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ABSTRACT 

The accuracy of supervised land cover classifications 
depends on several factors like the chosen algorithm, 
adequate training data and the selection of features. In 
regard to multi-temporal remote sensing imagery 
statistical classifier are often not applicable. In the study 
presented here, a Random Forest was applied to a SAR 
data set, consisting of 15 acquisitions. A detailed 
accuracy assessment shows that the Random Forest 
significantly increases the efficiency of the single 
decision tree and can outperform other classifiers in 
terms of accuracy. A visual interpretation confirms the 
statistical accuracy assessment. The imagery is 
classified into more homogeneous regions and the noise 
is significantly decreased. The additional time needed 
for the generation of Random Forests is little and can be 
justified. It is still a lot faster than other state-of-the-art 
classifiers.  
 
1. INTRODUCTION 

In context of land cover classification of regions that are 
dominated by agricultural land use, mono-temporal 
approaches are often inefficient, due to great temporal 
differences in the crop phenology. Multi-temporal 
techniques are more adequate for this purpose and can 
improve the classification accuracy. On the other hand 
the efficiency of optical imagery is often limited by 
weather conditions and the generation of an adequate 
time series can be realized best by synthetic aperture 
radar (SAR). In regard to upcoming missions, with 
increased revisit times and better spatial resolutions 
multi-temporal concepts become more attractive, 
particularly for operational monitoring systems.  

However, data sets with high temporal and spatial 
resolution might become very large and complex. In 
addition such imagery contains noise (i.e., speckle), 
irrelevant information and unnecessary details. 
Regarding this, the use of an adequate classifier 
algorithm is essential. Conventional statistical 
approaches as the maximum likelihood classifier are not 
applicable for multi-temporal imagery, because in most 
cases the data cannot be modeled by an appropriate 
statistical data model. Thus, non-parametric techniques 
like e.g., neural networks, support vector machines and 
self-learning decision trees seem more appropriate in 
this context. These methods are not constrained to prior 

assumptions on the distribution of input data as is the 
case for the maximum likelihood classifier and seems 
more suited for classifying time series. 

Decision trees are applied successfully to remote 
sensing imagery. By producing efficient rules a decision 
tree is successively partitioning the training data into an 
increasing number of smaller homogenous regions (i.e., 
classes). A set of rules at each node is leading to the 
final leaf, i.e., the land cover class. In contrast to neural 
networks and support vector machines the training time 
of decision trees is very low and their handling is rather 
simple. This makes decision trees particularly 
interesting in regard to operational classifier systems. 
Besides the classifier algorithm the training data and 
input features (e.g., a specific image acquisition) have a 
dominant impact on the performance of the supervised 
classification [1],[2]. On the other hand the availability 
of ground truth data and remote sensing imagery is 
often limited and can not be influenced by the user. 
Furthermore neither the training samples nor the 
selected features can be assumed to be ideal for a 
reliable training process. 

In several studies the accuracy is increased by multiple 
classifier ensembles. In contrast to a conventional single 
classifier that generates one output a classifier ensemble 
consists of several independent outputs (see Figure 1). 
To generate a classifier ensemble, one aspect of the 
input data, which the base-classifier is sensitive to, 
needs to be modified between individual training 
procedures. It is assumed that each individual classifier 
produces independent errors, which are not produced by 
the majority of the other classifiers. The improvement 
of the accuracy depends on the independency of the 
different classifiers. Afterwards the outputs of all 
classifiers are combined for a final result. 

Boosting is a well known method for the creation of 
classifier ensembles [3],[4], which have been applied 
successfully to time series of multispectral imagery. By 
boosting the distribution of the training samples is 
iteratively changed during the classifier training. In the 
initial classifier training phase, all samples are equally 
weighted. Afterwards misclassified samples are 
assigned a higher weight than those classified correctly 
and the next classifier in the ensemble is based on the 
modified training data. 
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Figure 1. Schematic diagram of a classifier ensemble 

The selection of feature subsets (i.e., specific images of 
a time series) is another effective method for the 
generation of a classifier ensemble. In contrast to 
boosting the training samples remain unchanged by this 
approach. In Waske et al. [5] a decision tree ensemble 
that is based on random feature selection is applied 
successfully to a set of multi-temporal  SAR data. The 
overall accuracy is significantly increased compared to 
the accuracy achieved by a single decision tree. 

In Breiman’s Random Forests [6] the training samples 
as well as the input features are modified. For the 
training phase of each decision tree within the ensemble 
a set of training samples is selected randomly. 
Furthermore at each split node of an individual tree a 
random feature selection is performed. Afterwards the 
various outputs are combined to a final result, using a 
simple majority vote. The approach was applied 
successfully to hyperspectral imagery, using a limited 
training sample set [7]. Gislason et al. [8] have applied 
the method to a multisource data set, consisting of 
Landsat MSS data and topographical data. In this case 
the approach performs better than a single decision tree 
and comparable to other ensembles methods, whereas 
their computation time of the Random Forests is much 
faster. Pal [9] has used the method for the classification 
of Landsat ETM+ data from an agricultural region. 

Regarding these results, it seems worthwhile to apply 
the Random Forests on a multi-temporal  data set. In the 
presented study the concept is used for classifying a 
time series, consisting of ENVISAT ASAR imagery 
from an agricultural area. The classification results are 
compared with other parametric and non-parametric 
methods, as a boosted decision tree and a maximum 
likelihood classifier. 
 
2. METHODS 

Our test site is located near Bonn in the German state of 
North Rhine-Westphalia (NRW). The flat landscape is 
predominantly used by agriculture, with cereals and 
sugar beets as the main crops. The data set includes 15 
Envisat ASAR PRI images between the period of 
January and November, 2005. The imagery contains 
alternating polarization and image mode data from 
different tracks and swaths (see Table 1 and Figure 2).  

 

Table 1. Multi-temporal  SAR data 

Date Swath/Track Polariz. Orbit 
6-Jan. 2 / 337 VV des 

10-Feb. 2 / 337 VV des 
12-Apr. 6 / 208 HH / HV des 
21-Apr. 2 / 337 VV des 
26-May. 2 / 337 VV des 
30-Jun. 2 / 337 VV des 
10-Jul. 2 / 487 HH / HV asc 
22-Jul. 7 / 158 HH / HV asc 
4-Aug. 2 / 337 VV des 

14-Aug. 2 / 487 HH / HV asc 
8-Sep. 2 / 337 VV des 
18-Sep. 2 / 487 HH / HV asc 
30-Sep. 7 / 158 HH / HV asc 
13-Oct. 2 / 337 VV des 
17-Nov. 2 / 337 VV des 

 

 
Figure 2. Multi-temporal Envisat ASAR composite 

For the derivation of the calibrated backscatter intensity 
a common procedure was performed [10]. For the noise 
reduction a multi-temporal speckle filter was applied 
[11]. The data set was co-registered and terrain 
corrected, using orbital information and a digital 
elevation model. For the classifier training and the 
accuracy assessment an extensive ground truth 
campaign was conducted in summer 2005. For the 
classifier training a sample set was generated using 
equalized random sampling and detailed ground truth 
data as reference information. In doing so a training set 
was generated that contains 500 pixel per land cover 
class: arable crops, cereals, forest, grassland, orchards, 
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canola, root crops and urban. Using the same method 
as before, an independent validation set of 1000 pixels 
per class was generated. An adequate feature subset size 
(i.e., number of selected images at each tree node) was 
chosen and a Random Forest was generated, using [12]. 
In addition the decision tree algorithm C4.5 [13] was 
used to create a common decision tree and a boosted 
decision tree.  

 
3. RESULTS 

The accuracy assessment shows that the two ensembles, 
the boosted DT and the Random Forest, significantly 
improve the overall accuracies compared to a single 
decision tree and a maximum likelihood classifier 
(Table 2). The accuracy of the simple decision tree is 
54.0%, whereas the boosted DT and the Random Forest 
achieve much higher overall accuracies of 71.0% and 
72.5% respectively.  

Table 2. Overall accuracies [%] 

Classifier Algorithm Overall Accuracy 
Maximum Likelihood 49.9 

Decision Tree 54.0 
DT (boosting) 71.0 
Random Forest 72.5 

As the overall accuracy, the assessment of the producer 
and user accuracies shows the positive impact of the 
Random Forest, which outperforms the common 
decision tree as well as the boosted decision tree in the 
most cases (Table 3 and Table 4). The accuracies for 
arable crops and orchards are lower, compared to the 
user and producer accuracies achieved for other land 
cover classes. A reason for this could be the variability 
within the class arable crops. In general the ground 
beneath the relatively clear orchards is covered by 
grassland. Hence the class might appear as a mixture 
between grassland and forest. In contrast to this, land 
cover classes as cereals and root crops are less 
heterogeneous. 

Table 3. Producer Accuracies [%], 
bold numbers indicates best results 

Land cover 
class 

Decision 
Tree 

DT 
(boosting) 

Random 
Forest 

Arable crops 47.6 61.8 66.8 
Cereals 61.7 76.4 77.0 
Forest 63.6 83.4 85.7 

Grassland 62.2 79.1 80.7 
Orchard 37.7 55.0 58.6 
Canola 54.7 73.1 71.7 

Root crops 49.1 72.7 71.2 
Urban 56.5 66.8 68.6 

Table 4. User Accuracies [%], 
bold numbers indicates best results 

Land cover 
class 

Decision 
Tree 

DT 
(boosting) 

Random 
Forest 

Arable crops 40.3 66.0 63.0 
Cereals 57.4 73.4 73.1 
Forest 58.6 70.0 70.8 

Grassland 65.5 74.3 76.3 
Orchard 39.6 61.2 62.2 
Canola 64.3 76.7 80.4 

Root crops 54.6 67.6 73.3 
Urban 56.1 79.6 84.5 

The visible assessment of the output maps shows the 
advantage of the classifier ensembles (see Figure 3). The 
map from the single decision tree shows the main 
structures of the classified area. On the other hand areas 
that are homogeneous in reality (e.g., field plots) appear 
noisy in the classification map. Under some 
circumstances the true classes are hard to define (i.e., 
confusion) and boundaries between natural features seem 
blurred. The visual interpretation of the classification 
output of the Random Forests is in accordance with the 
statistical accuracy assessment. The noise is significantly 
reduced and consequently the confusion between land 
cover classes is decreased. Almost all pixels within a 
homogeneous region are assigned to the same land cover 
class. 
 
4. CONCLUSION 

The study clearly shows that results from classifier 
ensembles are superior to those from a simple decision 
tree. Regardless of ensemble concept a higher accuracy 
is achieved. The Random Forest outperforms the other 
concepts in terms of the overall and class-specific 
accuracies. The overall processing time of the Random 
Forests – including the training of several classifiers 
within the ensemble and the final majority vote – is 
below those of the sophisticated approaches like neural 
networks or support vector machines. 

The visual assessment confirms the positive impact of 
classifier ensembles: the degree of noise is significantly 
decreased and the image is classified into more 
homogeneous areas. Perhaps, the differences between 
the classification maps from a conventional (single) 
decision tree and a Random Forest are comparable to the 
differences between pixel-based and object-based 
classification results.  

The approach taken thus appears very well suited for 
SAR data. Looking at the remaining errors, the 
confusion between the classes forest and urban is 
particularly obvious. In subsequent studies the influence 
of data set size and individual land cover classes will be 
investigated to further optimize the concept for future 
applications. The good results for separating agricultural 
classes, which are hard to be described by mono-



temporal analyses, underline the importance of multi-
temporal approaches in this context. In several other 
studies the classification accuracy is increased by multi-
sensor imagery. For future work the data set will thus be 
extended by optical data from the same growing period.  

 

 
Figure 3, Classification result, using a simple DT (top) 

and a Random Forest (bottom) 
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