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Abstract
In the field of robotics and computer vision recursive estimation of time

dependent processes is one of the key tasks. Usually Kalman filter based
techniques are used, which rely on explicit model functions, that directly
and explicitly describe the effect of the parameters on the observations.
However, some problems naturally result in implicit constraints between the
observations and the parameters, for instance all those resulting in homoge-
neous equation systems. By implicit we mean, that the constraints are given
by equations, that are not easily solvable for the observation vector.

We derive an iterative extended Kalman filter framework based on im-
plicit measurement equations. In a wide field of applications the possibility
to use implicit constraints simplifies the process of specifying suitable mea-
surement equations. As an extension we introduce a robustification tech-
nique similar to [17] and [8], which allows the presented estimation scheme
to cope with outliers.

Furthermore we will present results for the application of the proposed
framework to the structure-from-motion task in the case of an image se-
quence acquired by an airborne vehicle.

1 Introduction
Recursive estimation or Kalman filtering is a classical technique [10] and has been
widely used in robotics and computer vision [19]. Some examples are ego-motion
estimation and structure-from-motion, object tracking or calibration tasks. All
those recursive estimation schemes assume a functional model, where the obser-
vations are explained by an explicit function in the unknown parameters.

However, many problems encountered in computer vision naturally result in
implicit constraints between the observations and the parameters [5, 6, 7, 13].

Although it is always possible to reduce the solution of an implicit problem
to the solution of an explicit problem [11, p.231ff], it is often much easier and
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straightforward to specify the measurement equations as implicit functions relat-
ing the state vector with the observation vector [15]. A first order approximation
to use implicit constraints in the classical Kalman filter without any iteration was
introduced by [14].

The main goal of this paper is to provide a recursive estimation scheme, that
can be applied to such problems comprising of implicit constraints in a black-box
manner thereby simplifying the task of recursive estimation from the modeling
point of view. The scope is not to present a run-time optimized estimation scheme
tailored specifically for the task of structure-from-motion, as the proposed method
is a framework, which is applicable in a much broader context.

The Kalman filter consists of two parts, namely a time update and a measure-
ment update. The scope of our work is not the time update but the measurement
update, for which we will present a solution based on implicit constraints.

Recently the Kalman filter based on the unscented transformation [9] has ob-
tained a lot of attention, which aims at improving the stochastic properties of the
filter. Our work on the other hand aims at simplifying the specification of mea-
surement equations, which are often much easier and straightforward to derive as
implicit functions.

We will demonstrate the applicability of our approach for the task of on-line
structure-from-motion from image sequences acquired by an unmanned aerial ve-
hicle (UAV), which may be modeled using explicit functions

[1] as well as using implicit functions (see section 3.2). The results from the
recursive estimation will be compared to a global optimized solution obtained by
an overall bundle adjustment.

We are aware that a lot of highly optimized non-linear methods for the task
of on-line structure-from-motion from image sequences are available [2, 4, 18],
which exploit the specific structure of the normal equation matrix. However, this
is not the scope of our paper as the presented methods are applicable to a variety
of problems beyond structure-from-motion, which can be specified using implicit
functions. The structure-from-motion problem is only used to demonstrate the
applicability of the proposed method, as it is well-known to many researchers and
test-sequences are readily available.

This work is structured as follows: first we will derive the prerequisites for
the recursive estimation algorithm based on implicit measurement functions in
section 2.1. Then we will show, how outliers can be detected and the algorithm
can be made more robust in section 2.2. The final algorithm will be given in a
black-box manner in section 2.3. Finally we will present some results for the task
of recovering the flight path of an unmaned aerial vehicle in section 3.

4



2 Recursive Estimation using Implicit Functions
We will now derive a robust estimation scheme for implicit constraints. First we
will derive the basic equations followed by a section on robustification. The final
algorithm will then be summarized in section 2.3.

2.1 Recursive estimation
We will now derive a recursive estimation scheme for the case of implicit mea-
surement constraints. In complete analogy to the classical explicit Kalman filter
we start with a parameter vector p11 (also known as state vector) and its covariance
matrix Q11 resulting from some prediction step. This state should now be updated
according to a newly acquired measurement vector z, which implicitly constraints
the parameter vector. By implicit we mean, that the measurement model is given
by an implicit function

g(p, z) = 0 (1)

relating the unknown parameter vector p to the observation vector z. Such an
implicit observation model equation is often much easier to obtain than an explicit
function z = f(p), which is required by the classical Kalman filter. Note, that
every explicit function is easily made implicit by simple subtraction. Furthermore,
we will assume a covariance matrix

D(z) = Czz (2)

supplied together with each measurement.
We start by analyzing, how a new parameter vector can be estimated from

those observations alone, by looking at the Taylor expansion of the observation
model equation

0 ≈ g(pν , zν) + A(p̂− pν) + BT(ẑ − zν) (3)
= g(pν , zν) + A∆p + BT(ẑ − z + z − zν) (4)

containing the Jacobians

A =
∂g(p, z)

∂p

∣∣∣∣
zν ,pν

B =
∂g(p, z)T

∂z

∣∣∣∣
zν ,pν

(5)

Rearranging this equation we obtain

A∆p + BT(ẑ − z) = −g(pν , zν)− BT(z − zν) (6)
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Given enough such observations, the maximum likelihood estimate of the pa-
rameter vector p is obtained by iteratively updating (cf. [3])

p̂ = pν + ∆p (7)

with
∆p = QAT(BTCzzB)−1cg (8)

using the covariance matrix

Q = (AT(BTCzzB)−1A)−1 (9)

and the contradiction vector

cg = −g(pν , zν)− BT(z − zν) (10)

We can also compute the residuals of the observations

v = ẑ − z = CzzB(BTCzzB)−1(cg − A∆̂p) (11)

yielding the linearization point for the next iteration

zν+1 = ẑ = z + v pν+1 = p̂ (12)

Now we combine this estimation scheme with the state vector from the predic-
tion step. To do so we note that the prediction is equivalent to a direct observation
of the new state vector, which fits into the above framework using the model equa-
tion

0 = g1(p, z1) = p− z1 (13)

and the observation z1 = p1 having the covariance matrix Czz11 = Q11. Because
this constraint is linear, the Jacobians are in this case simply A1 = I and B1 = −I
independent of the linearization point. Considering the prediction of the state vec-
tor alone we would obtain p̂ = p1, so that cg1 = 0. As the measurement update is
supposed to influence the state vector and thereby the joint linearization point, we
have to cope with the change of the contradiction incurred by this change, which
we will call ∆cg1 in the following to reflect this important property. Plugging the
direct measurement equation (13) and its Jacobians into equation (10), yields the
contradiction

∆cg1 = p1 − pν − vν−1
1 (14)

Further note, that because A = I also the following equation holds

Q−1
11 ∆p1 = Q−1

11 ∆cg1 (15)
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which will become useful in the following.
We are now ready to formulate the recursive estimation as a weighted mean

process of two variables being the predicted state p1 on the one hand and the
state estimated from the novel observations p2 on the other hand. Hence, the state
update is given by

∆̂p = (Q−1
11 + Q−1

22 )−1(Q−1
11 ∆p1 + Q−1

22 ∆p2) (16)

Substituting equation (15) and equation (8) into this weighted mean update we
obtain

∆̂p = (Q−1
11 + Q−1

22 )−1︸ ︷︷ ︸
Qpp

(Q−1
11 ∆cg1 + AT

2 (BT
2 CzzB2)

−1cg2) (17)

Now using the well known matrix inversion identity

(K + LN−1M)−1 = K−1 −K−1L(N +MK−1L)−1MK−1 (18)

we can reformulate equation (17) and finally get

∆̂p = Fcg2 + (I − FA2)∆cg1 (19)

with the substitution

F = Q11AT
2 (BT

2 CzzB2 + AT
2 Q11A2)

−1 (20)

The residuals are computed using equation (11)

v1 = −∆cg1 + ∆̂p (21)

v2 = CzzB2(BT
2 CzzB2)

−1(cg2 − A2∆̂p) (22)

allowing to compute the contradiction for the next iteration

cg2 = −g2(p̂, ẑ2) + BT
2 v2 (23)

Finally note, that the new covariance matrix of the state vector is given by

Qpp = (I − FA2)Qpp11 (24)

The presented algorithm is based on least squares optimization, which is known
to be very sensitive to outliers. In the following chapter we will show, how the
robustness of the presented method can be increased by re-weighting the observa-
tions.
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2.2 Robustification by re-weighting
The estimation scheme presented so far minimizes the squared residuals of the
observations, which is known to be extremely sensitive to outliers. We will now
show, how single outliers may be detected by looking at the plausibility of the
computed residuals with respect to the expected uncertainty. By reducing the
influence of such observations on the estimation the robustness can be increased.

The weighted mean process is mainly influenced by two error effects. First,
an erroneous dynamic model results in an erroneous prediction, and second, noisy
observations yield a correction effect to the estimated state.

In [17] a robust outlier detection is presented for the classical Kalman filter.
We will adapt this technique with a better re-weighting method proposed in [8].
Assuming an error free prediction, the improvement of the observations in v2 is
normal distributed with zero mean. In this case we are able to detect outliers by
simply normalizing v2 with the inverse observations covariance and reweigh the
observations accordingly.

However, in realistic applications the prediction model does not always hold
true. Its effect on the improvement of the observations in v2 cannot be modeled in
general and depends on the system noise of the dynamic model. In the structure-
from-motion problem, for instance, an error in the camera position orthogonal
to the viewing direction results in a consistent translation fraction, or a rotation
around the viewing direction results in a more complex deformation in the image
coordinates.

One common way to solve this problem is to approximate the complex defor-
mation of the estimated observation ẑ. This can be done by choosing an approx-
imation function depending on the expected deformations. In the case of image
observations a homography could be a good choice. The robust estimation of this
function can then be done by a RANSAC based approach or by a robustified least
square solution. However, such a procedure is often quite expensive.

From another point of view, the influence of the erroneous prediction is small,
if the system noise is large enough to compensate for the prediction error, which
should be the case for a well approximating dynamic model. Then we are able to
robustify the update by reweighing the observations in the following sense.

We first normalize the residual vector v2 with the observations covariance
matrix to get a standard normal distributed test vector

c = C(0)
zz

−1
v2 (25)

The absolute values of the entries of c allow to decide for each single observation,
if there is reason to consider it as an outlier. We then compute for each observation
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a variance factor wj according to [8]

wj =

{
1 if ‖cj‖ ≤ k
‖cj‖
k

if ‖cj‖ > k
(26)

which does not alter observations withing the range of k times the expected stan-
dard deviation and reduces the effect of observations outside this range on the
estimation. To perform the desired re-weighting, we use in each iteration the ob-
servation covariance matrix

C(ν)
zz = diag(w)C(0)

zz (27)

instead of the initially given covariance matrix C(0)
zz .

Following the experimental validation of [17] we also demonstrate the robus-
tification on the one dimensional estimation of a cosinus curve containing some
outliers. In figure 1 the noisy observations with 5% of outliers are shown. Figure
2 shows the non robust and the robust version of the estimated curve parameters.
The robustification yields a much smoother estimate not being perturbed by the
outliers.
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Figure 1: Full cosinus wavelength 2π, sampled with 500 samples, noise is 0.05,
system noise 0.01, 5 percent outliers with strength of 2, iteration to convergence
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Figure 2: Recursive estimation using the non-robustified and the robustified ver-
sion of the Kalman filter.

After having derived the required equations and robustification, we will sum-
marize the complete algorithm in the following section.

2.3 The final algorithm
We will now summarize the recursive estimation algorithm, which can be applied
as a black-box if only the Jacobians of the implicit model function are supplied.
From a previous estimation or prediction step of the filter, a current state vector p1

together with its covariance Q11 is known. We now gather additional observations
z2 together with their covariance matrix C22 in a subsequent measurement step.
The following algorithm may then be applied to update the state vector accord-
ingly

1. set ∆̂p = 0

2. set p̂ = p1

3. set v1 = 0

4. set v2 = 0, hence ẑ2 = z2

5. Iterate until ∆̂p is sufficiently small

(a) compute Jacobians A2 and B2 at p̂ and ẑ2

(b) compute the gain matrix F according to equation (20)

(c) compute cg2 according to equation (23)

(d) compute ∆cg1 according to equation (14)
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(e) compute ∆̂p according to equation (19)

(f) update p̂2 with ∆̂p

(g) compute v1 according to equation (21)

(h) compute v2 according to equation (22)

(i) update ẑ2 with v2

(j) compute normalized test values according to equation (25)

(k) compute variance factor for all observations with equation (26)

(l) compute reweighted observation covariance matrix for the next itera-
tion

6. compute Qp̂p̂ according to equation (24)

After the algorithm is converged we finally obtained the updated state vector p̂
together with its covariance matrix Qpp. The only problem specific part is the
computation of the Jacobians in step 5a, which has to be adapted by the user.
This completes the measurement update using the implicit constraint and a sub-
sequent time update may be performed. Also note, that for implicit measurement
equations obtained directly from explicit equations by subtraction, the presented
algorithm yields the same results as the classical iterated extended Kalman filter.

3 Results
The algorithm presented in the previous section is applicable to a broad range of
applications. In the following we will demonstrate the applicability of the frame-
work for the task of structure-from-motion using a single camera [1]. We will first
briefly sketch the involved model equations and then give some results on a real
test sequence acquired from an UAV.

3.1 UAV Hardware
The real data experiment shown below is based on image sequences taken with
the UAV produced by Microdrones GmbH, which is depicted in figure 3. This
drone is an electric powered quad-copter, which was at the time being manually
operated. It can carry up to approximately 200 g of payload and is equipped
with a Panasonic Lumix camera with a resolution of 848 x 480 pixels, a viewing
angle of approximately 90◦ and a frame rate of 30 Hz in video mode. The camera
can be tilted from 0◦ to 90◦ nadir angle. The battery allows a flying time up to
approximetely 30 minutes.
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Figure 3: Used hardware. Drone MD 4-200 from Microdrones equipped with a
Panasonic Lumix video camera

3.2 Model equations
Following the approach of [1] the motion of a single camera can be described by
the following state vector

p =



r
q
v
ω
X1

...
X i


(28)

comprising of the camera state followed by a set of feature parameters. The un-
certainty is coded in the covariance matrix Qpp, which is a square matrix of equal
dimension. The camera trajectory is represented by its actual position r, its ori-
entation quaternion q, its velocity vector v and its angular velocity vector ω. The
3d point coordinates are represented by their Euclidean points X i. The interior
camera parameters are assumed to be known in this paper.

At the moment, our approach uses the same camera and structure represen-
tation. We assume a linear time update model, which can easily be computed
by

pt+1 =

(
rt+1

qt+1

)
=

(
rt + vt∆t

qt × qt(ωt∆t)

)
(29)

where velocity, angular velocity and Euclidean points do not change. The uncer-
tainty of the predicted state is computed using error propagation and by adding
some system noise (cf. [1]).
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In the approach of [1] the measurement model is based on the co-linearity
equations, which can be written as homogeneous equations

xi = λiPX i with P = KR(q) [I3×3| − r] (30)

As our approach is able to cope with implicit functions, we formulate the co-
linearity constraint using the cross-product as follows: Introducing the matrix

S(t) =

(
0 −t3 t2
t3 0 −t1

)
(31)

the co-linearity equations can be stated as implicit equation

S(xi)PXi = −S(PXi)xi = 0 (32)

Obviously, those implicit constraints are equivalent to the explicit constraints used
in [1]. Also observe that they are also non-linear in the camera pose parameters.

3.3 Experimental evaluation
We compared our Kalman filter based approach with the results obtained from a
bundle adjustment on an image sequence acquired with the UAV. The average fly-
ing height was approximately 30 m. The image sequence consists of 600 vertical
views. It contains a building and vineyards and some images of the sequence are
shown in figure 4. The camera was calibrated offline and nonlinear distortions
were assumed to be zero.

We tracked features across the image sequence using the KLT algorithm and
estimated the camera trajectory using the proposed recursive scheme as well as
an overall bundle adjustment using the same measurement model equations and
observations. The bundle adjustment solution is computed using every 10th frame
of the image sequence and is based on approximately 950 object points. The
datum is defined automatically by choosing that frame, which yields an optimum
accuracy for the coordinate system. The estimated σ0 was approximately 0.5,
indicating that the tracker yields a standard deviation of 0.5 pixels.

In case of the Kalman filter all frames, rather than every 10th, are used and the
datum is typically defined by the first camera position and orientation. In order to
be able to compare the Kalman filter solution to the bundle adjustment, we initial-
ized the Kalman filter by using the estimated object points and camera orientation
from the first image of the bundle adjustment solution. The initialization of new
object points in the Kalman filter is known to influence the result significantly
(cf. [12]). One way to solve this problem is the use the inverse depth represen-
tation for newly introduced object points to achieve Gaussian distribution in case
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Figure 4: Every 75th of the 600 images of the real image sequence taken with the
UAV at a height of approximately 30 m.
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Figure 5: Estimated camera positions obtained from the bundle adjustment ap-
proach using every 10th frame of the image sequence.
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Figure 6: Estimated camera orientations in Euler representation obtained from the
bundle adjustment approach using every 10th frame of the image sequence.
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Figure 7: Estimated camera position obtained from our Kalman filter approach
using all images.

of small parallaxes. However, we used the approach presented in [16] for a stable
initialization instead. Because this initialization discards weak points, we end up
with approximately 60 % of the object points used in the bundle adjustment.

Figures 5 and 6 show the estimated relative camera trajectory plotted against
the frame number of the image sequence. We used this bundle adjustment solu-
tion to compare it to our Kalman filter results depicted in figures 7 and 8. The
differences are shown in figures 9 and 10.

It can be seen in figures 9 and 10 the differences in the coordinates for the
Y and Z component as well as for the ω and κ angle are small. We observe a
significant drift in X and φ, though. This behavior is also known from classical
aero-triangulation, where the orientation components X and φ for image stripes
are known to be highly correlated. This effect is typically only reversible by loop
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Figure 8: Estimated camera orientation in Euler representation obtained from our
Kalman filter approach using all images.
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Figure 9: Differences of the bundle adjustment solution and the Kalman filter
approach for the estimated camera position.
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Figure 10: Differences of the bundle adjustment solution and the Kalman filter
approach for the estimated camera orientation in Euler representation.

closing.

4 Conclusion
We presented a novel derivation of a recursive estimation framework in a Kalman
filter approach, which enables us to use implicit measurement constraint equa-
tions, rather than being restricted to explicit ones. By allowing implicit constraints
the task of modeling recursive estimation schemes is eased significantly. Further-
more, we presented an improvement to the framework in order to deal with out-
liers in the observations. Instead of the elimination of this observations, we used
a re-weighting method, which leads to smoother results.

We demonstrated the feasibility of this new algorithm for the task of structure-
from-motion from monocular image sequences. The computational complexity is
approximately equal to the classical iterated extended Kalman filter in case of the
same update model.

The presented method is applicable to a broad range of time driven estimation
problems, including all those resulting in homogeneous equation systems, so that
a lot of estimation task might benefit, which will be the topic of future research.
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