Embedding Qualitative Reasoning into Constraint Logic Programming

Laszlé Teleki™
Institut fir Photogrammetrie
Universitat Bonn
Nussallee 15, 53115 Bonn
laszlo@ipb.uni-bonn.de

Abstract

We propose to use Constraint Logic Program-
ming (CLP) for the specification and im-
plementation of Qualitative Reasoning (QR)
problems that are specialized Constraint Sat-
1sfaction Problems.

Although it has long been recognized that
many frameworks, like the QSIM algorithm
(Kuipers 1994) can be viewed as a set of con-
straint satisfaction problems (CSP), the area
of QR is relatively unknown in the CLP liter-
ature. In this paper we would like to present,
through the language of QSIM, one set of ques-
tions and problems analyzed in the area of QR
and to present the CLP specification of the
key algorithm of QSIM, the c-filter. We show
how the basic constraints of QSIM are speci-
fied and describe the technical aspects of our
implementation.

1 Motivation

Qualitative Reasoning (QR), a branch of Artificial In-
telligence, works on the frontiers between common
sense reasoning, mathematical foundations and task-
level reasoning. QR tries to predict the behavior of
physical systems and processes in the context of in-
complete knowledge.

The incompleteness of the knowledge is given on
one hand by the absence of quantitative data. An ex-
ample of this is the Starling-equilibrium, a problem
involving a slightly atypical case of a kidney disorder
presented in (Kuipers 1994) on page 136. On the other
hand to model large problems, like the flight of a space-
shuttle, into the last detail is also an impossible task.

In such cases it 1s more helpful to build qualitative
models, that capture essential aspects that make an
important qualitative difference and ignore others. (A
good survey about QR is given in (MQ&D 1995)).

A very important contribution to this field is the
QSIM algorithm by Kuipers (1994). Although it has
long been recognized that QSIM can be viewed as a set
of constraint satisfaction problems (CSP), the area of
QR is relatively unknown in the CLP literature. In this
paper we would like to present, through the language
of QSIM, a set of questions and problems analyzed in
the area of QR and to present the CLP specification
of the key algorithm of QSIM, the c-filter.

We claim that there are two advantages to using

CLP:

e CLP gives a well-defined and well-understood
logical framework for the problem specification;

e CLP is not only a logical framework, it is also
a family of languages specifically developed for
solving classes of CSP problems. Thus we obtain
a class of powerful implementation languages for
rapid prototyping.

This example was chosen precisely because the algo-
rithm is widely used in the the area of QR, and it is
a non-trivial problem that took many years to imple-
ment.

All the ideas presented in this paper were imple-
mented in ECL'PS® (Aggoun et al. 1995; Brisset
et al. 1995), a CLP platform developed at the FEu-
ropean Computer-Industry Research Center (ECRC).
Certainly, in almost every case, a specialized algorithm
will give a better performance. But ECL'PS® also gives
very good results in a fraction of the developement time

*This work is funded by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbreich 350 project.

of the specialized algorithm. This gain in implementa-
tion time can be used to determine at an early stage
conceptual problems or limits of the specification.
This paper is structured as follows: in Section 2, we
present the core of the QSIM algorithm and the CLP
scheme. In Section 3 we specify in every detail the con-
straints of QSIM in our logical framework. In Section
4, the implementation steps and different methods to
improve the performance are described. We close with
conclusions and further works in Section 5.

2 Introduction

In the next two subsections we present the two areas
that we want to connect: the QSIM algorithm and
the CLP framework. We concentrate only on the rel-
evant aspects necessary to understand the functioning

of QSIM and CLP.

2.1 QSIM

The QSIM algorithm developed by Benjamin Kuipers,
detailed in (Kuipers 1994), is a major tool used by
many researchers for describing physical models in
QR. The model specification is done by Qualitative
Differential FEquations (QDEs), a symbolic correspon-
dent to ordinary differential equations. QDEs describe
the development of processes over time in the context
of incomplete knowledge about the process itself, the
boundary and initial value problems. The whole spec-
ification of the model is done on a symbolic level.

To give an idea about the qualitative modeling we
give a small example. We analyze the simple physical
system of a ball that is thrown upward in a gravita-
tional field. If we ignore quantitative values we have
the following relations: (1) The ball has an initial ve-
locity v* that is positive and lies in the interval (0, oo).
The acceleration is constant and negative. Some ba-
sic physical rules are also known, like v = dy/dt and
a = dv/dt with a the acceleration and y the trajec-
tory of the ball. With these general relations QSIM is
capable of determining that the ball will fly to a not-
exactly-specified hight y* € (0, 00) and then fall back
to the ground.

Within a qualitative simulation, a physical process
is represented by a succession of states starting from
an initial state. The states alternate between time-
points and time-intervals. A state is completely char-
acterized by its variable description, the parameters
of the mechanism. In each state, the variables are
assigned qualitative values (qval). A qval is a pair
qval = (qmag,qdir) of qualitative magnitude (qmag)
and qualitative direction (qdir). A gmag is either a

point value, called a landmark, or an open interval be-
tween two landmarks. The qvals must be consistent
with the corresponding values of the state’s constraints.
The gdirs may be increasing (inc), decreasing (dec),
steady (std) or unknown (unknown).

Variables represent on a symbolic level time-
dependent functions of the physical process. Each vari-
able has a landmark list, corresponding to the domain
of the function. Important elements in the landmark
list are minf, zero, inf, the correspondents to —oo, 0
and oo.

For our example the qval for the velocity v at tg
is given by the qval »* and the qdir is dec, as the
function will decrease from the very beginning of the
flight. The hight y i1s described by the qval zero and
the qdir <nc.

State transitions are described by changes in the
values of the variables; the number of possible valid
transitions is always restricted due to the mathemat-
ical background, e.g. continuity, mean value theorem
etc. For example, a function cannot change from <nc
to dec without passing through a point where the
derivative 18 zero. The possible set of values for a
variable 18 always finite.

The constraints are symbolic equivalents to the
simple mathematical notions of addition, multipli-
cation, derivative, minus, constant functions, mono-
tonic increasing and monotonic decreasing functions.
In QSIM the notations are add, mult, d/dt, MINUS,
constant, M+ and M-. The constraints connect from
one to three variables. For a detailed presentation see
Section @QSIM in CLP. As the values of the variables
are symbolic, we need so-called corresponding values
lists; these lists interconnect the symbolic definition
domains of the variables.

In every time step, the algorithm will generate the
possible successor values for all variables. A crucial
task of QSIM is to filter from these possible values,
those value combinations that fulfill the constraints de-
fined in the QDE. In QSIM a specialized constraint
satisfaction algorithm called c-filter is responsible for
this part. For this special task we propose the CLP
framework. Kuipers (1994) developed an optimized
algorithm that fits only for the structure of the quali-
tative value qval. It is a combination of tuple-filtering,
Waltz-algorithm and backtrack-search to determine all
consistent states. This algorithm is certainly faster
than the version specified in CLP. On the other hand
it took a long time to develop and implement it and
the difference between the runtimes is not essential in
large problems.

In the case of our small example the steps in the
simulation are described by the following states:

to (to,t1) (51
v | (v*,dec) (zero, dec) (v1, dec)
a (g, std) (g, std) (g, std)
y | (zero, inc) (y1,std) (zero, dec)

c-filter is used in every time step to determine the
consistent successor state: the step tg — (fo,t1) and
(to,t1) — 1. cfilter is also used to determine the ini-
tial state at tp. In more complex examples the number
of consistent successor states is in general > 1. This
will lead to so-called behavior trees, where every path
from the root to a leaf is a possible behavior of the
process.

2.2 Constraint Logic Programming

with Finite Domains

Constraint logic programming (CLP) is a generaliza-
tion of logic programming (LP) where unification, the
basic operation of LP languages, is replaced by con-
straint handling in a constraint system (van Henten-
ryck 1991). In practice, this means the enhancement of
PROLOG-like languages with constraint solving mech-
anisms. PROLOG-like languages have performance
problems in solving Constraint Satisfaction Problems
due to their simple computational rule, the depth-first
search procedure, resulting in a generate and test pro-
cedure. The new paradigm allows a new computational
rule that can be characterized as constrain and gener-
ate (Frihwirth et al. 1992).

Three constraint systems are widely used and im-
plemented: Boolean Algebra, Linear Rational Arith-
metic and Finite Domains. We propose Finite Do-
mains (FD) for problems in Qualitative Reasoning.

The FD consistency technique rules out many in-
consistencies at a very early stage and thus, cuts short
the search for consistent labeling. It works by prop-
agating information about the variables via the mu-
tual constraints with the goal of reducing the domains.
Constraints that can not contribute to a given time
but may contribute later to a domain reduction are
delayed (or suspended) and kept in a constraint store.
The scheduler will wake up those constraints from the
constraint store that are affected from a domain re-
duction after the propagation. Propagation continues
until no domain reductions can be extracted from the
constraints. The FD solver implements the well-known
node and are consistency (Mackworth 1977) methods.

The FD system will rarely be used alone to solve a
problem since, in general, there remain combinations of
values in the resulting domains which are inconsistent.
To find a solution to a problem, the system performs
some search by labeling a variable with an element
of its domain. This choice allows further propagation

that will end in a set of solutions. This set of values can
be empty if a choice is erroneous. The labeling can be
done by a simple backtracking search, a computational
rule already included in LP. We also describe some im-
provements in Section Technical Aspects to speed up
this task.

The most general description of a finite do-
main problem 1s given by a set of variables X =
{@1,29,... ¢, } with a finite domain D, for each ;
and a finite set of constraints C' = {ci,ea,...,¢n},
where each c; refers to some subset of the set of vari-
ables X. The goal is to find one (or all) of the solutions
that satisfy the set of constraints ('. Constraints are
first order formulas. For a detailed presentation of the
CLP paradigm consult (Jaffar and Maher 1994).

Notation We use the following notations:
{x1,29,...} denotes a set, [z, 22,...] a list, (x1,22)
an interval, (xq,z3) a tuple or a pair and (z1, z2, x3)
a triple.

If we look at a list L as a domain of a function
we can generate the set of all intervals of this do-
main [(L). For example, if L = [a,b,¢], I(L) =
{(a,b),(b,¢), (a,c)}. Further on, we define the set of all
possible values V(L) generated from a list L by adding
to I(L) all the elements of the list. In our example

V(L) = {(a,b),(b,¢),(a,¢),a,b,c}.

3 QSIM in CLP

We present the formal description of the filtering of the
state transitions of the QSIM algorithm in the CLP
framework. This filtering algorithm is used after every
state transition of a simulation. We do not argue why
the constraints have the presented forms; the proofs
are given in (Kuipers 1994). Some of the constraints
are not exactly defined as in (Kuipers 1994). We ignore
some details to concentrate on the essential aspects.
The notation and specification is taken from (Teleki

1996).

3.1 Domains

A QDE (Qualitative Differential Equation) is defined
as a finite set Xgpp = {..., (%, Ly,), ...} of vari-
ables (#;, Ly,) with their landmark list and a set of
constraints Cgpr{c;}. A landmark list L,, is a list
where the succession of the elements will determine an
order over the domain of the variable z;. In a process
specification the landmark list contains at least two el-
ements, the zero element and either the minf or inf.
An initial value problem is described by a set of vari-
ables z (zx € Xgpg) with initial qualitative values

qval = (qmag,qdir). The requirement for the qval’s
is that either the gmag or the gqdir is defined. The
domain of the variable x; with the full set of possible
values is given by the following set for each ;:

Dy, ={(v, dir)]|
v €V (Ly,), dir € {std, inc, dec, unknown}}

This means that we include in the domain Dy, of a
variable z; every element of the landmark list L., and
every possible interval derived from the landmark list
in the combination with the four possible directions
of change. So, for example, if the variable z has the
landmark list [zero, inf], the complete domain of the
variable is:

Dy = {(zero, dec), (inf, dec),{(zero, inf), dec),
(zero, inc), (inf, inc), ((zero, inf), inc),
(zero, std), (inf, std), ((zero, inf), std),
(zero, unknown), (inf, unknown),

((zero, inf), unknown)}

3.2 Signs

We will need two functions to reason over the order of
the landmarks:

befor(x,ly,l;, Ly) =true iff Ly = [.0y, ... 1, ...]
after(z,ly i, Ly) =true ff Ly = [.4, ... g, ..]

The two functions determine the position of the ele-
ment [, relative to the element /; in the landmark list
L, of the variable z. befor(z,ly,l;, L) is true if [, is
before the element /; in the list L; after(z,l,,1;, Ly) is
the opposite of befor.

To reason with the constraints and the values we
need the definition of signs. In mathematics the sign
function relative to 0 is defined as sign(z) : R — 5’
with S = {41,—1,0,7} the set of extended signs.
The three first elements of S’ divide R into three
intervals (0,00), (—o0,0) and (0,0). The sign 7 is
used as the ambiguous sign and denotes the interval
(—00,00). The general form of the sign function is
sign(z), = sign(z — a). If @ = 0 we have the def-
inition presented previously. Is the reference oo, we
define a new sign function:

+1 if z=
stgn(r)eo = 0 ii z finite
-1 if z2=-0

We have to introduce a new sign function for the refer-
ence value co as we want to operate with the signs in

the same way as with reals. If we only use the classi-
cal sign definition we would have the following incon-
sistency: oo + 1 = oo but sign(co)es + sign(l)e, =
04+ —1 = =1 # sign(c0)ee = 0. The new sign defi-
nition will behave correctly: sign(0o)eo + sign(1)eo =
+1 4+ 0=41 = sign(c0)wo.

Now we have to determine the sign function
in the context of symbolic values. Therefore we
define the sign(z,l,, Ly);, over the domain S =

z

{pos, neg, zero, unknown} as follows:

pos if after(z,l,,l;, L) =

true

sign(z,ly, Lo)i, = zero if 1, =1;
neg if befor(x,ly,li, L) =

true

and

pos if I, = inf

zero if befor(x,ly,int, Ly)
= true

neg if [, =minf

sign(z,ly, L) inf =

with L, the landmark list of the variable x and with
the assumption that {;,l; € L;. As we see, we need in
the function the landmark list as an argument, as the
order is given by the succession of the elements of L.

The sign function can be extended in a straight-
forward way to intervals. The symbol unknown will
be used as the ambiguous sign, e.g. sign(x, (a,c),
[a,b,c,d])b,ay = unknown for the variable x with the
landmark list [a, b, ¢, d].

In the following we wuse sign(x,{,L;) for
sign(x, l, Lx)zero .

We also define the sign function for the qualita-
tive directions: sign(inc) = pos, sign(std) = zero,
sign(dec) = neg and sign(unknown) = unknown.
This definitions follow directly from the definition of
the derivative.

3.3 The basic constraints of QSIM

We define the relations =4 and =_:

r =4 yiff
(,y) €
{{pos, pos), {neg, neg), (zero, zero),
(unknown, pos), {unknown, neg), (unknown, zero) }
x =_ yiff
(z,y) €
{{pos, neg), (neg, pos), (zero, zero),
(unknown, pos), {unknown, neg), (unknown, zero) }

In the following «,y, z will denote the variables from
the QDE.

We already mentioned that in QSIM there is a lim-
ited set of possibilities for the variables’ value transi-
tions in a state transition. This means that the domain
of a variable « will in general, after the state transition,
have a subset D, of the full possible value set D,. So
the variables z,y,z will have in general the domains
Dy C Dy, Dy C Dy, D, C D, of values. From the
CLP point of view there is no difference if we use D,
or D, as the domain of the variable ; it is the seman-
tic of the QSIM algorithm that defines these restricted
domains D, .

A qualitative value of a variable qval is always a
tuple of the form qval = (gmag,qdir). The follow-
ing two functions make the projections onto the two
members of the tuple:

qdir({qmag, qdir)) = qdir
gmag({qmag, qdir)) = qmag

We now focus on the exact definition of the constraints:

M+: (M+(z,y), CV). CV, the set of corresponding val-
ues is a set CV = {... (lz,,ly,) ...} of pairs (o, ly,)
with I, € L, and [, € L. The constraint represents
the assertion of a monotonic increasing function. The
constraint is satisfied for a given pair (xy,y,)" if the
conjunction of the following constraints is satisfied.

1. sign(qdir(zy)) =1 sign(gdir(yy))

2. Ve, ly,) € CV, sign(z,gmag(zy), Lo,
sign(y, gmag(yq), Ly)i,

=+

z

M-: (M-(z,y),CV). The set of corresponding values
C'V is again a set of pairs (I,,l,,). The constraint rep-
resents the assertion of a monotonic decreasing func-
tion. The constraint is satisfied for a pair (x4, y,) if the
conjunction of the following constraints is satisfied.

1. sign(qdir(z,)) =_ sign(qdir(y,))

2. Yo, ly,) € CV, sign(x,gmag(ey), L), =-
sign(y, gmag(yq), Ly)i,

MINUS: (MINUS(z,y), C'V). The constraint is satisfied
similarly to M- with the addition that the constraint
has to be satisfied with the C'V augmented with the
set: {(zero ,zero), { inf, minf), (minf, inf)}. The
constraints represent the relation y(t) = —z(t).

add: (add(z,y,z),CV). In this constraint CV =
Lo e by 1)), .o} 1s a set of triples ({5, 1y, 05,)
with I, € L, ly, € Ly and I,, € L,. The triple
(zero, zero, zero) is always an element of the corre-
sponding values set of the constraint. The constraint
represents the relation z(¢) + y(¢t) = z(¢). The con-
straint is satisfied for a given triple (x4, yg, 2z4) if the
conjunction of the following constraints 1s satisfied.

1. (sign(qdir(zy)), sign(qdir(yy)), sign(qdir(zy))) €
Ragd
2. Vo, by, L)y € CV
(szgn(x, gmag(zy), Lo)i e, s
sign(y, qmag(yy), Ly, ,
sign(z, gqmag(zg), L:),) € Radd
The addition table Ryqq 1s given by:

Raaqd | pos zero neg

pos pos pos neg/zero/pos
zero pos zero neg

neg | neg/zero/pos neg neg

The addition is a relation and not a function to avoid
the propagation of the ambiguous sign unknown (see
the details in (Kuipers 1994) page 48-49).

mult: (mult(z,y,z),CV). C'V isagain alist of triples
(leyy 1y, 12;). The constraint represents the relation
J:(t)y(t) = z(t). The constraint is satisfied for a given
triple (24,44, 24) if the conjunction of the following
constraints is satisfied.

1. sign(z,gmag(xy), Ls)sign(y, gmag(yy), Ly) =
sign(z, z¢, L) with the exceptions:
sign(z, zero, Ly)sign(y, inf, L) = unknown,
sign(z, zero, Ly)sign(y,mint, L) = unknown,
sign(z,inf, L;)sign(y,minf, L) = unknown.
The multlphcation follows the rules given in

Rmu1t~

2. (sign(y,gmag(yy), Ly)sign(gdir(zy)),
sign(x, gmag(zy), Ls)sign(qdir(yy)),
sign(qdir(zg))) € Raqq-
This constraint follows directly from
(z(t)y(t))" = «'(t)y(t) + =(t)y/(t). 2'(t) denotes
dz/dt, the time derivative of z(t).
sign(y, gmag(yy), Ly)sign(qdir(z,)) and
sign(x,qmag(xg),Lx)sign(qdir(yg)) can be de-
termined directly from the Ry, 7+ table.

3. The mult constraint has some other constraints
where the corresponding values are used. Due to
lack of space we do not present them here (see

(Kuipers 1994) page 56).

!By a given pair {zg4,y4), Wwe mean a given pair of values where x4 € Dy and yg4 € Dy.

The multiplication table Fp;1¢ 15 given by:

Rnult | pos zero neg

pos pos Zero neg
Zero Zero Zero Zero
neg neg Zero pos

d/dt: d/dt(z,y). The constraint has no correspond-
ing values. The constraint corresponds to y(t) =
dz(t)/dt. d/dt is satisfied for a pair (z,, y,) if:

1. sign(qdir(z,)) =4 sign(y, gmag(yy), Ly)

constant: The constraint has the form constant(x)
or constant(x, a). constant hasno corresponding val-
ues. The constraint represents the assertion that the
variable # is constant. The constraint is satisfied for
a given x4 if the conjunction of the following two con-
straints is satisfied.

1. (sign(qdir(zy)) =4 zero)

2. (sign(z,gmag(zy), Le)es =4 zero) in the case
where constant(x, a) is given.

4 Technical Aspects

With the constraint specification in the FD scheme,
the implementation is straightforward. The difficult
work of the constraint solving mechanism, namely the
propagation of the domain reductions is done by the
system.

We present the technical aspects in two steps. The
first is the presentation of the general idea of the solu-
tion of the constraint network in the FD system. In the
second we sketch ideas to improve the performance.

4.1 Implementation of the constraints

The goal of the implementation of a constraint is to
determine those elements of the variable domains that
satisfy the constraints defined in the previous section.
This verification will lead to a domain reduction prop-
agated later on by the FD solver.

The general algorithm The algorithm for con-
straints 1s straightforward and well known from the
CLP literature. We give as an example the code for
M+:

1 proc mplus(X:: Dy, Y:: Dy)

2 begin

3 Dl‘tmp = {}’ Dytmp = {}a
4 Ve € Dy, Yy € D,

5 do if (Condition 1 A Condition 2)
6 then
7 Dy & Dy U T
8 Dytmp A Dytmp Uy
9 fi od

10 Dy Dy,

11 Dy « Dy,...;

12 end.

With Condition 1 and Condition 2 we mean the
conditions defined in Section 3.3 for this constraint.
All two-valued constraints can be implemented in the
same way by changing only the conditions in line 5 of
the code. The three-valued constraints follow the same
scheme with the difference that the verification also in-
cludes the third variable Z with its domain P,. The
algorithm will work for the complete domain D, of a
variable z as well as for any reduced domain D, C D,..

Labeling In the regular case of labeling, the domains
will contain more than one value. In our problem the
labeling procedure has to find all the consistent com-
binations of states; this is the requirement of the mod-
eling procedure. In our implementation we are using
the first fail principle. This means that it is more ef-
fective to use the variable with the smallest remaining
domain for labeling: with fewer choices possible we will
find out earlier if those were right or wrong.

4.2 Improving the performance

There are a few problem-specific aspects that can be
used to improve the performance of the runtimes of the
constraints.

Priorities It is not difficult to see that we have differ-
ent classes of constraints w.r.t. the computational time.
The most expensive are add and mult, then M+, M- and
MINUS, followed by d/dt and finished with constant.
constant has only one variable, so the domain reduc-
tion has to be done only once; there is no reason to
wake it up again.

Due to these facts, we can give priorities to the
different constraints. This means that the propagation
should be done in different stages. The propagation
should be kept as long in one class of constraints until
no changes occur in the domains. It should then turn
to the next lowest priority. If a domain reduction is
realized by constraints of lower priority, the scheduler
should, if possible, wake up again the constraints of
higher priority. Through this strategy we achieve that
the computationally expensive constraints are evalu-
ated only when computationally cheaper constraints
are not capable of reducing a domain.

For our constraints we determined the following pri-
orities:

Priority | constraints
1 constant
2 d/dt
3 M+, M-, MINUS
4 add, mult

Delaying the computation In QSIM the genera-
tion of the initial state has a special characteristic.
The problem is that the verification of the constraints
with complete domains (and only in this case!l) will
leave the domains in the majority of cases unchanged;
it will find a corresponding element in the other do-
mains. This also means that the whole computation is
of no effect in the majority of cases. What we propose
is to wait with the domain reduction until the initial
value problem is included. In other words, the initial
value problem is regarded as a constraint with a prior-
ity higher than all of the other constraints. The initial
values will certainly reduce the domains dramatically,
if not to one element (if gqmag and qdir are given).
After these reductions, the propagation will wake up
the different constraints and the verification of the con-
straints will then effectively reduce the domains.

4.3 Experimental Results

To obtain some realistic results for the efficiency of our
implementation of c-filter, two different QSIM models
have been taken: the Starling model with 17 variables
and 18 constraints and the bathtub model with 6 vari-
ables and 6 constraints — both models are defined in
(Kuipers 1994). The runtimes for the c-filter were mea-
sured with the internal timer of a Sun Sparc 10 work-
station. To create similar conditions for the input of
the c-filter in Lisp and in ECL'PS the input for the C
implementation of c-filter from Rinner (1995) is used.

We compare the runtimes of the compiled Lisp im-
plementation of c-filter in QSIM on one hand with the
untraceable version of c-filter in ECL'PS® on the other

hand.

Starling | bathtub
Lisp 2.40[s] | 0.02]s]
ECL'PS® | 3.21[s] | 0.31[s]

We now compare the runtimes of the uncompiled
Lisp implementation of c-filter in QSIM on one hand
with the traceable version of c-filter in ECL'PS® on the
other hand.

Starling | bathtub
Lisp 8.83[s] | 0.92]s]
ECL'PS® | 3.74[s] | 0.40][s]

Multiple measurements of the same model will give
deviations of only 1-2 milliseconds to the presented val-
ues.

As we can see there is no remarkable difference be-
tween the traceable and untraceable version of c-filter
in ECL'PS®. This is due to the fact that ECL'PS® is
already compiling the code even if it is traceable.

The ECL'PS® implementation is always faster if the
Lisp code is not compiled; the Lisp implementation is
faster only in the compiled form. Models with a few
constraints and variables are considerably slower due
to the overhead of the FD constraint solver. But this
overhead pays off in large problems as we can see in
the Starling model.

A major gain of the use of ECL'PS® for implement-
ing c-filter is the implementation time: if the use of
ECL'PS® and the specification of c-filter are known,
the implementation will take about 2 - 4 weeks for one
person.

5 Conclusions and Further

Works

We have proposed a new application field, the Qual-
itative Reasoning for the finite domain solver of the
CLP. To present the questions and problems of CSP
in the area QR we chose the core filtering algorithm of
the QSIM algorithm by Benjamin Kuipers. We gave
the exact specification of the filtering algorithm in the
logical framework in Section 3 and described technical
details of the implementation in Section 4.

Further works concern more connections between
Qualitative Reasoning and Constraint Logic Program-
ming.

One interesting CSP in the area of QR is the qual-
itative spatial reasoning (Hernandez 1994). The prob-
lem 1s not an arc-consistency but a 2-path-consistency
problem. We are convinced that the propagation of
the finite domain library can be used efficiently to
solve that problem. The solution would also have an-
other advantage: if the algorithm solves the consis-
tency problem in the qualitative spatial reasoning we
would also have an algorithm for the qualitative tem-
poral reasoning (Allen 1983).

Another problem is to evaluate other existing
technical aspects of CLP for applications in QR. In
ECL'PS®-5.2 OR-parallelism was implemented even in
the finite domain library. We are very interested what
increase in performance can be achieved through it.

Acknowledgments 1 wish to thank Wolfgang
Forstner for his advice and support.

References

Aggoun, A., D. Chan, P. Dufresne, E. Falvey,
H. Grant, A. Herold, G. Macartney, M. Meier,
D. Miller, S. Mudambi, B. Perez, E. van Rossum,
J. Schimpf, P. A. Tsahageas, and D. H. de Vil-
leneuve (1995). ECL'PS® 3.5. User Manual.
http://www.ecrc.de/eclipse/eclipse.html.

Allen, J. F. (1983). Maintaining Knowledge about
Temporal Intervals. Communications of the

ACM 26(11), 832-843.

Brisset, P., T. Fruhwirth, C. Gervet, P. Lim,
M. Meier, T. L. Provost, J. Schimpf, and M. Wal-
lace (1995). ECL'PS® 3.5. Extension User Man-
ual. http://www.ecrc.de/eclipse/eclipse.-
html.

Fruhwirth, T., A. Herold, V. Kiichenhoff, T. L.
Provost, P. Lim, E. Monfroy, and M. Wallace
(1992, September). Constraint Logic Program-
ming — An Informal Introduction. In G. Comyn
(Ed.), Logic programming in action: second In-
ternational Logic Programming Summer School,

Volume 636 of LNCS, pp. 3-35. Springer Verlag.

Herndndez, D. (1994). Qualitative Representation of
Spatial Knowledge. LNAT 804. Berlin: Springer.

Jaffar, J. and M. J. Maher (1994, May-July). Con-
straint Logic Programming: A Survey. Journal
of Logic Programmang 20, 503-581.

Kuipers, B. (1994). Qualitative Simulation. The
MIT Press.

Mackworth, A. (1977). Consistency in networks of
relations. Artificial Intelligence 8(1), 99-118.

MQ&D (1995, Sept./Dec.). Qualitative Reason-
ing: A Survey of Techniques and Applications.
AICOM 8(3/4), 119-191. The survey was coor-
dinated by Philippe Daque. MQ&D is the Frech
‘Modélisation Qualitative et Désicion’ group.

Rinner, B. (1995). Qsim kernel interface. Technical
Report 95/02, Institute for Technical Informat-
ics, Graz University of Technology, Austria.

Teleki, L. (1996, 21-24 may). Constraint Logic Pro-
gramming: a Framework for Qualitative Rea-
soning. In Proceedings of the Tenth International
Workshop on Qualitative Reasoning. AAAL

van Hentenryck, P. (1991). Constraint Logic Pro-
gramming. The Knowledge FEngineering Re-

view 6(3), 151-194.

