3 73.8 6.8
bg 8.0 0.3 1.0 5.7 85.0

Table 7: Confusion matrix using aggregates of A2 to A5, accu-
racy 79.8, see Table 1

4 CONCLUSIONS AND FUTURE WORK

We proposed a method for classification using the histogram of
types of relevant aggregates of straight line segments. For this
we showed how to learn increasingly complex aggregates of line
junctions from image sections from man-made scenes. Using
these aggregates, provided a reasonable classification performance
on a challenging dataset. For all we know, this is the first ap-
proach of facade object categorization including balconies and
entrances from single view images. The shown classification per-
formance proves that the learned set of line aggregates is suited
to give good evidence for existence of certain facade objects from
bottom-up. This can be done when including the approach into
an object detection method like sliding window or using it as a
region classifier. This will be used in future work to guide a top
down scene interpretation that will not be restricted to pixel wise
evidence. Furthermore we will investigate how to include length
information into the definition of aggregate types.
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