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Abstract

We propose to use Constraint Logic Programming
�CLP� for the speci�cation and implementation of
Qualitative Reasoning �QR� problems that are spe�
cialized Constraint Satisfaction Problems� The use of
CLP has two advantages� �i� CLP gives a well de�
�ned and understood logical framework for the prob�
lem speci�cation� and �ii� CLP is not only a logical
framework� it is also a family of languages specially de�
veloped for solving classes of CSP problems� Thus we
obtain a class of powerful implementation languages
for rapid prototyping�

To illustrate the steps of speci�cation and implemen�
tation we describe in detail the core of the QSIM al�
gorithm �Kuipers 	

��� namely the �ltering of the
state transitions in the CLP framework� We show how
the basic constraints are speci�ed in this framework
and describe the technical aspects of an implementa�
tion� We want to demonstrate the advantages of CLP
through an example for a large and complex qualita�
tive reasoning algorithm�

Motivation

In the last 
fteen years many frameworks were de	
veloped in the Qualitative Reasoning �QR� commu	
nity to describe dierent qualitative reasoning prob	
lems� Some of these frameworks contain� or are spe	
cial subproblems of the general class of constraint sat�
isfaction problems �CSP� like qualitative simulation
�QSIM�� �Kuipers ������ qualitative spatial reasoning
�Hern�andez ����� or qualitative temporal reasoning
�van Beek ����� to mention some important branches�
However� as the problems are formulated in dierent
areas� the speci
cation is also done in dierent frame	
works� This makes the understanding and compari	
son of the methods rather laborious� On the other
hand� the implementation of these algorithms requires
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a substantial amount of work due to the specialized
algorithms developed for every class of problems� one
classical example is the c��lter of the QSIM algorithm
in �Kuipers ������
We propose in this paper a common speci
cation

framework for the constraint satisfaction problems�
namely the Constraint Logic Programming �CLP� �Jaf	
far � Maher ������ We claim that by using CLP there
are two advantages�

� CLP gives a well de
ned and understood logical
framework for the problem speci
cation�

� CLP is not only a logical framework� it is also a
family of languages speci
cally developed for solv	
ing classes of CSP problems� Thus we obtain a class
of powerful implementation languages for rapid pro	
totyping�

To present the CLP scheme and the implementation
aspects� we describe the QSIM algorithm by Kuipers
����� This example was chosen precisely because the
algorithm is well known in the QR community and it is
a non	trivial problem that took many years to imple	
ment� Thus� we hope to give a large and complex ex	
ample of an algorithm that allows us to describe many
details and to present dierent paths of realizations
and improvements�
All the ideas presented in this paper were imple	

mented in ECLiPSe �User Manual ����� Extension
User Manual ������ a CLP platform developed at
the European Computer	Industrie Research Center
�ECRC�� Certainly� in almost every case� a specialized
algorithmwill give a better performance� but ECLiPSe

also give very good results� This gain in implementa	
tion time can be used to determine at an early stage
conceptual problems or limits of the speci
cation�
This paper is structured as follows� in Section In�

troduction� we present the core of the QSIM algorithm
and the CLP scheme� In Section QSIM in CLP we
specify in every detail the constraints of QSIM in our



logical framework� In Section Technical Aspects� the
implementation steps to be done by the user� the work
done by the CLP system and dierent methods to im	
prove the performance are described� We close with
conclusions and further works in Section Conclusions

and Further Works�

Introduction

In the next two subsections we present the two areas
that we want to connect� the QSIM algorithm and
the CLP framework� We concentrate only on the rel	
evant aspects necessary to understand the functioning
of QSIM and CLP�

QSIM

The QSIM algorithm developed by Benjamin Kuipers�
detailed in �Kuipers ������ is a major tool used by
many researchers for describing physical models in
QR� The model speci
cation is done by Qualitative

Di�erential Equations �QDEs�� a symbolic correspon	
dent to ordinary dierential equations� QDEs describe
the development of processes over time in the context
of incomplete knowledge about the process itself� the
boundary and initial value problems� The whole spec	
i
cation of the model is done on a symbolic level�
Within a qualitative simulation� a physical process

is represented by a succession of states starting from
an initial state� The states alternate between time�

points and time�intervals� A state is completely char	
acterized by its variable description� the parameters
of the mechanism� In each state� the variables are
assigned qualitative values �qval�� A qval is a pair
qval � hqmag� qdiri of qualitative magnitude �qmag�
and qualitative direction �qdir�� A qmag is either a
point value� called a landmark � or an open interval
between two landmarks� The qvals must be consis	
tent with the state�s constraints corresponding values�
The qdirs may be increasing �inc�� decreasing �dec��
steady �std� or unknown �unknown��
Variables represent on a symbolic level time	

dependent functions of the physical process� Each vari	
able has a landmark list� a correspondent to the domain
of the function� Important elements in the landmark
list are minf� zero� inf the correspondents to ��� �
and ��
State transitions are described by changes in the

values of the variables� the number of possible valid
transitions is always restricted due to the mathemat	
ical background� e�g� continuity� mean value theorem
etc� �For example� a function cannot change from inc

to dec without passing through a point where the
derivative is zero�� The possible set of values for a
variable is always 
nite�

The constraints are symbolic equivalents to the sim	
ple mathematical notions of addition� multiplication�
derivative� minus� constant functions� monotonic in	
creasing and monotonic decreasing functions� In QSIM
the notations are add� mult� d�dt� MINUS� constant�
M� and M�� The constraints connect from one to three
variables �for a detailed presentation see Section QSIM
in CLP�� As the values of the variables are symbolic�
we need so	called corresponding values lists� these lists
interconnect the symbolic de
nition domains of the
variables�

A crucial task of QSIM is to 
lter in every time step
from the result of the variable transitions those value
combinations that ful
ll the constraints de
ned in the
QDE� In QSIM a specialized constraint satisfaction al	
gorithm called c��lter is responsible for this part� For
this special task we propose the CLP framework�

Constraint Logic Programming with
Finite Domains

Constraint logic programming �CLP� is a generaliza	
tion of logic programming �LP� where uni
cation� the
basic operation of LP languages� is replaced by con	
straint handling in a constraint system �van Henten	
ryck ������ In practice� this means the enhancement of
PROLOG like languages with constraint solving mech	
anisms� PROLOG like languages have performance
problems in solving Constraint Satisfaction Problems
due to their simple computational rule� the depth	
rst
search procedure� resulting in generate and test proce	
dure� The new paradigm allows a new computational
rule that can be characterized as constrain and gener�

ate �Fr�uhwirth et al� ������

Three constraint systems are widely used and imple	
mented� Boolean Algebra� Linear Rational Arithmetic
and Finite Domains� We propose Finite Domains �FD�
for problems in Qualitative Reasoning�

The FD consistency technique rules out many incon	
sistencies at a very early stage and thus� cuts short the
search for consistent labeling� It works by propagating
information about the variables via the mutual con	
straints with the goal of reducing the domains� Con	
straints� that can not contribute to a given time but
may contribute later to a domain reduction are de	
layed �or suspended� and kept in a constraint store�
The scheduler will wake up those constraints from the
constraint store that are aected from a domain re	
duction after the propagation� Propagation continues
until no domain reductions can be extracted from the
constraints� The FD solver implements the well	known
node and arc consistency �Mackworth ������

The FD system alone will rarely be used alone to
solve a problem since� in general� there remain com	



binations of values in the resulting domains which are
inconsistent� To 
nd a solution to a problem� the sys	
tem performs some search by labeling a variable with
an element of its domain� This choice allows further
propagation that will end in a set of solutions� This
set of values can be empty if a choice is erroneous� The
labeling can be done by a simple backtracking search�
a computational rule already included in LP �we also
describe some improvements in Section Technical As�

pects to speed up this task��
The most general description of a 
nite domain prob	

lem is given by a set of variables X � fx�� x�� � � � � xng
with a 
nite domainDxi for each xi and a 
nite set of
constraints C � fc�� c�� � � � � cng� where each cj refers
to some subset of the set of variables X� The goal
is to 
nd one �or all� of the solutions that satisfy the
set of constraints C� Constraints are 
rst order formu	
las� For a detailed presentation of the CLP paradigm
consult �Jaar � Maher ������

Notation We use the following notations�
fx�� x�� � � �g denotes a set� �x�� x�� � � � � a list� �x�� x��
an interval� hx�� x�i a tuple or a pair and hx�� x�� x�i
a triple�
If we look at a list L as a domain of a function we can

generate the set of all intervals of this domain I�L�� For
example� if L � �a� b� c�� I�L� � f�a� b�� �b� c�� �a� c�g�
Further on� we de
ne the set of all possible values
V �L� generated from a list L by adding to I�L� all
the elements of the list� In our example V �L� �
f�a� b�� �b� c�� �a� c�� a� b� cg�

QSIM in CLP

We present the formal description of the 
ltering of
the state transitions of the QSIM algorithm in CLP
framework� This 
ltering algorithm is used after every
state transition of a simulation� We do not argue why
the constraints have the presented forms� the proofs
are given in �Kuipers ������ Some of the constraints
are not exactly de
ned as in �Kuipers ������ we ignore
some details to concentrate on the essential aspects�

Domains

A QDE �Qualitative Dierential Equation� is de
ned
as a 
nite set XQDE � f� � � � �xi� Lxi�� � � �g of vari	
ables �xi� Lxi� with their landmark list and a set of
constraints CQDEfcjg� A landmark list Lxi is a list
where the succession of the elements will determine an
order over the domain of the variable xi� In a process
speci
cation the landmark list contains at least two el	
ements� the zero element and either the minf or inf�
An initial value problem is described by a set of vari	
ables xk �xk � XQDE� with initial qualitative values

qval � hqmag� qdiri� The requirement for the qval�s
is that either the qmag or the qdir is de
ned� The
domain of the variable xi with the full set of possible
values is given by the following set for each xi�

Dxi �fhv� dirij

v � V �Lxi �� dir � fstd� inc� dec� unknowngg

This means that we include in the domain Dxi of a
variable xi every element of the landmark list Lxi and
every possible interval derived from the landmark list
in the combination with the four possible directions
of change� So� for example� if the variable x has the
landmark list �zero� inf�� the complete domain of the
variable is�

Dx � fhzero� deci� hinf� deci� h�zero� inf�� deci�

hzero� inci� hinf� inci� h�zero� inf�� inci�

hzero� stdi� hinf� stdi� h�zero� inf�� stdi�

hzero� unknowni� hinf� unknowni�

h�zero� inf�� unknownig

Signs

We will need two functions to reason over the order of
the landmarks�

befor�x� lg � li� Lx� � true i Lx � �� � � lg � � � � � li� � � � �

after�x� lg � li� Lx� � true i Lx � �� � � li� � � � � lg� � � � �

The two functions determine the position of the ele	
ment lg relative to the element li in the landmark list
Lx of the variable x� befor�x� lg � li� Lx� is true if lg is
before the element li in the list L� after�x� lg � li� Lx� is
the contrary to befor�
To reason with the constraints and the values we

need the de
nition of signs� In mathematics the sign
function relative to � is de
ned as sign�x� � R� S�

with S� � f���� �� �g the set of extended signs� The
three 
rst elements of S� divide the R into three in	
tervals ������ ���� �� and ��� ��� The sign � is
used as the ambiguous sign and denotes the interval
������� The general form of the sign function is
sign�x�a � sign�x � a�� If a � � we have the de
ni	
tion presented previously�
Now we have to determine the sign function in

the context of symbolical values� Therefore we
de
ne the sign�x� lg � Lx�li over the domain S� �
fpos � neg � zero� unknowng as follows�

sign�x� lg � Lx�li �

������
�����

pos if after�x� lg � li� Lx� �
true

zero if lg � li
neg if befor�x� lg � li� Lx� �

true



with Lx the landmark list of the variable x and with
the assumption that lg � li � Lx� As we see� we need in
the function the landmark list as an argument� as the
order is given by the succession of the elements of Lx�
The sign function can be extended in a straight	

forward way to intervals� The symbol unknown will
be used as the ambiguous sign� e�g� sign�x� �a� c��
�a� b� c� d���b�d� � unknown for the variable x with the
landmark list �a� b� c� d��
In the following we use sign�x� l� Lx� for

sign�x� l� Lx�zero � The sign function is valid for the
two symbols inf and minf�
We also de
ne the sign function for the qualita	

tive directions� sign�inc� � pos � sign�std� � zero�
sign�dec� � neg and sign�unknown� � unknown� This
de
nitions follow directly from the de
nition of the
derivative�

The basic constraints of QSIM

We de
ne the relations �� and ���

x �� y i

hx� yi �

fhpos� posi� hneg � neg i� hzero� zeroi�

hunknown� posi� hunknown� neg i� hunknown� zeroig

x �� y i

hx� yi �

fhpos� neg i� hneg � posi� hzero� zeroi�

hunknown� posi� hunknown� neg i� hunknown� zeroig

In the following x� y� z will denote the variables from
the QDE�
We already mentioned that in QSIM there is a lim	

ited set of possibilities for the variables value transi	
tions in a state transition� This means that the domain
of a variable x will in general� after the state transition�
have a subset Dx of the full possible value set Dx� So
the variables x� y� z will have in general the domains
Dx � Dx� Dy � Dy� Dz � Dz of values� From the
CLP point of view there is no dierence if we use Dx

or Dx as the domain of the variable x� it is the seman	
tic of the QSIM algorithm that de
nes these restricted
domains Dx�
A qualitative value of a variable qval is always a

tuple of the form qval � hqmag� qdiri� The follow	
ing two functions make the projections onto the two
members of the tuple�

qdir�hqmag� qdiri� � qdir

qmag�hqmag� qdiri� � qmag

We now focus on the exact de
nition of the constraints�

M�� �M��x� y�� CV �� CV � the set of corresponding val�
ues is a set CV � f� � � hlxi � lyii � � �g of pairs hlxi � lyii
with lxi � Lx and lyi � Ly� The constraint represents
the assertion of a monotonic increasing function� The
constraint is satis
ed for a given pair hxg� ygi� if the
conjunction of the following constraints is satis
ed�

�� sign�qdir�xg�� �� sign�qdir�yg ��

�� �hlxi � lyii � CV� sign�x� qmag�xg�� Lx�lxi ��

sign�y� qmag�yg �� Ly�lyi

M�� �M��x� y�� CV �� The set of corresponding values
CV is again a set of pairs hlxi � lyii� The constraint rep	
resents the assertion of a monotonic decreasing func	
tion� The constraint is satis
ed for a pair hxg� ygi if the
conjunction of the following constraints is satis
ed�

�� sign�qdir�xg�� �� sign�qdir�yg��

�� �hlxi � lyii � CV� sign�x� qmag�xg�� Lx�lxi ��

sign�y� qmag�yg �� Ly�lyi

MINUS� �MINUS�x� y�� CV �� The constraint is satis
ed
similarly to M� with the addition that the constraint
has to be satis
ed with the CV augmented with the
set� fhzero � zeroi� h inf� minf i� h minf� inf ig� The
constraints represent the relation y�t� � �x�t��

add� �add�x� y� z�� CV �� In this constraint CV �
f� � � � hlxi � lyi � lzii� � � �g is a set of triples hlxi � lyi� lzii
with lxi � Lx� lyi � Ly and lzi � Lz� The triple
hzero� zero� zeroi is always an element of the corre	
sponding values set of the constraint� The constraint
represents the relation x�t� � y�t� � z�t�� The con	
straint is satis
ed for a given triple hxg� yg� zgi if the
conjunction of the following constraints is satis
ed�

�� �sign�qdir�xg��� sign�qdir�yg��� sign�qdir�zg ��� �
Radd

�� �hlxi � lyi � lzii � CV
�sign�x� qmag�xg�� Lx�lxi � sign�y� qmag�yg �� Ly�lyi �
sign�z� qmag�zg �� Lz�lzi � � Radd

The addition table Radd is given by�

Radd pos zero neg

pos pos pos neg�zero�pos
zero pos zero neg

neg neg�zero�pos neg neg

The addition is a relation and not a function to avoid
the propagation of the ambiguous sign unknown �see
the details in �Kuipers ����� page ��	����

�By a given pair hxg� ygi� we mean a given pair of values
where xg � Dx and yg � Dy�



mult� �mult�x� y� z�� CV �� CV is again a list of triples
hlxi � lyi � lzii� The constraint represents the relation
x�t�y�t� � z�t�� The constraint is satis
ed for a given
triple hxg� yg� zgi if the conjunction of the following
constraints is satis
ed�

�� sign�x� qmag�xg�� Lx�sign�y� qmag�yg �� Ly� �
sign�z� zg � Lz� with the exceptions�
sign�x� zero� Lx�sign�y� inf� Ly� � unknown�
sign�x� zero� Lx�sign�y� minf� Ly� � unknown�
sign�x� inf� Lx�sign�y� minf� Ly� � unknown�
The multiplication follows the rules given in Rmult�

�� sign�y� qmag�yg �� Ly�sign�qdir�xg���
sign�x� qmag�xg�� Lx�sign�qdir�yg ��� sign�qdir�zg���
� Radd�
This constraint follows directly from �x�t�y�t��� �
x��t�y�t� � x�t�y��t�� x��t� denotes dx�dt� the time
derivative of x�t��
�sign�y� qmag�yg �� Ly�sign�qdir�xg�� and
sign�x� qmag�xg�� Lx�sign�qdir�yg �� can be deter	
mined directly from the Rmult table�

�� The mult constraint has some other constraints
where the corresponding values are used� Due to lack
of space we do not present them here �see �Kuipers
����� page ����

The multiplication table Rmult is given by�

Rmult pos zero neg

pos pos zero neg

zero zero zero zero

neg neg zero pos

d�dt� d�dt�x� y�� The constraint has no correspond	
ing values� The constraint corresponds to y�t� �
dx�t��dt� d�dt is satis
ed for a pair �xg � yg� if�

�� sign�qdir�xg�� �� sign�y� qmag�yg �� Ly�

constant� The constraint has the form constant�x�
or constant�x� a�� constant has no corresponding val	
ues� The constraint represents the assertion that the
variable x is constant� The constraint is satis
ed for
a given xg if the conjunction of the following two con	
straints is satis
ed�

�� �sign�qdir�xg�� �� zero�

�� �sign�x� qmag�xg�� Lx�a �� zero� in the case where
constant�x� a� is given�

Technical Aspects

With the constraint speci
cation in the FD scheme� the
implementation is straightforward� this is one of the
major gains if we use this logical framework� The di 	
cult work of the constraint solving mechanism� namely
the propagation of the domain reductions is done by
the system� The user only needs to specify the single
constraints and does not needs to solve the constraint
network�
We present the technical aspects in two steps� The


rst is the presentation of the general idea of the solu	
tion of the constraint network in the FD system� In the
second we sketch ideas to improve the performance�

General Aspects

The general procedure is presented in three steps�
First� we present the implementation of the con	
straints� In a second subsection the propagation of
the FD system is described� We 
nish with the pre	
sentation of the labeling procedure�

Implementation of Constraints The goal of the
implementation of a constraint is to determine those
elements of the variable domains that satisfy the
constraint�� as de
ned in the previous Section� This
veri
cation will lead to a domain reduction propagated
later on by the FD solver�
We illustrate the procedure by the following ex	

ample� The variable x has the landmark list Lx �
�zero� full� inf� and the variable y the landmark
list Ly � �zero� inf�� The constraint has the form
�M��x� y�� fhzero� zeroi� hinf� infig�� We suppose that
the domains are�

Dx � �hfull� inci� h�zero� full�� inci�

Dy � �h�zero� inf�� inci� h�zero� inf�� stdi�

The M� constraint allows the following combinations of
variable values�

hx� yi � fhhfull� inci� h�zero� inf�� incii�

hh�zero� full�� inci� h�zero� inf�� inciig

The other combinations do not satisfy the constraint�
e�g�

hh�zero� full�� inci� h�zero� inf�� stdii

as sign�qdir�h�zero� full�� posi�� � pos �
sign�qdir�h�zero� inf�� zeroi�� � zero and

�Those who are familiar with the details of QSIM will
realize that there is no di�erence in the algorithm to deter�
mine the initial state or to generate new states� The spec�
i�cation of the initial value problem can also be regarded
as a constraint�



hpos � zeroi ���� �the 
rst constraint of M��� This
means that after the veri
cation of the combination
of variable values the domain Dx remains unchanged
and Dy is reduced to D�

y � �h�zero� inf�� inci��
It is important to see that the algorithm which re	

duces the domain is not given� In QSIM we did not im	
plement a special algorithm to decide which elements
of the domains ful
ll the constraints� Even in the case
of constraints with three variables a simple backtrack	
ing is fast enough� In other problems� with domains of
high cardinality or with computationally complex con	
straints� the decision about value combinations that
satify the constraints may be slow� In these cases� a
special algorithm can be implemented even for only
one of the constraints� But all these implementation
aspects will not at all in!uence the work done by the
system� This is the reason why new constraints can
always be added with minimal eort�

Propagation of domain reductions Now we are
able to describe the link between QSIM and CLP in a
straightforward manner� Reasoning is 
nding admis	
sible state sequences� It is realized by using the FD
solver of CLP� The FD solver propagates the domain
reductions �and only those� over the constraint net	
work and wakes up the constraints containing one or
more variables with reduced domains� The wake up of
the constraints is done until no domain change occurs
in the whole network�
We illustrate the propagation and rescheduling on a

network with two constraints�

�M��x� y�� CV��
�add�x� y� z�� CV��

Dx� Dy and Dz are the domains of the variables� M�

will reduce Dx toD�

x andDy toD�

y� The FD solver will
take the new domains and wake up the add constraint�
Let�s say this constraint will reduce D�

x to D
��

x and Dz

to D�

z � D
�

y will remain unchanged� The FD solver will
realize that the domain of the variable x is changed
and will wake up M� again� now with the new D��

x and
the old D�

y domain� If there is a change in D��

x or D
�

y

than FD solver will wake up again the add constraint�
This scheduling of the constraints is continued until
there is no change in the variable domains�

Labeling In the regular case of labeling the domains
will not contain only one element� There will instead
sets of elements from which we need to create all the
states to continue with� To 
nd solutions� the system
will search by labeling a variable with a value in its
domain� This choice �which may later prove as having
been erroneous� allows further propagation in the same
manner as presented in the previous Subsection� The
reduction of the domains will continue until there is no

change in the domains� Then the other variables are
labeled recursively until a solution is found�

Improving the performance

The last subsection describes the general ideas of do	
main reduction� propagation and labeling� If the num	
ber of variables and the cardinality of the domains
is small there is no need for dierent improvements�
However� in real case problems we will need a speedup�

The speedup can be achieved in many ways� There
are so called problem speci�c improvements and gen�

eral improvements� Problem speci�c improvements are
de
ned by the speci
c constraints of QSIM� General
improvements are independent from our problem�

Problem speci�c improvements It is not di 	
cult to see that we have dierent classes of constraints
w�r�t� the computational time� The most expensive
are add and mult then M�� M� and MINUS� followed by
d�dt and 
nished with constant� constant has only
one variable� so the domain reduction has to be done
only once� there is no reason to wake it up again�

Due to these facts� we can give priorities to the dif	
ferent constraints� This means that the propagation
should be done in dierent stages� The propagation
should be kept as long in one class of constraints until
no changes occur in the domains� It should then turn
to the next lowest priority� If a domain reduction is
realized by constraints of lower priority� the scheduler
should� if possible� wake up again the constraints of
higher priority� Through this strategy we achieve that
the computationally expensive constraints are evalu	
ated only when computationally cheaper constraints
are not capable of reducing a domain�

In QSIM the generation of the initial state has a
special characteristic� The problem is that the veri
	
cation of the constraints with complete domains will
leave the domains in the majority of cases unchanged�
it will 
nd a corresponding element in the other do	
mains� This also means that the whole computation is
of no eect in the majority of cases� What we propose
is to wait with the domain reduction until the initial
value problem is included� In other words� the initial
value problem is regarded as a constraint with a prior	
ity higher than all of the other constraints� The initial
values will certainly reduce the domains dramatically�
if not to one element �if qmag and qdir are given��
After these reductions� the propagation will wake up
the dierent constraints and the veri
cation of the con	
straints will then eectively reduce the domains�

General improvements The order of labeling can
also improve the eectiveness of the search procedure�
In general� it is more eective to use the variable with



the smallest remaining domain for labeling� This prin	
ciple is referred to as �rst fail principle� as with fewer
choices possible we will 
nd out earlier if those where
right or wrong� Another technique is to choose the
variable which occurs in most constraints�
When constraints have dierent priorities we can

select variables that occur in constraints with a low
computational cost� This act would achieve that when
the scheduler reaches the constraints with low priority�
the domains are already very small and only a small
amount of values must be analyzed�

Experimental Results

To obtain some realistic results for the e ciency of our
implementation of c	
lter� two dierent QSIM models
have been taken� the Starling model with �� variables
and �� constraints and the bathtub model with � vari	
ables and � constraints " both models are de
ned in
�Kuipers ������ The runtimes for the c	
lter were mea	
sured with the internal timer of a Sun Sparc �� work	
station� To create similar conditions for the input of
the c	
lter in Lisp and in ECLiPSe the input for the C
implementation of c	
lter from Rinner ������ is used�
We compare the runtimes of the compiled Lisp im	

plementation of c	
lter in QSIM on one hand with the
untraceable version of c	
lter in ECLiPSe on the other
hand�

Starling bathtub
Lisp ���� �s� ���� �s�

ECLiPSe ���� �s� ���� �s�

We now compare he runtimes of the uncompiled Lisp
implementation of c	
lter in QSIM on one hand with
the traceable version of c	
lter in ECLiPSe on the
other hand�

Starling bathtub
Lisp ���� �s� ���� �s�
ECLiPSe ���� �s� ���� �s�

Multiple measurements of the same model will give
deviations of only �	� milliseconds to the presented val	
ues�
As we can see there is no remarkable dierence be	

tween the traceable and untraceable version of c	
lter
in ECLiPSe� This is due to the fact that ECLiPSe is
already compiling the code even if it is traceable�
The ECLiPSe implementation is always faster if the

Lisp code is not compiled� the Lisp implementation is
faster only in the compiled form� Models with a few
constraints and variables are considerably slower due
to the overhead of the FD constraint solver� But this

overhead pays o in large problems as we can see in
the Starling model�

A major gain of the use of ECLiPSe for implement	
ing c	
lter is the implementation time� if the use of
ECLiPSe and the speci
cation of c	
lter are known�
the implementation will take about � 	 � weeks for one
person�

Conclusions and Further Works

We have proposed a new framework� the 
nite domain
solver of the constraint logic programming paradigm
to describe dierent kinds of Constraint Satisfaction
Problems used in the qualitative reasoning commu	
nity� To present the details of the logical framework
and the the !exibility of the implementation� we chose
the core 
ltering algorithm of the QSIM by Benjamin
Kuipers� We gave the exact speci
cation of the 
l	
tering algorithm in the logical framework in Section
QSIM in CLP and described technical details of the
implementation in Section Technical Aspects�

Further work concerns two aspects� �i� how !exible
the FD solver is and �ii� which other constraint solver
can serve to specify and implement QR problems�

�i� To determine the !exibility of the FD solver we
concentrate especially on the framework of J�ez�equel �
Zimmer ������� The authors explicitly expressed the
knowledge embedded in the dierent operators known
from QSIM by introducing new constraints like in	
equalities �	� ��� equality and constancy propagation�
thus allowing transitive propagation between the pa	
rameters that leads to the elimination of spurious be	
havior� We are interested to see what changes needs to
be made to integrate these constraints in the presented
logical framework and the implementation�

�ii� Lastly� the CLP framework has not only the FD
solver �van Hentenryck ������ Fr�uhwirth ������ devel	
oped a !exible environment� the Constraint Handling
Rules �CHR�� to implement user de
ned constraints by
introducing multi	head guarded rules allowing propa�
gation and simpli�cation� In �Fr�uhwirth ����� he de	
scribes the implementation of temporal reasoning pre	
sented in �Meiri ������ We want to analyze how this
framework can be used in constraint systems like QSIM
with the aim of proposing other powerful tools to re	
duce the time of implementation development that will
allow an early detection of conceptual problems or new
direction of research�
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