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ABSTRACT:

Pre-processing such as filtering data in order to remove or at least reduce noise is a crucial step because infor-
mation which is lost during this filtering cannot be recovered in subsequent steps. It is a well-known fact, that linear
filtering does not only reduce noise, but may also lead to a loss of information due to the global smoothing, regardless
of structures in the data. In order to overcome these drawbacks, we propose to use an algorithm for parameterfree
information-preserving surface restoration. As we do not want to evaluate the results of the filtering only qualitatively
by visual inspection, we examine the influence of pre-processing on feature extraction for digital elevation models and
discuss quantities for the evaluation of these influences.

KURZFASSUNG:

Der Vorverarbeitungsschritt der Datenfilterung von beobachteten Daten zur Eliminierung oder zumindest Reduzierung
des Rauschens erfordert, daf} eine Glattung in homogenen Signalbereichen stattfindet, gleichzeitig aber auch die Infor-
mation, die oftmals in inhomogenen bzw. unstetigen Bereichen des Signals enthalten ist, erhalten bleibt. Wird diese
Information abgeschwacht oder gar eliminiert, so kann sie i. a. in spateren Schritten der Datenanalyse nicht wieder
zuriickgewonnen werden. Lineare Filterung kann bekanntermafien nicht nur zu einer Reduzierung des Rauschens
fiuhren, sondern wegen der unabhangig von den in den Daten enthaltenen Strukturen globalen Glattung auch zu einem
Informationsverlust an Unstetigkeitsstellen. Aus diesem Grund schlagen wir die Anwendung eines Algorithmus zur
parameterfreien informationserhaltenden Flachenrestaurierung vor. Weiterhin sind wir nicht nur an einer qualitativen
Bewertung der Filterungsergebnisse durch visuelle Kontrolle, sondern an einer quantitativen Bewertung interessiert.
Daher untersuchen wir den Einflufl der Vorverarbeitung auf die Merkmalsextraktion fir Digitale Hohenmodelle und

diskutieren Grofien zur Bewertung dieser Einflisse.

1 INTRODUCTION

Digital Elevation Models (DEMs) are used for a variety
of applications. Besides the classical applications for or-
thophoto production, mapping, and planning, DEMs are
employed in the field of geosciences like hydrology and
geomorphology. The former applications use DEMs in
raster or triangle representation mainly for computations
and visualizations, whereas the latter applications aim at
extracting explicit information about the surface. Exam-
ples for this information extraction are the extraction of
drainage networks in hydrology or the characterization of
the relief and extraction of morphological structures in geo-
morphology. The main information about a surface is re-
presented in surface specific structure lines. In case of a
DEM these structure lines are e. g. ridge and valley lines.

The conversion from raster or triangle representation to
features/structures which contain the information of the
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surface is an information condensation. This step con-
denses the implicit information represented by the raster or
triangles to explicit information represented by the struc-
tures.

A number of algorithms for feature extraction have been
proposed. All these approaches have in common that dis-
turbances due to quantization or random measurement
noise and unsignificant local pits or peaks affect their re-
sults. In order to overcome these problems, pre-processing
to achieve an optimal data set for further feature extrac-
tion or a feature extraction algorithm which takes care of
these disturbances is necessary. In many cases linear fil-
tering is used for pre-processing. Linear filtering is fast
and it removes or at least reduces the noise and general-
izes the surface. Dependent on the filter width which has
to be tuned by the operator, the result is a smooth sur-
face everywhere, even at discontinuities, although these
discontinuities should be maintained. Ridges and valleys
are rounded off and little, but surface characteristic fea-
tures might be wiped out or blurred and reduced, so that
they can not be detected by the feature extraction algo-



rithm. All linear filters show the trade-off between noise
removal and information preservation.

In order to overcome these drawbacks, we propose to use
an algorithm for parameterfree information-preserving sur-
face restoration. The basic idea is to extract the data’s
signal and noise properties from the observed data and
use this information for the filtering of the data. The
extraction of these properties is based on generic a pri-
ori knowledge about the surface. This a priori knowledge
also puts constraints on the data and is used for the regu-
larization via the stabilizing function. For this stabilizing
function smoothness constraints are used. The smoothness
constraints used here are the principal curvatures, whose
expectations are assumed to be zero. If the data does not
correspond to the a priori knowledge or the model, the
influence of regularization is weakened. Therefore discon-
tinuities in the data are maintained. The signal and noise
properties are extracted by simultaneously estimating the
variance of the smoothness and the noise.

In this contribution we also examine the influence of pre-
processing on feature extraction for DEMs. For this
purpose classical filter techniques and the information-
preserving filter are applied for pre-processing and com-
pared with respect to noise reduction and the ability of
preserving morphology. The resulting data sets are the
inputs for a feature extraction algorithm extracting struc-
ture lines. The results of feature extraction are then eval-
uated with respect to the previous filtering and compared
qualitatively and quantitatively.

The paper is organized as follows: In section a brief de-
scription of the parameterfree information-preserving sur-
face restoration’s principle is given. Section gives an
overview of the applied algorithm for feature extraction,
followed by an introduction of possible evaluation criteria
in section . In section 4.1.2 the results, including a com-
parision and evaluation of the pre-processing algorithms’
influences, are given.

2 PARAMETERFREE INFORMATION-PRESERVING
SURFACE RESTORATION

The parameterfree information-preserving surface resto-
ration (PIPS) is designed for 3D surfaces in grid format
(x(u,v), y(u,v), z(u,v))", where u,v denote the surface
coordinates which are used to represent the topology of
the surface points. The principle of the algorithm is to
estimate the signal and noise properties via variance com-
ponent estimation (c. f. Forstner 1985) and use this infor-
mation for filtering (c. f. Figure 1).

The algorithm is based on a geometric model. It is as-
sumed that the expectations of the principal curvatures
are zero, 1. e. the surface can be locally approximated
using planes. If the principal directions and the surface
normals are known for the 3D representation, the princi-
pal curvatures can be computed by convolution.

The information about the surface’s curvature properties is
fully contained in the Weingarten map or shape operator
W (Klingenberg 1973, Besl and Jain 1986). The eigen-
values of the squared Weingarten map W2 = W W are
the squared cigenvalues of W. The eigenvectors of W2 are
equal to those of W (c. f. Weidner 1993a). We use the
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Figure 1: Flow Chart PIPS (3D)

eigenvalues for estimating the local variance of the sur-
face’s curvature.

The algorithm is based on the assumptions that
d:(df af df )T:u-l-n, (1)
E(d)=u and D(d)=o031
with
di =x(u,v) d2=y(u,v) ds=1z(u,v)

E(ki) =0 D(ki) = Diag(cs1;)
E(k2) =0 D(ky) = Diag(oys;)

where Diag(p;) denotes a diagonal matrix with entries p;
and n ~ N(0,02I). Other noise models, e. g. signal de-
pendent noise, can easily be integrated.

If the surface normal and the principal directions are given,
the following linear model with m = 5 groups of observa-
tions results (c. f. Koch 1988, p. 264):

E(y)=Xu D(y)=)Y _ Vid (2)

with
X=(xI xI xT xf xi )"
y=(daf a7 )’ di=ki ds=ks

The matrix of coefficients, which describes the linear re-
lation between the observations and the unknown para-
meters u, splits into five submatrices, where the matrices



Xz, Xy and X, are identity matrices and the rows of the
matrices Xz, and Xy contain the convolution kernels for
the principal curvatures k; and ks. The structure of V;,
which represents the mutual weighing of the observations
in each group, must be known in advance (c. f. Koch
1988). Assuming independence of the obsvervations and
equal variances for the coordinates simplifies (2) to

E(y)=Xu (3)
D(y) = ain + 0£1Vk1 + Uizvlﬁ
with
Va=o031 Vi = Diag(Fri;) Ve = Diag(Tra:)

where 72 denote a local estimate of the curvatures’ vari-
ances. Based on this, the unknown parameters u, i. e.
the coordinates, and the variances can be estimated using
iterative estimation.

Details are given in Weidner 1993b and Weidner 1994, also
including details about the algorithm for graph surfaces

(2.5D) used here.

3 FEATURE EXTRACTION

A number of algorithms for feature extraction has been
proposed during recent years. Some of these approaches
are designed for triangulated 2.5D-surfaces (e. g. Douglas
1986, Chou 1992), others for raster DEMs. In the follow-
ing we focus on raster based algorithms, which might be
classified as follows:

1. The first group of algorithms is based on functions
of surface derivatives, e. g. Laplace or functions of
the first and second derivatives (c. . Enomoto et al.
1982). The structure lines are computed by determin-
ing the zero—crossings of the relevant criterion func-
tion. These algorithms lead to closed surface curves.

2. The second group of algorithms is directly based on
the surface derivatives, either the first or the second.
The structure lines are computed by determining the
derivatives followed by non maximum suppression.

3. The algorithms of the third group are based on clas-
sification. In most cases the criteria for classification
are the surface curvatures (c. f. Haralick et al. 1983).
Some approaches include line tracking based on gra-
dients (c. f. Bevacqua and Floris 1987).

4. The last group of algorithms is hydrologically moti-
vated and the structure lines are determined by simu-
lating the water drain (c. f. O’Callaghan and Mark
1984).

Based on these different basic principles, there are also
approaches which use a multiresolution analysis (c. f.
Gauch and Pizer 1993) and, as already mentioned above,
some approaches include vectorization of the results (c. f.
Seemuller 1989). Here we only take results in raster format
into account in order to use classical statistic techniques
for binary classified sets in our evaluation.

The structure lines extracted with the algorithms listed
above are of course of different type and meaning. The ap-
proaches 3 and 4 are mostly designed for DEMs and their
relevant structure lines, 1. e. valley and ridge lines. We

therefore use an algorithm belonging to the third group.
The flow chart of this algorithm is shown for the case of
valley lines in Figure 2. The first step is to derive three
sets of classified points. These sets are

DPV  classification based on the locally computed
number of higher points (c. f. Rieger 1992)
VAL classification of valley points
(c. f. Bevacqua and Floris 1987)
EXV  classification based on the locally computed

exposition’s variance

The following steps are binary AND and OR operations,
which deliver the valley lines SLV.

Data

i
T—/%, |
Figure 2: Structure Line Extraction: Flow Chart with
Results for Linear Filtered Real Data Set (Rur)

4 EVALUATION CRITERIA

The advantage of the information-preserving approach in
comparison to a linear filter is shown qualitatively in Fig-
ure 3. In homogeneous regions of both filtered data sets,
noise has been reduced compared to the original data set.
It is obvious that the linear filter smoothes all the data re-
gardless of the structures which are contained in the data,



Figure 3: DEM Broeltal: Hill Shading a) Original b) Lin-

ear Filter ¢) Information-Preserving Filter

while the information-preserving algorithm maintains the
structures. Although this example may give an initial hint
to the performance of the algorithms, this is not satis-
factory, because this hint is only based on visual inspec-
tion and includes no information about the influence of
the pre-processing onto the following steps of data analy-
sis. Therefore we are interested in numerical measures to
evaluate the performance of the pre-processing algorithms
discussed here.

A first approach to derive such numerical measures for the
evaluation of filter techniques for digital images was de-
scribed in Weidner 1991. The proposed quantities take
the smoothing and the information-preserving properties
into account. In Weidner 1994 improved quantities for this
evaluation are given. The proposed measures are based
on noise statistics and the maintenance of signal gradi-
ents, 1. e. intensity step edges. This is appropriate for
digital intensity images, because many feature extraction

algorithms designed for those images are gradient based.
For performance evaluation of pre-processing algorithms
for DEMs, this seems not appropriate because a variety
of feature extraction algorithms for DEMs are not based
on gradients, but on the surface’s curvature properties.
Therefore we modify the proposed quantities with respect
to the demands for DEMs. Furthermore we want to ex-
amine the influence of pre-processing by evaluating the
discrepancies between the extracted binary structure line
images quantitatively. The next two subsections deal with
the numerical measures for our evaluation.

4.1 Quantities for Evaluation

In order to derive and compute qualitative measures for
performance evaluation, the true surface and the true
structure lines have to be known as reference. Therefore
our test is based on the synthetic DEM given in Figure 4
and the related structure lines given in Figure 5. We dis-
tinguish between surface based quantities, i. e. quantities
based on noise and signal properties of the filtered and the
reference surface, and structure line based quantities, i. e.
quantities which measure the discrepancy between binary
structure line images. In the following we denote with

Figure 4: Test DEM (hill shaded)
-

Figure 5: Structure Lines



S the set of surface points
C the set structure line (reference) points
L a set of extracted structure line points
|£] the number of points of £
d(z,L) the shortest distance from point z € S to LC S

4.1.1 Surface Based Quantities

Analogeous to the proposal in Weidner 1994, the surface §
is segmented in two mutually exclusive regions (c. f. Figure
6)

S = Shom + Sdisc (4)

where Shom denotes homogeneous regions (white) and
Saisc non homogeneous or discontinuous regions (black).
Based on this segmentation we propose two independent
measures for evaluation:

o property of smoothing

1 ) )
PS=— . 5
02.(2)|Shom] g: (% = z0:) (5)

where o2 is the noise variance of the input image z before
filtering, which in case of synthetic data is known in ad-
vance, Z denotes the filtered data set and zo the reference
data set. In the optimal case, 1. e. that noise is eliminated
in homogeneous regions, PS = 0.

o property of preserving information

PP = |sd1m S (0H(2) — H(z)))  (6)
Saisc
with
H>=HH and H: Hessian matrix

The Hessian matrix H for 2.5D surfaces is approximately
equivalent to the Weingarten map W of 3D surfaces and
contains the information about the surface’s curvature
properties. PP = 0 in the optimal case.

-

e

L

Figure 6: Segmentation

4.1.2 Structure Line Based Quantities

Structure line extraction as carried out here is a binary
classification. Therefore quantities which measure the fre-
quency of incorrect pixel classification can be applied. We
use

o Type I error rate (false positives)

IS\ 2| a €[0,1] (7)

o Type II error rate (false negatives)

pie, iy = XL

- B e[o,1] (8)

e misclassification error for binary sets

(£, ) = |(£\£>|§|(L‘\L‘>l —(l=r)a+rh, (9)

L
r= i,

e €[0,1]

In the optimal case, the quantities are zero. Advantages
and disadvantages of these quantities are e. g. given in
Baddeley 1992. In order to overcome the drawbacks re-
lated to these measures, Baddeley 1992 proposed a metric
to measure the discrepancy between two binary sets:

o Baddeley metric

1

4

AL(L, L) = |3g—| > lw(d(z, £)) —w(d(z, £)"| (10)

with

w(z) =min(z,c) and ¢ cutoff distance
If there is no discrepancy between the binary sets, A = 0.

In our test we use ¢ =5 and p = 2.

5 RESULTS

In this section the results of our test and an evaluation are
given. For the evaluation given in Weidner 1994, a variety
of different filter algorithms has been included in the test.
Here we restrict our test to a linear filter (binomial filter)
and the information-preserving filter, because other known
filter techniques for digital images are often based on an
implicit or explicit piecewise constant signal model, which
does not seem to be useful for DEMs.

The test is based on a synthetic data set, because knowl-
edge about the true surface and structure lines as refer-
ence is needed for the quantitative evaluation. During the
test, the reference surface and a noisy surface with addi-
tional uncorrelated noise n ~ N (0, aiI) are used as input
data for the filter algorithms. The filtered data sets are
then used as input data for the structure line extraction
algorithm. Based on the filtered data sets and the ex-
tracted structure lines, we apply the quantities given in



Figure 7: Difference image: noisy original - linear filtered
data set (Binomial, 3x3, 3 Iterations)

Figure 8: Difference image: noisy original - information-
preserving filtered data set

section for the evaluation. Using the noiseless test data,
we are interested in how a pre-processing algorithm han-
dles a true/perfect data set. As there is no noise, the
data set should not be changed by filtering. In case of
the noisy test data set, we are interested in the degree of
smoothing in homogeneous regions Skhom and the degree of
information preserving, i. e. degree of reconstruction, in
discontinuous regions Sgisc. During the tests, the tunable
parameters related to the filter algorithms are not changed,
otherwise the try-and-error-principle performed by an op-
erator will almost always lead to satisfactory results. This
mainly concerns the application of the linear filter, because
the parameters needed for the information-preserving filter
are estimated from the input data.

A first qualitative comparison is possible looking at the
difference images between the noisy test data set and the
linear and information-preserving filtered data sets given
in Figure 7 and Figure 8. Both images are for sake of
comparision spread with the same factor. If the performed
filtering is optimal, there should be no structures visible
in the difference images, but only white noise. In the dif-
ference images of the linear filtered data set, structures
are obvious, but hardly any structures could be seen in
the difference image of the information-preserving filtered
data set.

In the following the results for the surface based quanti-
ties and the structure line based quantities are given and
discussed. In the tables also the quantities for the noisy
unfiltered test data set are included for comparision. We
also include the results for varying number of iterations in
order to discuss the influence of the tunable parameters
width or number of iterations of the linear filter respec-
tively. The linear filter’s mask used here is 3 x 3.

Surface based quantities The results for the surface
based quantities are given in Tab. 1. For the results of
the filters with the noiseless surface as input, the quantity
PS as given in (5) is not defined because ¢2(z) = 0. In
this case we modify PS to

* 1 z 2
PS = —— 2i — 20:
|Shom| SZ ( 0 )
hom

For the data set of the linear filtered noiseless surface the
change of information is visible in both quantities PS*
and PP. The degree of change depends on the number
of iterations or the size of the filter respectively as it was
expected. The change of information is also obvious for
the linear filtered noisy surface. The ranking of the results
for PS is difficult, because not only the noise, but also
the signal seems to be changed in homogeneous regions,
otherwise PS should decrease and not increase.

PS* ~ 0 indicates no significant change in homogeneous
regions for the PIPS-filtered noiseless surface. This fact
is proved by PP = 0.12. Applying PIPS for the noisy
surface, the noise in homogeneous regions is significantly
reduced (PS = 0.14), while at the same time the informa-
tion is maintained. PIPS shows the lowest rate of change in
information and reduces the influence of noise, which is ob-
vious looking at the quantities PP for PIPS (PP = 87.75)
and the unfiltered surface (PP = 138.60).

| Filter | surface based quantities |
| noiseless surface | PS* | PP |
Binomial, 3x3 1 Iteration 0.10 1269.60
3 Itereations 0.48 1896.08
10 Iterations 2.79 2335.06
PIPS 0.00 0.12
| surface with o, = 1 | PS | PP |
unfiltered 1.00 138.60
Binomial, 3x3 1 Iteration 0.24 1295.73
3 Iterations 0.53 1902.43
10 Tterations 2.81 2336.29
PIPS 0.14 87.75

Table 1: Surface based quantities

These quantities are computed based on the segmentation
shown in Figure 6. In order to evaluate the influence of the
chosen segmentation on the quantities PS and PP, differ-
ent segmentations with little disturbances have been used
for their computation. Of course the quantities changed,
but the ranking and the statements given above remain
valid for these different segmentations. This also has been
proved for robust estimations (Rousseeuw and Leroy 1987)
of the quantities PS and PP, although the differences for
the quantities are smaller.



Structure line based quantities The results for the struc-
ture line based quantities are given in Tab. 2 and Tab.
3. If the pre-processing for the structure line extraction
algorithm is optimal, the structure line based quantities
should be zero, or in the case of filtered noisy data at least
significantly reduced compared to the result of the unfil-
tered noisy data set. The effects of noise are obvious for
the unfiltered noisy data set. The noise leads to missing
and spurious pixels in the structure line image (Figure 9),
which leads to high quantities of a, #, € and A.

| Filter | o | ] | € |
| noiseless surface |
Binomial, 3x3 1 Iteration 0.006 | 0.387 | 0.016
3 Iterations 0.011 | 0.586 | 0.025
10 Iterations | 0.009 | 0.749 | 0.028
PIPS 0.000 | 0.019 | 0.001
| surface with o, =1 |
unfiltered 0.046 | 0.522 | 0.058
Binomial, 3x3 1 Iteration 0.012 | 0.425 | 0.022
3 Iterations 0.012 | 0.616 | 0.027
10 Tterations | 0.009 | 0.757 | 0.028
PIPS 0.010 | 0.312 | 0.017

Table 2: Structure line based quantities: «, 3, €

| Filter | A |
| noiseless surface |
Binomial, 3x3 1 Iteration 0.62034
3 Iterations 0.70004
10 Iterations | 0.99957
PIPS 0.17969
| surface with o, =1 |
unfiltered 1.79918
Binomial, 3x3 1 Iteration 0.77741
3 Iterations 0.75442
10 Iterations | 0.99400
PIPS 0.77729

Table 3: Structure line based quantities: A

Linear filtering leads to smearing discontinuities in the
noiseless and noisy filtered images. Therefore the rate g of
false negatives pixels, i. e. pixels that are not classified as
structure line points, although they belong to £, increases
as well as the misclassification error e proportionally to
the number of iterations or the width of the linear filter
respectively. This also seems to be true for the Baddeley
metric for the results of the noiseless surface, whereas in
the noisy case, the Baddeley metric indicates the trade-off
between smoothness of the data and information preserva-
tion. Nevertheless linear filtering improves the quantities
compared to the unfiltered data set.

The structure line image of the PIPS-filtered noiseless sur-
face (Figure 12) indicates no severe differences in topology,
but some disturbances in localization. « is approximately
0, and the other quantities are the lowest compared to the
linear filtered surface. The changes of localization are also
obvious in the Baddeley metric, but A for PIPS is signif-
cantly lower as for the linear filter, because the linear filter
does not only affect the localization, but also the topology,
1. e. structure line information is missing.

In case of the noisy PIPS-filtered data set, visual inspec-

Figure 9: Structure lines, o, = 1, unfiltered

f——KJ
i
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Figure 11: Structure lines, o, = 1, Binomial Filter, 3

Iterations

tion of the structure line images (Figure 13) also indicates
changes of localization and some spurious pixels. In this
area of the data set the filter is not able to seperate be-
tween noise and signal, because of the local SNR. There-
fore the rate of smoothing is reduced. Nevertheless the
rate a (false positives) is improved compared to the un-
filtered data set, but is similar to the rates of the linear
filter. The noisy PIPS-filtered data set also obtains better
rates for @ and e as the unfiltered and linear filtered data
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Figure 12: Structure lines, PIPS

s

Figure 13: Structure lines, o, = 1, PIPS

sets, but the Baddeley metric indicates no significant dif-
ference between linear and information-preserving filtered
surfaces, although some structure lines are missing for the
linear filtered set. The reason for this is the change of lo-
calization of structure lines, which differ at about 1 pixel
compared to the reference structure lines (Figure 5).

6 CONCLUSION

In this contribution we discussed pre-processing of data
in order to remove or at least reduce noise and its influ-
ence on feature extraction for DEMs. In many cases linear
filters are used for pre-processing, although it is known
that linear filtering does not only reduce noise, but may
also lead to a loss of information. Furthermore, in many
applications the tunable parameter of the filter has to be
chosen by an operator based on his experience. In or-
der to overcome these drawbacks, we proposed to use an
algorithm for parameterfree information-peserving surface
restoration (PIPS). The basic idea of this algorithm is to
extract the data’s noise and signal properties based on
generic a priori knowledge and use this information for the
filtering of the data. We applied both filters to synthetic
test data and evaluated the results of pre-processing quan-
titatively based on surface and structure line based quan-
tities. The quantities indicate some advantages for the
PIPS-algorithm, although in some cases the results were

almost comparable. The influence of the tunable parame-
ter of the linear filter is obvious. Therefore our proposed
algorithm has the advantage, that no parameter has to be
fixed by an operator. The results are better or at least
as good as the results of the linear filter. Futher exami-
nations will be made on other appropriate test data sets
with more structure line information. Furthermore tests
will be made for other feature extraction algorithms for
DEMs and digital intensity images.
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