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Abstract

This report points out the role of sequences of samples for training an incremental learn-
ing method. We define characteristics of incremental learning methods to describe the
influence of sample ordering on the performance of a learned model. Different types of
experiments evaluate these properties for two different datasets and two different incre-
mental learning methods. We show how to find sequences of classes for training just based
on the data to get always best possible error rates. This is based on the estimation of
Bayes error bounds.

1.1 Introduction

In this section the goal of learning is identifying and discriminating instances of classes.
This requires generative models as they are most descriptive and assure learning of many
classes. On the other hand one needs discriminative models as they are more efficient
in separating classes. We will use both of them, either alone or in combination to use
properties of both models.

Incremental learning is clearly in the scope of eTRIMS. It is impossible to capture
the huge variability of facades with one dataset. Instead we need a continuous learning
system that is able to improve already learned models using new examples. This process
in principle does not stop.

For this purpose there exists a number of incremental learning methods. But one can
easily show that the performance of these methods depends on the order of examples for
training, also this is not mentioned by most other authors.

Imagine little kids, they are sophisticated incremental learners. They permanently
increase their knowledge just by observing their surrounding. But obviously they learn
much better when examples are presented in a meaningful order.

Therefore teachers design a curriculum for teaching their pupils in the beginning of a
school year. This way they ensure that the topics are presented to the pupils in a well
structured order depending of the complexity and challenge of each single topic.

Analogously, we want to define curricula for training classification procedures using
incremental learning methods. We want to define good sequences of examples to train
such methods such that they always perform best.

For this, we first characterize incremental learning methods regarding the effects of
sample ordering in Section 1.2. Thereafter we propose experiments to explore these effects
and show results for two different types of incremental learning methods and two different
types of data in Section 1.3. Finally we propose a method to define suitable class sequences
for training based on the estimate of bounds of the Bayes error in Section 1.4.



1.2 Characterizing incremental learning methods

To characterize a certain learning method we need to provide a measure for success.
Usually one measures performance in terms of the error rate or false positives etc. Other
characteristics could be the time for processing a new sample, this should be equal for the
whole sequence. One also can use the amount of user interaction, that should decrease
with the number of processed samples.

In the following we will concentrate on the qualitative characteristics of an incremental
learning method, thus, the classification power. Therefore we will measure the error rate
related to the number of samples used for learning so far to characterize the performance
of an incremental learning method:

r(N) =
false positives(Q)

N
(1.1)

The relative error rate will depend on various conditions Q, e. g. the classes, the samples,
the classifier, and possibly the sequence of samples.

As main characteristic of an incremental learning method we define its dependence on
the training sequence as follows:

Definition 1.2.1: Ordering sensitivity. We call an incremental learning method
ordering sensitive, if its performance is effected by the sequence of training examples.

In other words if there exist a training sequence that yields a different curve of error
rates than the method is ordering sensitive.

To measure this sensitivity we just train a method with several sequences of training
samples and record the error rates per used sample. The variance of these error rates
indicates the ordering sensitivity. The higher the variance of error rates the higher the
ordering sensitivity.

Now one might tend to use this to decide whether a learning method is good or not.
Thus, one could say a good incremental learning method is not effected by the training
sequence, thus, is not ordering sensitive Giraud-Carrier (2000).

But we argue vice versa. If a method is ordering sensitive and we can assume that
we are able to identify the best training sequence, thus, getting always the best perfor-
mance for this method, then we possibly can outperform any method that is not ordering
sensitive.

We need to distinguish two different training scenarios.

1. Over the whole training sequence there are samples from all classes c ∈ {1, ..., C}
simultaneously available. So the probability of choosing an sample image Ic of class
c is P (Ic | c)P (c), and the sequence of images S = [I1, ..., In, ...] chosen is just a
sequence of independent samples from that distribution.

2. Samples from different classes become available sequentially, one class after the
other. Here we have a chosen permutation or order of classes o = [ci1 , ..., ciC ].
The sequence of images consists of a sequence of samples S = [Si1 , ..., SiC ] with
Sic = [I ic

n ].

In the first case we ask whether there is an influence of the training sequence at all,
thus, over all samples from all classes. Here one can imagine either to start with some
very typical examples from each class and increase their complexity afterwards. Or vice



Figure 1.1: Mean images per class of samples from used digits dataset.

versa start with complex examples to rapidly fill the feature space. Obviously the best
strategy strongly depends on the used method.

The second case is more related to our applications in eTRIMS. Assume we have a
trainable machine for object recognition that we can train infinitely long. Now, assume we
want to train this machine to detect and classify different object classes of facades. The
question for the best training strategy is, whether we shall start with all available facade
images showing 20th century tenements from Berlin to continue afterwards with those
from Hamburg. Or can we directly go on with examples from 200 years old facades from
Heidelberg or Karlsruhe. We call ordering sensitivity in the 2nd scenario class ordering
sensitivity.

1.3 Experiments to explore ordering effects

To investigate of possible ordering effects we have used two different datasets and two
different learning methods.

1.3.1 Learning methods

As the focus of this work is the exploration of ordering effects we mention used methods
just briefly and concentrate on the description of their behaviour.

First we use an incremental formulation of Linear Discriminant Analysis (LDA), called
iLDAaPCA as it is described by Uray et al. (2007) or Skocaj et al. (2006). This is a com-
bination of two linear subspace methods, an incremental Principal Component Analysis
(PCA) and the LDA, thus, uses the generative power of PCA and the discriminative power
of LDA. Whereby the use of PCA enables the incremental update of the LDA space.

Second we use an incremental formulation of Logistic Regression (LR) where we use
stochastic gradient descent to enable the sequential update, (see Bishop, 2006, chap. 4).
This is a discriminative linear classifier.

1.3.2 Data

Handwritten digits

First we use the dataset of handwritten digits from Seewald (2005). These are handwritten
numbers form 0 to 9, so 10 classes. That are intensity images, normalized to 16×16pixel.
Per class there are 190 samples for training and 180 for testing, thus, 3700 images in total.
Figure 1.1 shows mean images for each class of these dataset.

As features we use HOG-Features Dalal and Triggs (2005). They are based on gradient
histograms evaluated over spatial cells of the image and therefore more descriptive than
simply using intensity values. For more details about this type of descriptor see Dalal
and Triggs (2005). Here we use coding with 4× 4 cells with 18 orientation bins each and
blocks of 2× 2 cells. The result is a feature vector of dimension 612 per image.



Figure 1.2: Mean images of samples from used window classes together with one typical
example for each class without normalization. The number of samples per class is noted
in brackets.

Windows

Second we use a set of 2269 windows cut out from images of the eTRIMS image database.
There are 8 classes with different numbers of samples. The classification is been done by
a human.

At the moment the complete set consists of 9500 windows with about 50 different
classes with wide range of complexity, e. g. degree of occlusion, within class variability
and so on. Furthermore most of these classes include just few examples. Thus, we collected
this set of 2269 windows and 8 classes with a sufficient number of samples per class and
a restricted degree of complexity of each sample. Figure 1.2. shows one sample per class
together with the according number of samples. We converted these samples to grayscale
images and normalized them to 40× 30pixel. We partitioned the set into a training and
a test set, including 60% and 40%, respectively.

As features we use HOG-features again. We chose a coding with 5 × 5 cells with 9
orientation bins each and again blocks of 2 × 2 cells, thus, getting features of dimension
512.

We found this setting optimal by evaluating the bounds of Bayes error for different
settings of HOG-descriptors. This way we found a decrease of Bayes error coupled with the
increase of cells but almost no dependency on the use of more the 9 orientation bins. This
is reasonable as windows mainly consists of gradients in horizontal and vertical direction.
For more details about the bounds of Bayes error we refer to Section 1.4.

1.3.3 Experiment 1: Sequences including samples from all classes

First we need to know if an incremental learning method is ordering sensitive. Therefore,
we just try different sequences of training samples. For each new sample we update the
learned model, evaluate it on the test set and record the error rate. This way we get a
curve of error rates depending on the number of used samples. The variance of these error
rates over the whole sequence indicates the sensitivity against the training sequence.

We did this kind of experiment for both mentioned learning methods as well as both
data sets. Results are shown in Figure 1.3.

In each case we tried 100 different sequences for training with samples randomly chosen
from all classes. The variances of gray curves, which are the individual curves of error



Figure 1.3: Ordering Sensitivity. Results of experiments with 100 different training se-
quences with samples randomly chosen from all classes. Each graph shows error rates vs.
number of used samples. Upper row: handwritten digits data set, lower row: window
data set. Left column: method 1, incremental LDA, right column: method 2, sequential
logistic regression. Gray: error rates of each individual sequence, red: mean error rate of
the according experiment, blue: standard deviation of the according experiment.



Figure 1.4: Class ordering sensitivity for 100 different orderings of learned classes. Used
method: incremental LDA. Used dataset: handwritten digits. Same meaning of axes and
lines as in Figure 1.3. Here we started with samples from 5 randomly chosen classes and
continued with samples from new classes afterwards.

rates, show the great sensitivity of both methods with respect to the ordering of training
samples. In other words, the power of the learned model strongly depends of the ordering
of training samples.

For the digits dataset we observe a variance of error rates of about 10% during the
first phase of training. For the incremental LDA we observe a decrease of variances down
to equal results of 23% error rate for all trials after processing all samples. While with
using the sequential logistic regression the results after processing all samples vary with
about 5% but reach up to 10% error rate.

Thus, sequential logistic regression gives much better results here but strongly depends
on the choice of training sequence.

For the windows dataset we get some different results. Again there is a big variance
in error rates over all trials. The overall results at the end are similar, in both cases we
reach not less than 25%.

Thus, for this more natural dataset both methods did not reach good results. But the
experiment again shows the need of choosing an appropriate sequence of training samples.

1.3.4 Experiment 2: Special ordering of classes

The second type of experiments tries to evaluate the dependency of ordering the classes
during training. Assume training samples of different classes become available over the
time, thus, we start training with some initial classes and add samples of a new class
afterwards. Hence, the experiment is defined with first choosing the classes randomly and
second choose the order of samples of this class again randomly. Figure 1.4 shows one of
these experiments for the incremental LDA and the handwritten digits dataset.

Again we recorded error rates for 100 different training sequences. Here we initialized
the learned model with 5 classes, thus, started sequential training with samples from 5
randomly chosen classes out of 10. Then we added samples from single again randomly
chosen new classes. At this point the error rates increase drastically. This is caused by



the fact that one new sample from a new class is not sufficient to train the model on this
new class, thus, the evaluation on the test set fails on this class. But by adding more
samples from the new class the model becomes better and the error rates decreases again.
The overall performance decreases a bit with every new class as the complexity of the
classification problem increases with the number of classes.

Again we observe a high variability of error rates between different trials with different
class sequences. During the initialization this goes up to 30%. Again we reach same results
for each trial after processing all samples.

Hence, the result of this experiment shows a strong relation between class sequence
and the performance of the learned model. Furthermore, it might be possible to use less
samples when using the best sequence of classes, as the best possible error rate is already
reached after using just a part of available samples.

Of course, at the end we get same results independent of the used training sequence. It
tells: this method behaves well, thus, we have learned the same model after processing all
available training samples. But on the other hand, with the scenario of life long learning
we will never reach that end, the point, were we have seen all possible examples. Hence,
the results of this experiments show the significance of having a curriculum, i. e. we
need to know the best order of examples before starting the training. This way we would
have an error rate always on bottom of the graph in Figure 1.4, hence, always reach best
possible performance.

We are now able to characterize an incremental learning method in the sense of or-
dering sensitivity regarding samples from all classes or regarding the order of classes.
However, by now we need to know how to define the best sequence for training. The fol-
lowing section proposes one criterion to choose a good sequence of classes just depending
on the data.

Up to now we have not found a similar criterion to get best suited within class se-
quences.

1.4 How to define a curriculum?

The task now is to find from all permutations of examples the one that produces the
best performance. Related to the property of class ordering sensitivity of an incremental
learning method defined in Section 1.2 we start with a proposal to get good training
sequences regarding this property.

1.4.1 Curricula on class sequences based on the Bayes error

In order to find criterion for choosing good class sequences for training we considered
different measures for separating classes, e. g. distance measures as the Kullback-Leibler-
distance or the Bhattacharyya distance. But both assume knowledge about the underlying
class generating distributions. We do not want to make any assumptions about that.
Hence, we looked for criteria that are independent from any assumption about the data
distribution.

The Bayes error is a general measure for the separability of classes that can be esti-
mated without any knowledge about the data distribution.

Figure 1.5a illustrates the the Bayes error for two classes with known distributions. It
is given by the common area under the probability densities. It is a measure of separability



(a) Definition of Bayes error. (b) Bounds of Bayes error.

Figure 1.5: Bayes error. (a) Assuming we know the distribution of feature x for two classes.
The Bayes error ε∗ corresponds to the area under the graphs were both distributions
overlap. (b) We can estimate bounds of Bayes error using kNN. These bounds get the
tighter the more samples we use for estimating. Furthermore the higher the number k of
neighbours in the kNN classificator the tighter these bounds. We always try to get error
rates within these bounds, i.e. marked as dashed green line. But usually the classifier
gets worse error rates, here marked as dotted red line. No classifier can get better results
than the lower bound of Bayes error.

and defines the best achievable error rate in a classification procedure.

We can estimate bounds of the Bayes error without any knowledge about the dis-
tribution using the k-nearest-neighbour classificator. This is shown by Fukunaga (1972,
chap. 6).

This estimate can be generalised to any number of classes. Let εkNN be the error rate
of a nearest neighbour classification and C be the number of classes. The upper and lower
bound of Bayes error ε∗ are given by

C − 1

C
−

√(
C − 1

C

)2

− εkNN
C − 1

C
≤ ε∗ ≤ εkNN . (1.2)

1.4.2 Empirical results

We did some experiments that we do not report in detail, at which we compared the
error rates of different class sequences with the according bounds of Bayes error. Our
empirical results indicate a strong relation between the Bayes error and the performance
of an incremental learning method given a particular training sequence. We got good
results in terms of error rates using the following two rules:

• Choose class combinations for initialization with lowest bounds of Bayes error.

• Choose remaining classes with lowest bounds of Bayes error regarding the complete
set of learned classes up to now.

In order to estimate good class sequences, which are just based on the data, we have
used a greedy search procedure, see Alg. 1. In our experiments we have used all available
data. But for practical application we can use a sufficiently large random sample.



Algorithm 1 Greedy search for best class sequences

Require: (sample, label) pairs (xn, ωc), n = 1 . . . N from all classes c = 1 . . . C with Nc

samples per class, maximum number M < C of classes for initialization, number K
of neighbours for kNN classificator

Ensure: List L of good class sequences
1: for i = 2, . . . ,M do
2: Estimate Bayes error bounds for all combinations of i classes using kNN classifi-

cation
3: Find set si with lowest bound, add it as initialization classes to list element Li

4: Store estimated bound as metadata to list element Li

5: for j = i + 1, . . . M do
6: Estimate Bayes error bounds for all combinations of j classes including set si

7: Find set sj with lowest bound, add new class to the list element Li

8: Store estimated bound as metadata to list element Li

9: end for
10: end for

The resulting list L consists of pairs of sets {initialization classes, single classes to add}.
Thereby the number of initialization classes increases from 2 to any number M of classes
that is still suited to initialise the learning method.

1.4.3 Experiment 3: Confirm best class sequence of classes de-
termined from bounds of Bayes error

We evaluated both datasets using the greedy search described in Alg. 1. Resulting lists
of good class sequences are shown in Table 1.1 and Table 1.2.

Init. | Init. BE| Add | Sum of BE
--------------------+---------+-------------------+----------
1 8 | 0.000 | 6 2 4 3 5 9 7 10 | 0.098
3 6 | 0.000 | 1 5 4 2 9 7 8 10 | 0.090
4 7 | 0.000 | 3 1 5 9 2 6 8 10 | 0.092
1 3 6 | 0.001 | 5 4 2 9 7 8 10 | 0.090
1 3 5 6 | 0.003 | 4 2 9 7 8 10 | 0.088
1 3 4 5 6 | 0.006 | 2 9 7 8 10 | 0.085
1 2 3 4 5 6 | 0.009 | 9 7 8 10 | 0.079
1 2 3 4 5 7 9 | 0.012 | 6 8 10 | 0.070
1 2 3 4 5 6 7 9 | 0.015 | 8 10 | 0.058
1 2 3 4 5 6 7 8 9 | 0.018 | 10 | 0.043
1 2 3 4 5 6 7 8 9 10| 0.025 | | 0.025

Table 1.1: List of best class sequences for dataset handwritten digits. 1th column: classes
for initialization. 2nd column: lower bound of Bayes error for initialization classes. 3rd
column: classes to add sequentially. 4th column: sum of all lower bounds of Bayes error
of this sequence.

To verify this way of getting good class sequences we show the results of some ex-
periments, shown in Figure 1.6 and Figure 1.7. Primarily the experiments are defined as
described in Section 1.3.4. Again we trained the learning method with different randomly
chosen sequences of classes. We started training with samples from a certain number of
classes and added samples from single classes afterwards.



Init. | Init. BE| Add | Sum of BE
----------------+---------+--------------+------------
1 4 | 0.001 | 2 3 6 8 5 7 | 0.159
1 2 4 | 0.005 | 3 6 8 5 7 | 0.159
1 2 3 4 | 0.012 | 6 8 5 7 | 0.154
1 2 3 4 6 | 0.019 | 8 5 7 | 0.142
1 2 3 4 6 8 | 0.028 | 5 7 | 0.123
1 2 3 4 5 6 8 | 0.042 | 7 | 0.095
1 2 3 4 5 6 7 8 | 0.054 | | 0.054

Table 1.2: List of best class sequences for dataset windows. For description of columns
see Table 1.1.

Figure 1.6: Results of testing predefined class ordering for training for dataset handwritten
digits and incremental LDA as learning method. Each figure shows an experiment with
a fixed set of classes for initialization based on Table 1.1. Gray lines show randomly
chosen class sequences after initialization. While red lines shows the error rates for class
sequences according the results of lines 1, 2, 4 and 5 of Table 1.1.



Figure 1.7: Results of testing predefined class ordering for training for dataset windows
and incremental LDA as learning method. Each figure shows an experiment with a fixed
set of classes for initialization based on Table 1.2. Gray lines show randomly chosen class
sequences after initialization. While red lines shows the error rates for class sequences
according the results of lines 1, 2 and 3 of Table 1.2. Here the points of adding samples
from new classes, marked by a strong increase of error rates, vary from trial to trial, as
the number of samples per class differ.

In contrast to Section 1.3.4 we initialized here with a fixed set of classes based on the
results of searching for good sequences, i.e. the first columns in Table 1.1 and Table 1.2,
respectively.

Finally, we trained the learning method with the according class sequence given by
our previous results. The error rates of these trials are shown as red lines in Figure 1.6
and Figure 1.7.

In fact we get always almost best performance for classes sequences given by the
bounds of Bayes error.

First we observe that error rates from all trials during the initialization are on the
bottom area of those from Experiment 2, shown in Figure 1.4.

Second, after initialization, thus, when adding samples from new classes, error rates
from previous defined class sequences are always almost below error rates from random
trials, shown as gray lines.

Hence, with the estimate of bounds of the Bayes error we actually have found an
appropriate indicator for finding good sequences of classes for training an incremental
learning method.

1.5 Conclusion

In this work we have shown the relevance of sample ordering for training on the perfor-
mance of an incremental learning method. We called this effect the ordering sensitivity of
an incremental learning method. Thereby we demonstrated the important role of ordering
for incremental learning.

We have shown experiments to evaluate ordering sensitivity related to samples ran-
domly chosen from all classes and those related to the ordering of classes. This way we
have shown the significance of these effects for two types of learning methods.

For the task to find good class sequences for training we have shown the possibility to
get those sequences beforehand just based on the data. Therefore we identified the Bayes
error as appropriate measure to find class sequences that cause best possible error rates.



This way we can achieve always best performance given a particular learning method.
Furthermore, we can reduce the number of samples for learning if the error rate during
training a particular class does not drop anymore.
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