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Abstract. Recursive estimation or Kalman filtering usually relies on
explicit model functions, that directly and explicitly describe the ef-
fect of the parameters on the observations. However, many problems in
computer vision, including all those resulting in homogeneous equation
systems, are easier described using implicit constraints between the ob-
servations and the parameters. By implicit we mean, that the constraints
are given by equations, that are not easily solvable for the observation
vector.

We present a framework, that allows to incorporate such implicit con-
straints as measurement equations into a Kalman filter. The algorithm
may be used as a black-box, simplifying the process of specifying suitable
measurement equations for many problems. As a byproduct, the possi-
bility of specifying model equations non-explicitly, some non-linearities
may be avoided and better results can be achieved for certain problems.

1 Introduction

Recursive estimation or Kalman filtering is a classical technique [10] and has
been widely used in computer vision [15] and photogrammetry [4]. All those
recursive estimation schemes assume a functional model, where the observations
are explained by an explicit function in the unknown parameters.

However, many problems encountered in computer vision naturally result in
implicit constraints between the observations and the parameters [6,8,13,7]. For
instance, all problems resulting in homogeneous equation systems fall into this
class. Although it is always possible to reduce the solution of an implicit problem
to the solution of an explicit problem [11, p.231ff], to our knowledge no recursive
estimation scheme is readily available in this case. The main goal of this paper is
to provide a recursive estimation scheme, that can be applied to such problems
comprising of implicit constraints in a black-box manner thereby simplifying the
task of recursive estimation from the modeling point of view. The scope is not
to present a run-time optimized estimation scheme tailored specifically for the
task of structure-from-motion, as the proposed method is a framework, which is
applicable in a much broader context.

F.A. Hamprecht, C. Schnörr, and B. Jähne (Eds.): DAGM 2007, LNCS 4713, pp. 194–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Recursive Estimation with Implicit Constraints 195

The Kalman filter consists of two parts, namely a time update and a measure-
ment update. The scope of our work is not the time update but the measurement
update, for which we will present a solution based on implicit constraints.

Recently the Kalman filter based on the unscented transformation [9] has
obtained a lot of attention, which aims at improving the stochastic properties
of the filter. Our work on the other hand aims at simplifying the specification
of measurement equations, which are often much easier and straightforward to
derive as implicit functions. By allowing more freedom in the task of modeling
a certain problem the effects arising from non-linearities in the model equations
can possibly be reduced resulting in more stable algorithms.

We will demonstrate the applicability of our approach for the task of on-
line structure-from-motion from image sequences, which may be modeled using
explicit functions [2] as well as using implicit functions (see section 3.1). The
two approaches will be compared in section 3.2.

We are aware that a lot of highly optimized non-linear methods for the task of
on-line structure-from-motion from image sequences are available [14,5,3], which
exploit the specific structure of the normal equation matrix. However, this is not
the scope of our paper as the presented methods are applicable to a variety of
problems beyond structure-from-motion, which can be specified using implicit
functions. The structure-from-motion problem is only used to demonstrate the
applicability of the proposed method, as it is well-known to many researchers
and test-sequences are readily available.

In the following section a recursive estimation scheme based on implicit func-
tions will be derived. Section 2.3 summarizes the results and presents an easily
applicable algorithm based on the derived equations. Finally we will compare
the presented method to [2] in section 3.

2 Recursive Estimation Using Implicit Functions

2.1 Estimation Using Implicit Functions

We will now derive a recursive estimation scheme for the case of implicit con-
straints, which are functions relating the parameters p and the observations l as

g(p̃, l̃) = 0 . (1)

Note, that such implicit functions are often much easier derived than explicit
functions of the form l̃ = f(p̃). The best linear unbiased estimate of the param-
eter vector p̂ given observations l together with their covariance matrix C ll may
be obtained iteratively by solving the linear normal equation system [4, p.85]

AT(BTC llB)−1A ̂Δp = AT(BTC llB)−1cg (2)

using the Jacobians at appropriate initial values

A =
∂g(p, l)
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the contradiction vector

cg = −g(p̂, l̂) − BT(l − l̂) = −g(p̂, l̂) + BTv (4)

and the residual of the observations

v = l̂ − l = C llB(BTC llB)−1(cg − A ̂Δp) . (5)

In the following we will analyze the effect additional observations have on this
estimation scheme.

2.2 Recursive Estimation

The task of recursive estimation is now to incorporate additional observations
into the model. Hence, the model equation is augmented by a second implicit
constraint block

[

g1(p̃, l̃1)
g2(p̃, l̃2)

]

= 0 . (6)

Applying the same reasoning as before the solution of this new model equation
may be obtained using the new normal equation system with

AT(BTC llB)−1A =
[

AT
1

AT
2

] ([

BT
11 BT

21
BT

12 BT
22

] [

C 11 C 12
C 21 C 22

] [

B11 B12
B21 B22

])−1 [

A1
A2

]

(7)

on the left hand side and

AT(BTC llB)−1cg =
[

AT
1

AT
2

] ([

BT
11 BT

21
BT

12 BT
22

] [

C 11 C 12
C 21 C 22

] [

B11 B12
B21 B22

])−1 [

cg1

cg2

]

(8)

on the right hand side with the respective Jacobians in the block matrices.
In the following we will assume that the two observation blocks are stochas-

tically independent, i.e. C 12 = C 21 = 0 , as well as functionally independent, i.e.
B12 = B21 = 0 . Observe that this is analogous to classical recursive estimation
with explicit functions in the Kalman filter. Now we can reformulate the left
hand side of the normal equation system

AT(BTC llB)−1A = AT
1 (BT

1 C 11B1)−1A1 + AT
2 (BT

2 C 22B2)−1A2 (9)

as well as the right hand side of the normal equation system

AT(BTC llB)−1cg = AT
1 (BT

1 C 11B1)−1cg1 + AT
2 (BT

2 C 22B2)−1cg2 . (10)

Using the substitution W = BTC llB the final solution, that incorporates both
observations l1 and l2, may be obtained iteratively as

̂Δp = (AT
1 W−1

11 A1 + AT
2 W−1

22 A2)−1(AT
1 W−1

11 cg1 + AT
2 W−1

22 cg2) . (11)

In the following the dependence on the first set of observation l1 should be
removed.
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The goal of recursive estimation is now to derive such a solution ̂Δp2 for the
combined constraints using the solution of the first constraint block g1 repre-
sented by ̂Δp1 and its covariance matrix Q p̂p̂11 as well as the new constraint
block g2 together with the new observations l2 and their covariance matrix C 22.
In order to achieve this goal equation (11) may be re-written as

̂Δp2 = (AT
1 W−1

11 A1
︸ ︷︷ ︸

Q−1
p̂p̂11

+AT
2 W−1

22 A2)−1

︸ ︷︷ ︸

Q p̂p̂22

(AT
1 W−1

11 c̄g1
︸ ︷︷ ︸

Q−1
p̂p̂11

̂Δp1

+AT
2 W−1

22 cg2 + AT
1 W−1

11 Δcg1)

(12)
with the contradictions being separated into

cg1 = c̄g1 + Δcg1 . (13)

Observe that the contradictions for the first contradiction block g1 change due
to the change of parameters resulting from the new contradiction block g2, due
to the dependence on p̂ of equation (4). As a consequence the residuals for the
observations of the first contradiction block change as well

v1 = C 11B1W−1
11 (c̄g1 + Δcg1 − A1 ̂Δp2) (14)

= C 11B1W−1
11 (c̄g1 − A1 ̂Δp1)

︸ ︷︷ ︸

v̄1

+ C11B1W−1
11 (Δcg1 − A1( ̂Δp2 − ̂Δp1))

︸ ︷︷ ︸

Δv1

.(15)

The expression Q p̂p̂22
in equation (12) is the inverse of a sum and can be

decomposed as follows [11, p.37]

Q p̂p̂22
= Q p̂p̂11

− Q p̂p̂11
AT

2 (W 22 + AT
2 Q p̂p̂11

A2)−1A2Q p̂p̂11
(16)

= Q p̂p̂11
− FA2Q p̂p̂11

(17)
= (I − FA2)Q p̂p̂11

(18)

with F being the well known gain matrix. Note that this update does not involve
the inversion of the full normal equation matrix. Substituting this back into
equation (12) we obtain

̂Δp2 = (I − FA2)Q p̂p̂11
Q−1

p̂p̂11
̂Δp1 + (I − FA2)Q p̂p̂11

AT
2 W−1

22 cg2 + (19)

(I − FA2)Q p̂p̂11
AT

1 W−1
11 Δcg1

= ̂Δp1 − FA2 ̂Δp1 + Fcg2 + (I − FA2)Q p̂p̂11
AT

1 W−1
11 Δcg1 (20)

using the identity [11, p.37]

F = (I − FA2)Q p̂p̂11
AT

2 W−1
22 . (21)

The only remaining part still depending on l1 is now the change of the contra-
dictions (see equation (4))

Δcg1 = cg1 − c̄g1 = −g1(p̂2,
̂l1) + BT

1 v1 + g1(p̂1,
̂l1) − BT

1 v̄1 . (22)
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In order to get rid of this remaining dependence on the previous observations
observe, that the whole first contradiction block in the Kalman filter is encoded
in the first two moments of the parameter vector only. We therefore replace the
first constraint block by a direct observation of the parameters itself, i.e. l1 = p̂1
and C 11 = Q p̂p̂11 , so that

g1(p̂1, l1) = p̂1 − l1 = 0 (23)

immediately fulfills the constraint and therefore c̄g1 = 0, v̄1 = 0 and ̂Δp1 = 0.
Furthermore the Jacobians are given by A1 = I and B1 = −I .

Now equation (20) simplifies to

̂Δp2 = Fcg2 + (I − FA2)Δcg1 (24)

with
Δcg1 = −g1(p̂2,

̂l1) − v1 (25)

and equation (14) boiling down to

v1 = −Δcg1 + ̂Δp2 . (26)

For the second contradiction block we can compute the residuals

v2 = C 22B2W−1
22 (cg2 − A2 ̂Δp2) (27)

and the contradictions

cg2 = −g2(p̂2,
̂l2) + BT

2 v2 . (28)

We now have derived all required equations for incorporating an additional
implicit constraint into an estimation. In the following section those equations
will be summarized and put together into an easily applicable algorithm.

2.3 The Final Algorithm

We will now summarize the recursive estimation algorithm, which can be applied
as a black-box if only the Jacobians of the implicit model function are supplied.
From a previous estimation or prediction step of the filter, a current state vec-
tor p1 together with its covariance Qp1p1

is known. We now gather additional
observations l2 together with their covariance matrix C 22 in a subsequent mea-
surement step. The following algorithm may then be applied to update the state
vector accordingly.

1. set ̂Δp2 = 0
2. set p̂2 = p1
3. set v1 = 0
4. set v2 = 0, hence ̂l2 = l2
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5. iterate until ̂Δp2 is sufficiently small
(a) compute Jacobians A2 and B2 at p̂2 and ̂l2
(b) compute the gain matrix F as shown in equation (17)
(c) compute cg2 according to equation (28)
(d) compute Δcg1 according to equation (25)
(e) compute ̂Δp2 according to equation (24)
(f) update p̂2 with ̂Δp2
(g) compute v1 according to equation (26)
(h) compute v2 according to equation (27)
(i) update ̂l2 with v2

6. compute Q p̂p̂22
according to equation(18)

After the algorithm is converged we finally obtained the updated state vector
p̂2 together with its covariance matrix Q p̂p̂22

. The only problem specific part is
the computation of the Jacobians in step 5a, which has to be adapted by the
user. This completes the measurement update using the implicit constraint and
a subsequent time update may be performed.

3 Results

The algorithm presented in the previous section is applicable to a broad range of
problems. In the following we will demonstrate the applicability of the framework
for the task of structure-from-motion using a single camera [2]. We will first
briefly sketch the involved model equations and then give some results on a test
sequence, where we will compare our approach to [2].

3.1 Model Equations

In [2] a popular model for on-line structure from motion using a single camera
is presented, which uses the following state vector

p =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

rW

qRW

vW

ωR

X1
...

Xi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(29)

comprising of the camera state followed by a set of features parameters. The
uncertainty is coded in the covariance matrix Qpp, which is a square matrix of
equal dimension. The camera trajectory is represented by its actual position rW ,
orientation quaternion qRW , velocity vector vW and angular velocity vector ωR.
The 3d point coordinates are represented by their Euclidean points Xi.

The time update for the camera position and orientation can easily be com-
pute as

p̂ =
(

rW
new

qRW
new

)

=
(

rW + vW Δt
qRW × q(ωRΔt)

)

(30)
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where velocity, angular velocity and Euclidean points do not change. The un-
certainty of the predicted state is computed using error propagation and adding
some system noise (see [2]). We will use this time update model in both ap-
proaches we compare.

In the approach of [2] the measurement model is based on the co-linearity
equations, which can be written as homogeneous equations

xi = λiPX i with P = KR(q) [I3×3| − r] . (31)

Rewriting this in Euclidean coordinates, we get {ui, vi} as image coordinate
observations

ui =
P11Xi + P12Yi + P13Zi + P14

P31Xi + P32Yi + P33Zi + P34
(32)

vi =
P21Xi + P22Yi + P23Zi + P24

P31Xi + P32Yi + P33Zi + P34
(33)

which are explicit functions in the observations as required by the classical
Kalman filter. The fraction introduces a degree of non-linearity into the model
equations, that could be avoided using implicit functions.

As our approach is able to cope with implicit functions, we re-formulate the
co-linearity constraint using the cross-product as follows: Introducing the matrix

S(t) =
(

0 −t3 t2
t3 0 −t1

)

(34)

the co-linearity equations can be stated as implicit equation

S(xi)PXi = −S(PXi)xi = 0 . (35)

Obviously, those implicit constraints are equivalent to the explicit constraints.
Also observe that they are also non-linear in the camera pose parameters. How-
ever, there is no fraction involved, so that the effects introduced by the non-
linearity turn out to be reduced, as will be seen in the next section.

3.2 Experimental Evaluation

In order to assess the performance of the presented technique for the non-linear
structure-from-motion problem, we used the well-known rotating dinosaur se-
quence depicted in figure 1, where ground-truth camera calibration and orienta-
tion data were available. We extracted point features and tracked them across
the sequence.

Because the initialization of a Kalman filter based reconstruction approach is
known to influence the result significantly (see [12], [1]), we used the result of a
bundle adjustment of the first five frames for initialization of both approaches.
New points, that were introduced into the estimation, were initialized at the
centroid of the point cloud and given a large initial covariance matrix.

We estimated the camera trajectory and the 3d point cloud using the approach
based on explicit functions presented in [2] as well as using our own approach
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Fig. 1. Left: A single frame of the well-known rotating dinosaur sequence. The sequence
consists of 36 images rotated in 10◦ steps around the dinosaur. Ground-truth for the
camera calibration, position and rotation is available and will be used to quantify
the performance of the presented methods. Right: Camera positions and orientations
computed using a bundle adjustment of tracked feature points. The frame marked
in black is the last in the sequence. Note that the features were tracked, so that no
correspondences between the first and the last frame were used to close the loop.

Fig. 2. The mean distances and standard deviations of the estimated projection centers
to the ground truth for both methods with simulated noise plotted against the frame
number

based on implicit functions as described in the previous section. Both algorithms
were initialized using the same values, and the system noise and time update
model were identical. Furthermore we iterated the measurement update until
convergence for both approaches unlike proposed in [2], where only one iteration
is performed.

To evaluate the new algorithm, we added noise to the ground truth obser-
vations, estimated the projection centers based on the noisy data with both
methods and compared the results with the ground truth projection centers. We
ran the experiment 20 times. The results can be observe in figure 2. We see that
the proposed approach improves the accuracy of the estimated parameters.

Figure 3 shows the distance of the estimated projection centers to the ground
truth projection centers plotted against the frame number of the real data.
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Fig. 3. The distances of the estimated projection centers to the ground truth for both
methods plotted against the frame number

Observe, that the recursive estimation scheme based on the implicit function
performs slightly better after the 15th frame.

4 Conclusion

We presented a new type of recursive estimation framework in a Kalman filter
approach, which enables us to use implicit constraint functions, rather than
being restricted to explicit ones. By allowing implicit constraints, not only the
task of modeling recursive estimation schemes is eased significantly, but also
those could lead to more linear models in the estimation part of a Kalman filter,
which improves the robustness of such approaches.

We demonstrated the feasibility of this new algorithm for the task of structure-
from-motion from monocular image sequences. The proposed implicit constraints
turned out to be more robust than the explicit model used by [2] on our test
sequence.

The presented method is applicable to a broad range of computer vision prob-
lems, including all those resulting in homogeneous equation systems, so that a
lot of estimation task might benefit, which is a topic of further research. Fur-
thermore it might be interesting, how the proposed measurement update might
improve the performance of recursive estimation tasks in combination with the
unscented transformation in the time update equations.

A MATLAB reference implementation of the presented estimation algorithm
is available at www.ipb.uni-bonn.de/∼richard/imEKF/.
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