
SEMI-SUPERVISED INCREMENTAL LEARNING OF HIERARCHICAL APPEARANCE
MODELS

Susanne Wenzel and Wolfgang Förstner

Department of Photogrammetry
Institute of Geodesy and Geo Information, University of Bonn

susanne.wenzel@uni-bonn.de, wf@ipb.uni-bonn.de
http://www.ipb.uni-bonn.de

Commission III/IV

KEY WORDS: Detection, Building, Structure, Interpretation, Classification, Incremental Learning, Recognition

ABSTRACT:

We propose an incremental learning scheme for learning a class hierarchy for objects typically occurring multiple in images. Given one
example of an object that appears several times in the image, e.g. is part of a repetitive structure, we propose a method for identifying
prototypes using an unsupervised clustering procedure. These prototypes are used for building a hierarchical appearance based model
of the envisaged class in a supervised manner. For classification of new instances detected in new images we use linear subspace
methods that combine discriminative and reconstructive properties. The used methods are chosen to be capable for an incremental
update. We test our approach on facade images with repetitive windows and balconies. We use the learned object models to find new
instances in other images, e. g. the neighbouring facade and update already learned models with the new instances.

1 INTRODUCTION

The interest in geo-applications like Google Earth and Microsoft
Virtual Earth has increased tremendously lately. So far, most 3D
city models are very simple and without semantic information.
Furthermore, the creation of such models needs a lot of user in-
teractions. The need for semantic enrichments is seen in different
applications of 3D city models of high level of detail. E. g., for
accurate navigation to a certain address one would like to know
the exact position of the door. Tasks of urban management or
catastrophe management need to know the number of stories and
the availability of balconies. Architects who plans a new building
need to know the types and number of windows in the neighbour-
ing facades. Automatic procedures for deriving such information
are of great use. The present paper focuses on simplifying the
development tools for interpreting images of man-made scenes,
especially of building scenes.

As building parts often show some degree of symmetry, we ad-
dress the following problem: Given one example of an object and
given the prior knowledge that it is repeatedly present in the same
image we can learn its object class appearance. This provides a
tool to detect other objects of the same type in other images with
minimal need of user interaction. Additionally, we build up an
object class hierarchy with a minimal amount of user interactions.
As we want to increase our knowledge about class appearances
with every new image, we want to propose models that are capa-
ble of incremental learning.

The paper is structured as follows. First we give an overview
over our concept for semi-supervised incremental learning. Sec. 3
refers to related work and Sec. 4 describes our concept in more
detail. Experiments are described in Sec. 5. We conclude with
Sec. 6.

2 OVERVIEW

Our objective is to develop an incremental learning scheme which
requires the least user interaction. To achieve this goal, we need
four procedures: (1) a detector for finding new instances (2) a

prototype generator for finding new class candidates unsuper-
vised, (3) a classifier for the envisaged classes and finally (4) an
GUI for the interaction between the system and the supervisor.
The internal representation of the classes needs to be updatable
incrementally.

In order to achieve a clear representation we change the order and
start bottom up. So the first task of this work is to automatically
identify prototypes, i. e. characteristic instances of their classes
for supporting autonomous learning. In general, we cannot as-
sume single prototypes to be sufficient for complex object classes
like windows, balconies or doors, but we need to assumethat mul-
tiple prototypes per class exist, which possibly are structurally
related e. g. by a hierarchy. As an example Fig. 1 shows some in-
stances of windows. We can obviously find a hierarchy of proto-
types, e. g. rectangular and arclike windows, which further have
subclasses depending on the number of crossbars. We propose a
method for identifying prototypes using an unsupervised cluster-
ing procedure. For this purpose we use a similarity graph, which
is built up recursively by detecting similar objects given only one
or a few examples, and take its connected components as clus-
ters. Thus, given a single instance of a class we let the system
find as many clusters as possible for that superclass. Based on
user’s judgement they are specified, e. g. as an object of the same
superclass but maybe a new subclass or as background. We learn
the object class appearance and use their prototypes pc to auto-
matically detect probable new instances of class c ∈ 1 . . .C in
new images.

Secondly, for classification we represent identified classes as a
kind of Fisher-images, see (Belhumeur et al., 1997) and combine
reconstructive (PCA) and discriminative subspace (LDA) meth-
ods, see (Fidler, 2006) for classification of new instances. When
detecting new instances in new images we incrementally update
our class representations and the object hierarchy.

The methods described in this paper are conceived very general.
They can be used whenever one deals with objects which appear
multiple times in an image, e.g. in repetitive structures and which
occur with similar appearance in other images. As special appli-
cation this paper addresses the detection and classification of win-

Figure 1: Some examples for appearances of class window.

dows and balconies in single facade images and the incremental
learning of their broad appearance over the time.

3 RELATED WORK

Learning from few examples, usually known as one shot-learning
is well investigated, cf. e.g. (Fei-Fei et al., 2004) and (Li et al.,
2007). Fei-Fei et al. present a method for learning object cat-
egories from just a few training examples and obtain the prior
knowledge from object categories which were previously learnt.
In contrast to their approach, we explicitly use the prior knowl-
edge that the object appears repeatedly to find new instances and
learn the class appearance from these instances. Given the knowl-
edge of existence of similar but different object classes we make
hypothesis of new object classes or subclasses which might be
accepted from the user or not.

The idea of using similarities between neighbouring objects is
not totally new. Sivic and Zisserman (2006) aim at finding key
persons in a video. They propose to initiate the learning of the
appearance model by identifying the person in a single image and
use a tracking procedure to generate a large set of training sam-
ples. Thus the inherent similarity graph is built up using pairwise
similarities and explore the chaining effect to obtain dissimilar
instances of the person.

Van Gool et al. (2007) and his group aim at estimating vanishing
points in strong perspective facade images. They search for rows
and columns of similar image patches. They first establish a sim-
ilarity graph between interesting image features, from which they
derive a similarity chain using a maximum spanning tree (MSP).
Consecutive nodes in the MSP are then taken to be image features
which are arranged in rows or columns, then allowing to estimate
the vanishing points.

Our method of finding prototypes is comparable to that of Sivic
and Zisserman (2006): As our goal is to automatically derive a
hierarchy for appearance classes, we provide one or several in-
stances of the class to be modelled and let the system find as
many prototypes for that class.

4 A CONCEPT FOR INCREMENTAL LEARNING

In this section we want to describe our concept for incremental
learning in more detail. We start with the determination of proto-
types.

4.1 Getting Prototypes

A prototype is a representative instance of its class. An instance
is representative if it may be taken as surrogate for the probabil-
ity density function (p. d. f.) of the class during classification,
as e. g. in case based classification. Therefore one might need
several prototypes being representative for a class. For choosing

prototypes one could use characteristic points of the features joint
p. d. f., like the mode or the mean.

Thus the goal of the following algorithm is to automatically es-
tablish a large set X of instances xi of the envisaged super class
and by clustering identify appearance subclasses c, which then
are the basis to determine a prototype pc for each cluster.

We assume the class to be representable by the multidimensional
p. d. f. of the feature vector describing each instance of the class.
As we want to initiate the prototype detection with as few training
data as possible we assume the density values of the p. d. f. be-
tween neighbouring nodes to be large enough to produce a chain-
ing effect. The chaining effect thus is exploited to minimize the
required user guidance. Otherwise, multiple instances need to be
given as training samples.

Our method assumes the image to contain multiple instances of
the envisaged concept. In addition, we assume to have a similar-
ity measure s(xi, xj) for two different instances, e. g. replacing
the probability density p(xi − xj) of the difference of the corre-
spondent feature vectors.

For the moment we do not exploit the spatial configuration of the
instances.

Finding a large subset X of X 0 from a given instance x0 Start-
ing from an initial instance x0(x0) with feature vector x0 we
search for all instances xi in the set X 0 of all candidate instances
having a similarity s(x0,xi) > T1 better than a given low thresh-
old T1. Starting from these instances we again search for all in-
stances with a similarity better than T1. This recursion allows
to reach all instances bridged by the chaining effect, but possible
also instances not belonging to the envisaged class.

At the moment we represent each instance xi by the complete
intensity matrix, thus xi contains all intensity values of xi. We
work on rectified metric facade images so we need not deal with
perspective effects. We choose the normalised cross-correlation
coefficient ρ as our similarity measure, as it can deal with in-
tensity changes (e. g. due to shadows) and we need no rotation
invariance. So s (xi, xj) = ρ (xi,xj).

Given an image I and a single example 1 x0 of size a × b we
scan the whole image for similar objects. This is realized by the
cross-correlation function ρ with ρ(r, c) = [ρ(x0,x(r, c))] be-
tween given template x0 and image patches of size a × b within
the whole image I . Thus we formally take all positions as can-
didate set X 0. In the first iteration we select all local maxima in
ρ with ρ(i, j) > T1, cf. the function non-maximum-suppression
in line 1.2 and 1.8 of Alg. 1. The given example x0 defines the
seed node v0 of a graph G(V ,E ; S) and image patches xi of size
a× b around positions of found local maxima define the first se-
quence of additional vertices v(xi). All of them are connected by
an edge eij = (xi, xj) to the seed node together with their corre-
lation coefficient ρ (x0,xi) as similarity measure sij . For all of

1The enlargement to more examples is straightforward. The example
could be given by the user or by an appropriate detector.

these found image patches we repeat this procedure recursively.
The depth ’rec’ of recursion is a parameter, which we choose per
default as rec = 3 but can be set by the user. The procedure is
summarised in Alg. 1.

Algorithm 1 Recursive buildup of similarity graph
Require: x0, rec, T1, I
Ensure: G(V ,E , S)

1: R = [ρ(x0,x(i, j))] ∀i, j
2: X = non-maximum-suppression(R, T1)
3: add x0 and X to V and establish E and S = {ρ(x0,Xi)}
4: depth of recursion = 1
5: while depth of recursion < rec do
6: for k = 1,...,length(X) do
7: R = [ρ(xk,x(i, j))] ∀i, j
8: X = non-maximum-suppression(R, T1)
9: add X to V and update E and S = {ρ(x0,Xi)}

10: end for
11: end while

Unsupervised clustering using a similarity graph Finding
clusters is based on a reduced similarity graph. Buhmann and
Hofmann (1994) study the pairwise clustering problem in the
framework of maximum entropy estimation. They assume only
pairwise dissimilarity values are available and achieve grouping
the data into clusters by minimising the sum of dissimilarities be-
tween data of the same cluster. In (Hofmann and Buhmann, 1997)
they upgrade their method by a deterministic annealing approach
and use pairwise data clustering to segment textured images. We
in a first instance perform the clustering by simple thresholding,
which is certainly suboptimal, but may be replaced by a more
rigorous procedure. Therefore, we cut all edges with weights
ρ < T2 and derive connected components of the graph. So the
vertices vi ∈ V of the reduced similarity graph G

(
V ,E , S

)
represent instances xi of class c ∈ C. Two vertices vi and vj are
connected in case the similarity s(xi, xj) = ρ(xi,xj) > T2 is
larger than a threshold T2, thus the existence of eij indicates a
high similarity. As this threshold T2 is chosen to be larger than
T1 not all vertices in G are connected. We assume instances in
one connected component to belong to the same subclass.

Per default we choose the correlation coefficients T1 = 0.6 and
T2 = 0.8 as thresholds. We are currently investigating the ade-
quate choice of these parameters.

Supervised labelling of found clusters The identification of
the subclasses is based on the user’s judgement. For each cluster
the user has to specify whether it represents a subclass of the class
envisaged, another class not yet envisaged, or the rejection class.
The user thus establishes a simple class hierarchy with multiple
classes Ck, including the rejection class, with the subclasses Cki.
E. g. we may take the class window as the envisaged class, man-
ually identify a window by its bounding box and - as an example
- may have found four clusters, which turn out to be of different
type, e. g. windows with and without crossbar and with a round
top, and another cluster of balconies, see Fig. 2(a).

Representation of prototypes We assume that our clustering
and labelling process generates well closed clusters for each class.
Thus we may assume the p. d. f. to have one mode, or at maxi-
mum a few. We might use the mean feature vector as prototype
and characterize it by its covariance matrix. The chosen algo-
rithms for finding prototypes need to be seen within the complete
scheme of incremental learning, which poses restrictions on the
representation which need to be updatable incrementally.

We determine a prototype by finding a representative instance as
a function of the found instances. In our first realization we use

the mean images as prototypes for each class. So we define the
prototype pc of each class c ∈ C as

pc = cx =
1

Nc

Nc∑
n=1

cxn (1)

where cxi are the feature vector of instances cxi of class C and
Nc is their number.

To achieve invariance on different object sizes we scale our pro-
totypes to a given fixed size.

Experiments with getting prototypes Fig. 2(a) shows a fa-
cade with four floors and five window columns. We observe
two classes of facade elements: windows and balconies. The
windows can be partitioned into four subclasses. We add the
cornices to the windows as a characteristic feature. We chose
a bounding box around the second window on the third floor to
define a single example. To reduce the computational costs we re-
sized the image, so that the templates got size 50×70 pixels. We
took our default parameter set with recursion depth of three and
T1 = 0.6 and T2 = 0.8 as thresholds for correlation coefficients.

Fig. 2(b) shows the mean images of found clusters together with
labels given by the user manually, see figure caption for explana-
tion the numbers. Obviously, the joint p. d. f. of features has such
a form that the chaining effect allows a drift of the found image
patches to different clusters. The third found cluster (third image
at first line) shows that the cornices were identified as a cluster
of multiple occurring elements. Indeed, this element is the most
frequent element in image. But as we are not interested in such
objects we chose this cluster to be background. As a further ef-
fect of the chaining effect we reached the desired drift to not only
different types of the same super class but also to a new super
class. Hence, the process identified two new window subclasses.
And as the balconies are very similar to the windows, the process
also identified them as related class.

Fig. 2(c) shows found image patches marked with their label.
Nearly all interesting instances were found excepting three win-
dows on the upper floor. The rectangular windows without cor-
nice could not be distinguished from those with cornices. But all
others were correctly found and matched to their class. Finally,
Fig. 2(d) shows the corresponding object hierarchy with classes
represented by their prototypes.

4.2 Classification

Models for classification can be generative or discriminative.
Generative models capture the essence of the class explicitly and
allow sampling of instances, e. g. feature vectors from their com-
pactly represented distribution. Incremental learning of genera-
tive models is incrementally changing the class description. Dis-
criminative models explicitly represent differences between two
or more classes. They make the decision process explicit. Incre-
mental learning is changing the decision rules, e. g. the decision
function. Incremental learning is much easier in generative mod-
els. The efficiency of discriminative models in general is much
higher. This is the reason why both representations should be
integrated, cf. (Skočaj et al., 2006). In a first step towards incre-
mental learning we follow the approach of Fidler (2006) and use
augmented PCA as generative model for our classes and LDA for
representing the decision functions.

This procedure is called LDA on augmented PCA (LDAaPCA)
and as result we obtain feature vectors y for every image patch in
the final classification subspace which is of dimension C − 1.

(a) (b)

(c)
(d)

Figure 2: (a): Rectified facade image with two super classes, windows and balconies and four different subclasses of class window.
(b): Found image patches marked with their label. (c): Mean images of found clusters and their labels given by the user manually. The
first number codes the class, here 1 for window and 2 for balcony and the second number codes the type and subclass, respectively,
here three different window types. (d): Object hierarchy, with classes represented by their prototypes.

The sample is matched to that class c for which the a posteriori
probability according a bayes classificator is maximised.

p(y|c) = argmaxc p (y|µc,Σc) p (c) (2)

We assume an uni-modal gaussian p (y|µc,Σc) with mean µc
and covariance Σc for every class c. The a priori probability p (c)
for every class is simply the fraction of the numberNc of samples
of the class c to the whole number of samples N , p (c) = Nc/N .
This way we can introduce a reject option for which the classifi-
cation is uncertain.

pα (y) = 1− p (y|cpmax)∑C
c=1 p (y|c)

(3)

The reject option holds if pα > ε for which we choose a signif-
icance threshold of ε = 0.01. In that case the according image
patch is presented to the user and he has to decide whether to
accept the sample or to reject it.

4.3 Detecting candidates for new instances in new images

To detect new instances in new images we use almost the same
procedure as described in Sec. 4.1. As we work on metric images
we assume the image scale given. Thus, we rescale the image
according to the given prototype scale. We then use the proto-
types for detecting at least one new instance in the new image
and start the recursive search procedure described in Sec. 4.1 to
detect probable new instances. In contrast to Sec. 4.1 we now
pass on the clustering and classify all found instances according
to the learned classification models.

4.4 Incremental update of prototypes and classifiers

First we need to update our prototypes pc for detecting new in-
stances in new images. This is done by simply updating the al-
ready known mean images pνc of class c of last step ν by adding

the mean pc of new images.

pν+1
c =

Nν
c pνc +Ncpc
Nν
c +Nc

(4)

whereas N∗ are the associated numbers of samples.

As we have only few examples per class, in our first implementa-
tion we evaluate LDAaPCA on all data gathered during the recog-
nition phase. Thus, after receiving a new example the subspace is
updated as well as the coefficients of all images seen before. To
increase the performance we will adapt it to an incremental LDA,
cf. (Uray et al., 2007) which is a combination of an incremental
PCA on an augmented PCA subspace and the LDA on this up-
dated aPCA space. This way we will be able to handle a long
sequence of images and to continuously update our class models.

5 EXPERIMENTS

Now we want to describe an experiment where we detected and
classified windows over a sequence of images given one example
and built up the class hierarchy.

Fig. 3(a) shows a rectified facade image where we gave the sys-
tem one example of a window, marked red. Given this exam-
ple we started the recursive search and clustering procedure and
found new window instances, shown in Fig. 3(b). The second
class, marked green, was established after asking the user for the
meaning of this cluster. Thus the initial class hierarchy consists
of one root node, class 1 (window) with two leafs 1-1 and 1-2.
Fig. 3(c) shows the associated prototypes for these two classes.
And Fig. 3(d) shows the samples projected onto the subspace
together with the class decision boundaries which are indented
from the class boundaries by the rejection area. A sample pro-
jected onto the region between the decision boundaries can not
be reliably matched to one class, hence the user is asked for the
meaning of this sample.

Next images Fig. 4 - 6 shows the process of detecting new in-
stances and updating the learned models. First we took the learned

(a) (b)

(c)

(d)

Figure 3: Initialisation: (a) Initial example. (b) Result of detecting new instances. (c) Prototypes. (14): Number of associated samples.
(d) Samples projected into the LDA subspace. Red: class 1-1, green: class 1-2, blue: background. Dashed lines: decision boundaries
according the class boundaries and the rejection area.

(a) (b)
(c)

Figure 4: 2. Step: Automatically detect new instances. (a) Result before editing. (b) Result after editing. (c) Prototypes.

(a) (b)
(c)

Figure 5: 3. Step: (a) Result before editing. (b) Result after editing. (c) Prototypes.

(a) (b)
(c)

Figure 6: 4. Step: (a) Result before editing. (b) Result after editing. (c) Prototypes.

prototypes from the initialisation and used them to find at least
one new instance in the facade image shown in Fig. 4. Than we
recursively searched for all probable new instances and classified
them according to the learned models. Instances that could not
be clearly matched to one class were presented to the user. This
way a new class 1-3 was established, marked black. The result
is shown in Fig. 4(a). Of course, the classifiers were not very
robust at this stage as they were learned from only a few exam-
ples. Hence there were some misclassifications that were man-
ually corrected by the user. The result after editing is shown in
Fig. 4(c). The image patches shown were used to update the class
hierarchy, that is, to update already known prototypes and the ini-
tialisation of new classes as well as to update the subspace rep-
resentations. As the dimension of the feature subspace increases
with every new class, we pass on the presentation of features in
subspace like Fig. 3(d). Note, that we started with only one ex-
ample of a certain size and height-width-ratio, respectively. Thus
we did not recognise the bigger windows. This would be fixed
when defining a new example of a different size.
Fig. 5 and 6 shows the results of step 3 and 4 the same way. Step 3
has established a new subclass 1-4. A sample of this class was de-
tected and correctly classified within the next image. As instances
of class 1-1 occur in every image - there were 30 instances found
within the first three images - the classifier became more robust.
Hence the classification results for the image of Fig. 6 are quite
better than for the first ones.

6 CONCLUSIONS AND FUTURE WORK

We gave a concept for an incremental learning scheme. Given one
example of an object within a rectified image and given the prior
knowledge that the object appears several times in the image, we
learn the variation in appearance of the class of the given object
to detect further instances in other images. We have shown a
recursive procedure to find similar objects within an image. By an
unsupervised clustering we are able to make a hypothesis about
different object classes within an image. Finally, by minor help of
the user we identify new object classes or new subclasses among
the found clusters. That way, we build up an object hierarchy
of classes and subclasses with minimal user interaction that is
updated with every new image.
The results of the recursive search and the clustering procedure
up to now depend too much on the choice of the thresholds T1

and T2. We will either use an optimisation procedure to find best
thresholds T1 and T2, e. g. using a hierarchical clustering pro-
cedures, such as dendrogramms, to find an optimal threshold for
T2. Or, as an alternative, we might use a more sophisticated clus-
tering procedure which contains an optimization function, thus
avoiding the need for setting thresholds.

To increase the classification performance we will adapt the cur-
rent subspace methods to an incremental LDA, cf. Uray et al.
(2007). However, we get a feature vector that can be expanded
by further features, e.g. depth information, obtained from surface
reconstruction given prior knowledge of symmetry, which we can
assume for objects like windows and balconies, cf. (Hong et al.,
2004), (Yang et al., 2005) and then can be used for increasing
classification performance.

ACKNOWLEDGEMENTS

This work is founded by the EU-Project 027113 eTRIMS, E -
Training for Interpreting Images of Man-Made Scenes.

References

Belhumeur, P. N., Hespanha, J. and Kriegman, D. J., 1997. Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection. PAMI
19(7), pp. 711–720.

Buhmann, J. M. and Hofmann, T., 1994. A maximum entropy approach
to pairwise data clustering. In: ICPR, pp. 207–212.

Fei-Fei, L., Fergus, R. and Perona, P., 2004. Learning generative vi-
sual models from few training examples: an incremental Bayesian
approach tested on 101 object categories. In: CVPR Workshop on
Generative-Model Based Vision.

Fidler, S., 2006. Combining Reconstructive and Discriminative Subspace
Methods for Robust Classification and Regression by Subsampling.
PAMI 28(3), pp. 337–350.

Hofmann, T. and Buhmann, J. M., 1997. Pairwise data clustering by
deterministic annealing. In: PAMI, Vol. 19, pp. 1–14.

Hong, W., Yang, A. Y., Huang, K. and Ma, Y., 2004. On symmetry and
multiple-view geometry: Structure, pose, and calibration from a single
image. IJCV 60(3), pp. 241–265.

Li, L.-J., Wang, G. and Fei-Fei, L., 2007. OPTIMOL: automatic Object
Picture collecTion via Incremental MOdel Learning. In: CVPR.

Sivic, J. and Zisserman, A., 2006. Video Google: Efficient visual search
of videos. In: Toward Category-Level Object Recognition, LNCS, Vol.
4170, Springer, pp. 127–144.

Skočaj, D., Uray, M., Leonardis, A. and Bischof, H., 2006. Why to
combine reconstructive and discriminative information for incremental
subspace learning. In: CVWW 2006, Telč, Czech Republic.

Uray, M., Skočaj, D., Roth, P. M., Bischof, H. and Leonardis, A., 2007.
Incremental LDA Learning by Combining Reconstructive and Dis-
criminative Approaches. In: BMVC.

Van Gool, L., Zeng, G., Van den Borre, F. and Müller, P., 2007. Towards
mass-produced building models. In: PIA, Vol. 36, Munich, Germany,
pp. 209–220.

Yang, A. Y., Huang, K., Rao, S., Hong, W. and Ma, Y., 2005. Symmetry-
based 3-d reconstruction from perspective images. In: CVIU,
Vol. 99number 2, pp. 210–240.

	Introduction
	Overview
	Related Work
	A concept for incremental learning
	Getting Prototypes
	Classification
	Detecting candidates for new instances in new images
	Incremental update of prototypes and classifiers

	Experiments
	Conclusions and Future Work

