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Abstract— A temporal filter approach for real-time detection
and reconstruction of curbs and road surfaces from 3D point
clouds is presented. Instead of local thresholding, as used in
many other approaches, a 3D curb model is extracted from the
point cloud. The 3D points are classified to different parts of the
model (i.e. road and sidewalk) using a temporally integrated
Conditional Random Field (CRF). The parameters of curb and
road surface are then estimated from the respectively assigned
points, providing a temporal connection via a Kalman filter.

In this contribution, we employ dense stereo vision for data
acquisition. Other sensors capturing point cloud data, e.g. lidar,
would also be suitable.

The system was tested on real-world scenarios, showing
the advantages over a temporally unfiltered version, due to
robustness, accuracy and computation time. Further, the lateral
accuracy of the system is evaluated. The experiments show the
system to yield highly accurate results, for curved and straight-
line curbs, up to distances of 20 meters from the camera.

I. INTRODUCTION

Robust registration and modeling of the ego vehicle’s free
driving space provides the basis for many high-level driving
assistance applications, such as path planing and collision
avoidance.

Naturally, curbs play an important role in this context
and should essentially be considered when searching for
street delimiting objects. However, many existing systems
for obstacle detection classify curbs as road inliers, due to
their low height occurrence. Therefore, there exist several
dedicated approaches, addressing the problem of curb detec-
tion directly.

Beside cameras, miscellaneous sensor types are used for
this task, e.g. lidar [1] [2], time-of-flight cameras [3], or
sensor fusion [4]. However, stereo camera systems are getting
affordable and provide several advantages, such as a high
data rate and a low requirement of space inside the vehicle.

Most of the recent stereo vision based approaches for curb
detection utilize so called Digital Elevation Maps (DEM).
These maps are horizontal grids, holding a local height value
for each grid cell, computed from the triangulated 3D points.

In [5], edge detection is applied on the DEM to detect
curb candidates as chains of straight-line segments of local
height discontinuities. Temporal filtering is utilized, to deal
with the blurring of the observed discontinuities, growing
with increasing distance to the camera.
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Fig. 1. A typical reconstruction result. The reconstructed curbstone is
marked by red vertical lines, while the orange horizontal lines mark the
attachment pieces of the neighboring surfaces.

Fig. 2. Two examples for partial occluded curbs. The stabilizing cubic
curb model provides a prediction of the curb’s characteristics in occluded
regions.

Michalke et al. [6] show how to extend the detection range
by fusing 3D geometry with further vision based information.
First, curb candidates near the vehicle are extracted from the
DEM. The appearance of these candidates is then tracked
within the image to predict their position in greater distances.
Again, temporal integration is used for robustification.

An alternative solution to increase the detection range is
presented in [7], demonstrating the advantages of a model-
based approach. A parameterized curb model is fitted into
the DEM providing a robust reconstruction of the curb’s
horizontal and vertical geometry up to 20 meters from the
camera (Figure 1). The measured height data is assigned to
the different parts of the model using a Conditional Random
Field (CRF) [8]. The curb’s horizontal shape is represented
by a third order polynomial, stabilizing the reconstruction
result even in the case of partial occlusions (Figure 2). In
[9], Oniga et al. confirm the choice of a polynomial curb
representation.

So far, the reconstruction in [7] is performed for each
frame independently. In this contribution, we propose a
temporal filtering process as extension for this algorithm to:

• Improve the robustness and accuracy, especially at the
case of curbs of low height and missing or erroneous
measurements.

• Reduce the computation time by distributing the com-
putational effort over successive time steps.



Fig. 3. Birdseye view of the DEM’s horizontal grid structure, being regular
and paraxial in the column-disparity domain.

The paper is structured as follows. First, the data acqui-
sition and model assumptions are described in sections II
and III. Then, a brief overview of the curb reconstruction
approach presented in [7] is given in Section IV. In Section V
we present the temporal filtering extension of this approach.
The benefit of this extension is evaluated in Section VI,
with respect to the lateral reconstruction accuracy in real
world scenarios. Section VII concludes the paper and gives
an outlook to future work.

II. DATA ACQUISITION

The presented approach is based on 3D point clouds,
which, in our experiments, are received from dense stereo
vision. The image data is captured by a stereo camera system
that is mounted behind the wind shield of a test vehicle,
yielding 25 images per second. The baseline is approximately
0.3 m. For stereo computation we employ the implementation
of Gehrig [10].

The origin of the local coordinate system K, containing
the 3D points, is placed at ground level, straight under the
origin of the left camera. The x-axis points right, the y-
axis upwards, while the z-axis completes the right handed
system pointing into negative driving direction as illustrated
in Figure 3.

From the triangulated point cloud a DEM is generated,
which we denote by M . This grants two advantages. First,
the amount of data is significantly reduced, providing real-
time performance. Second, spatial neighborhood relations
are modeled explicitly. The utilized DEM is defined as a
horizontal grid, that is regular and paraxial in the column-
disparity space (u, d) as demonstrated in Figure 3. This
ensures an approximate constant number of observations
assigned to each grid cell, opposed to a grid being regular
and paraxial to the horizontal world axes.

We assign all image pixels (uk, dk)T, k ∈ Ω of a region of
interest Ω that have valid disparity values dk to their nearest
grid cells. Each grid cell i ∈ I is represented by its center
(ui, di)T, or (xi, zi)T with respect to the Cartesian space.
From all triangulated height values yk of the image points
assigned to i a common height value yi is computed using a
histogram based approach. For a shorter notation we denote
the vector of all height values yi by h.

Further a theoretical height accuracy σyi is computed
for each cell. This is done by error propagation via the
triangulation concept, assuming a measurement accuracy
σu = σv = 1/4 pel within the image.

Fig. 4. Perspective view of the utilized environment model.

III. ENVIRONMENT MODEL

As mentioned in Section I, model assumptions are intro-
duced to stabilize the reconstruction result. We assume a curb
C to be a vertical structure, that separates the street surface
S from the adjacent horizontal surface A (e.g. sidewalk
or traffic isle) with respect to the x-axis, as illustrated in
Figure 4.

More precisely, we define the horizontal shape fc of the
curb by the coefficients c = [c0, ..., c3]T of a third order
polynomial

x = fc(z) = [z3, z2, z, 1]c, (1)

specifying a left-right separation of S and A . In the remain-
der of this contribution, the curb is assumed to be located
on the right hand side of the road. A curb on the left hand
side can be dealt with in an analogous way.

Using the vector q = [x2, z2, xz, x, z, 1]T, we represent S
and A by bounded second order surfaces gs and ga

A =
{

[x, y, z]T | y = ga(x, z) := aTq, x ≥ fc(z)
}

(2)

S =
{

[x, y, z]T | y = gs(x, z) := sTq, x ≤ fc(z)
}
, (3)

with a = [a0, ..., a5]T, s = [s0, ..., s5]T being the unknown
surface parameters.

We use the notation Θ = (c,a, s) to combine the set of
unknown model parameters.

IV. CURB RECONSTRUCTION APPROACH

In this section we briefly recapitulate the algorithm pre-
sented in [7]. The total workflow, including the temporal
filtering presented in Section V, is illustrated in Figure 6.

The unknown model parameters Θ are estimated in an
iterative two step approach, in the manner of an Expectation
Maximization algorithm [11]. Starting with an initial labeling
l(0) the two successive steps
• Estimation of the unknown model parameters Θ(ν)

based on the labeling l(ν−1).
• Classification l(ν) = [l(ν)1 , ..., l

(ν)
I ] of the DEM cells

to labels l(ν)i ∈ Λ = {’street’,’street adjacent’, ’unas-
signed’} based on information extracted from Θ(ν).

are iteratively performed, until a termination criteria is ful-
filled or a maximum number of iterations is reached. The
variable ν ∈ {1, ..., νmax} denotes the iteration counter.

The labels ’street’ and ’street adjacent’ represent the affili-
ation of cells to the surfaces S and A , while ’unassigned’ tags
cells containing vertical structures or measurement errors.
The initial labeling l(0) is given by the final labeling result



of the last frame, if available. Otherwise it is simply ’street’
for all cells left of the cars lateral center and ’street adjacent’
for those on the right hand side.

In the remainder of this section we refer to both successive
steps in more detail.

A. PARAMETER ESTIMATION STEP

1) Estimation of the surface parameters: Given the class
assignment l(ν−1), the model parameters Θ(ν) can be esti-
mated directly from the DEM.

The surface parameters s(ν) are estimated from the Carte-
sian coordinates [xi, yi, zi] of all cells assigned to ’street’ in
a weighted least squares sense

s(ν) = argmin
s

 ∑
i∈I(ν)s

1
σ2
yi

(
yi − sTqi

)2 , (4)

with qi = [x2
i , z

2
i , xizi, xi, zi, 1]T. In a similar manner, we

derive a(ν) from all cells assigned to ’street adjacent’.
Further, the variances σ2

s
(ν) and σ2

a
(ν) of the measured

height values with respect to the estimated surfaces are
computed.

2) Estimation of the curb parameters: The parameters
c(ν) of the horizontal shape of the curb can be estimated
as the horizontal left-right separation of the classes ’street’
and ’street adjacent’. This is done by logistic regression,
formulating fc as zero level of the sigmoidal function

gb,c(x, z) =
2

1 + exp (b (fc(z)− x))
− 1, (5)

The constant b controls the steepness of the sigmoid.Using
artificial height values yi = −1 for all cells assigned to
’street’ and yi = +1 for all those assigned to ’street
adjacent’, we compute a least squares estimate c(ν) similar
to Equation (4).

Finally, lower and upper bounds of the curb can be directly
computed from the vertical intersection of fc with S and A ,
as shown in Figure 5.

B. CLASSIFICATION STEP

In this step, the objective is to find a labeling l(ν) from the
set of all possible labelings L , that maximizes the conditional
probability p(l|h,Θ(ν)), i.e. l(ν) = argmaxl∈L p(l|h,Θ

(ν)).
We model this probability by means of a CRF that is aligned
to the DEM’s grid. Each DEM cell corresponds to one graph
node, while each pair of neighboring cells, according to
the DEM’s 4-neighborhood N4, corresponds to one edge.
With this, p(l|h,Θ(ν)) can be written as a product of unary
potential functions Φ and binary potential functions Ψ

p
(
l|h,Θ(ν)

)
∝∏

i∈I
Φ
(
li|yi,Θ(ν)

) ∏
(i,j)∈N4

Ψ
(
li, lj |yi, yj ,Θ(ν)

)
. (6)

In the following we will briefly sketch the influence of the
unary and binary functions and refer to [7] for a detailed
formulation.

Fig. 5. Visualization of the reconstruction result. Top: Projection of the final
labeling and estimated curb into the image. Center: 3D view of the labeled
DEM, containing the reconstructed surfaces S and A . Bottom: Estimated
sigmoidal function gc, defining the curbs horizontal position by its zero
level fc. The curbstone is reconstructed from the vertical intersection of fc

with S and A .

The unary potential functions Φ define the local, individual
labeling decision at each cell, which is based on several
criteria:

• A cell is the more likely assigned to a surface the
smaller the distance between the cell’s measured height
value yi and the estimated height of the surface
g
(ν)
s (xi, zi), respectively g(ν)

a (xi, zi).
• The probability of the label ’unassigned’ is dominant if

the distance to both surfaces is larger than 3σyi .
• The surface having a lower height variance σ2

s
(ν),

respectively σ2
a
(ν), is preferred.

• The more the cell lies on the right side of f (ν)
c , the more

unlikely is its assignment to ’street’ and vice versa for
’street adjacent’.

The binary potentials Ψ are defined using an height differ-
ence sensitive Potts model. I.e., neighboring cells i and j are
the more likely assigned with the same label, the smaller the
weighted height difference |yi−yj |σdij

, with σdij =
√
σ2
yi + σ2

yj .
For inference we utilize Loopy Belief Propagation (LBP)

[12] (pp. 334-340). As result, we obtain an estimation of the
most probable labeling l(ν), as well as estimated marginal
probabilities for each cell and for all possible assignments
of labels

P (ν) =
{
p
(
l
(ν)
i = ι|h,Θ(ν)

)
|i = 1, ..., I, ι ∈ Λ

}
. (7)

V. TEMPORAL FILTERING

The results in [7] are derived from the model presented in
the last section. Observe no temporal continuity is guaran-
teed, as curb and surface estimation and classification does
not use information from the past time step.



In this section, a temporal filtering process for both steps
of the presented curb reconstruction approach is proposed.
The schematic overview of the total process is given in
Figure (6).

We assume the variation of the observed curb and surface
characteristics to be small between successive frames. Thus,
using information about the cars ego motion, the position and
shape of the curb, as well as the class regions at the current
time step t can be predicted from the results estimated at the
previous acquisition time t− 1.

Let γ be the rotation angle and T = [Tx, Tz]T be the
translation vector defining the planar motion of the ego car
from t−1 to t. Then, the coordinates of a point in the current
reference system Kt can be transformed into the previous
reference system Kt−1 using[

xi,t−1

zi,t−1

]
=
[

cos(γ) sin(γ)
− sin(γ) cos(γ)

] [
xi,t
zi,t

]
+
[
Tx
Tz

]
. (8)

In our experiments we derive γ and T from inertial sen-
sors. Here, a circular path motion model, assuming constant
yaw rate and velocity, is used.

A. FILTERING OF THE CLASSIFICATION STEP

For the temporal filtering of the classification step, we
assume the labels of the considered regions to be constant
with respect to a fixed world frame. Thus, given the ego
motion, we are able to predict the class probabilities for the
current DEM cells.

The basic idea is to connect the CRF to the results of
the last time step and transfer the information contained in
the node marginals Pt−1 into the current labeling task. We
model this connection using an additional potential function
Υ, extending the probability defined in (6) to

p
(
lt|ht,Θ(ν)

t ,ht−1,Θt−1

)
∝

p
(
lt|ht,Θ(ν)

t

)∏
i∈I

Υ (li,t|yi,t−1,Θt−1) . (9)

We determine Υ from the marginals Pt−1 performing the
following steps for all cells i of the current DEM Mt:
• Compute the Cartesian coordinates [xi,t−1, zi,t−1]T

with respect to Kt−1, using (8).
• Transform these coordinates into column disparity space

[ui,t−1, di,t−1]T.
• If [ui,t−1, di,t−1]T lies inside the previous DEM Mt−1:

– Identify its four nearest neighbor cells
n1, ..., n4 ∈Mt−1.

– For all ι ∈ Λ: Interpolate Υ (li,t|yi,t−1,Θt−1) from
the marginals p

(
lj,t−1 = ι|yt−1Θt−1

)
∈ Pt−1,

with j = n1, ..., n4.
• Otherwise: Set Υ (li,t|yi,t−1,Θt−1) = 1,∀ι ∈ Λ, i.e.

the influence of the prior term for the current cell is
switched off.

Linking the CRF to the results of the previous time step in
the presented manner results in several advantages. First, the
robustness of the classification increases, especially for curbs
of low height. Second, the inference procedure sets up on

Prediction step Iterative classification
and reconstruction

Egomotion

Parameter
estimation

DEM

lt−1

Pt−1

lt
Pt

Θt−1 Θt

Θ(ν)
t

Label
prediction Classification

Parameter
prediction

Kalman
filtering

l
(ν−1)
t

Θ̃
(ν)

t

Θ−
t−1

Υ, l
(0)
t

Fig. 6. Workflow of the proposed reconstruction approach.

the classification result of the last time step instead of prop-
agating the information from scratch. With this, the amount
of iterations needed by the inference method is significantly
reduced, amortizing the additional computational effort of
the temporal integration. We can think of this as distributing
the classification task over successive time steps. Further, for
each cell, we can use the label maximizing the respective
prior term Υ to define the initial labeling l

(0)
t discussed in

section IV.

B. FILTERING OF THE PARAMETER ESTIMATION STEP

We make two assumptions for the filtering of the model
parameters. First, the position and shape of the retrieved parts
of the model is assumed to be constant with respect to the
world frame. Second, the change of the characteristics in the
new observed parts is assumed to be small.

The filtering is performed by means of a Kalman filter.
In the following, we use the notation Θ̃ for parameters
estimated by the approach presented in Section IV-A, Θ− for
predicted parameters and Θ for the final, filtered parameters.

1) FILTERING OF THE CURB PARAMETERS: The
mathematical proper approach for a temporally filtered es-
timation of ct would be to completely reformulate the
procedure described in IV-A.2 using a Kalman filter. Un-
fortunately, this would require a high computational effort
since the innovation matrix, whose dimension is equal to the
number of observed height values |I|, must be inverted in
each iteration.

We avoid this by directly filtering the estimated parameters
c̃. This leads to a simple measurement model that is given
by the identity function c̃t = ct +vt, with a Gaussian white
noise term vt.

The system model is derived from substituting the Carte-
sian coordinates in Equation (1) using the right side of (8),
yielding

cos(γ)xi,t + sin(γ)zi,t + Tx =
fct−1(− sin(γ)xi,t + cos(γ)zi,t + Tz) (10)
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Neglecting all terms including products of xi,t and zi,t, we
can reorganize (10) to

xi,t = [z3
i,t, z

2
i,t, zi,t, 1]c−t = fc−t

(zi,t). (11)

where c−t is given as

c−t ≈


c′0 cos3(γ)

(3c′0Tz + c′1) cos2(γ)(
3c′0Tz

2 + 2c′1Tz + c′2
)

cos(γ)− sin(γ)
c′0Tz

3 + c′1Tz
2 + c′2Tz + c′3 − Tx

 /τ (12)

:= h(ct−1), (13)

using the substitution

τ =
(
3c′0Tz

2 + 2c′1Tz + c′2
)

sin(γ) + cos(γ) (14)

and the short notation [(c0)t−1, ..., (c3)t−1] = [c′0, ..., c
′
3].

We obtain the final system model from (13) by adding a
Gaussian white noise term wt to capture the influence of the
neglected terms

c−t = h(ct−1) + wt. (15)

This influence is assumed to be small, since the neglected
terms all contain a factor that is a power of the sine of the
small angle γ.

2) FILTERING OF THE SURFACES PARAMETERS:
For the filtering of the surface parameters st and at a full
3D ego motion estimation is required, because the influence
of pitch an roll rotations cannot be neglected as by the
horizontal structures discussed before.

In case reliable ego-motion information is available one
can proceed as follows for filtering of the street surface
parameters st (the parameters at can be dealt with in an
analogous way).

Assume a 3D ego motion matrix M to be given, defining
the homogeneous transformation

Xi,t−1 = MXi,t, (16)

with the homogeneous points Xi,t = [xi,t, yi,t, zi,t, 1]T.

Fig. 8. Example showing the limitations of the utilized curb model. The
assumptions are violated to much by the geometry of the traffic isle to allow
a proper reconstruction.

The surface equation yi,t−1 = gst−1(xi,t−1, zi,t−1) de-
fined in (3) can be formulated as implicit condition

0 = XT
i,t−1St−1Xi,t−1, (17)

using

St−1 =


(s0)t−1 0 1

2 (s2)t−1
1
2 (s3)t−1

0 0 0 − 1
2

1
2 (s2)t−1 0 (s1)t−1

1
2 (s4)t−1

1
2 (s3)t−1 − 1

2
1
2 (s4)t−1 (s5)t−1

 (18)

Substituting (16) into (17) we obtain

0 = XT
i,tM

TSt−1MXi,t = XT
i,tStXi,t (19)

and can directly extract the predicted parameters s̃t from
the respective elements of St. With this, the measurement
model and system model of the Kalman filter can be defined
analogously to the filtering of the curb parameters in the
previous section.

In our experiments, we forbear from filtering the surface
parameters st and at due to two reasons. First, the 3d-
ego-motion estimation requires an additional computational
effort. Second, since the labeling decision depends on the
distance of the measured height values yi to the estimated
surfaces, it reacts very sensitive to effects of slightly biased
ego motion parameters.

VI. RESULTS

The proposed method was implemented in C++ and com-
pared to the original approach presented in [7].

We use a DEM of 64 × 32 (column×disparity) cells,
providing height information up to 20 meter distance. The
resulting lateral resolution is plotted in Figure 7. It takes
2-3 ms to compute the DEM. The computation time for a
single iteration of the reconstruction process on recent PC
hardware (4× 3GHz Intel Core2 Quad), is given by 6-7 ms
for both approaches. This is because the additional computa-
tional effort needed for the filtering steps is amortized by the
resulting speedup of the inference method, as mentioned in
Section V-A. Further, the propagated information reduces the
number of iterations needed for convergence. In our exper-
iments, we can restrict the filtered approach to a maximum
number of 2 iterations, while the unfiltered approach usually
needs 4 iterations to converge.

In comprehensive tests on real-world scenarios, the fil-
tered method show considerable improvements concerning
the smoothness and robustness of the reconstruction result.
Jerky leaps and discontinuities between the curbs geometry



(a) Sequence 1 unfiltered (b) Sequence 1 filtered (c) Sequence 2 unfiltered (d) Sequence 2 filtered

Fig. 9. Two exemplary image sequences showing jerky leaps between the reconstruction results of successive frames (column-wise), using the unfiltered
approach (columns (a) and (c)). These effects are not shown by the respective results of the temporal filtered method (columns (b) and (d)).

estimated from successive frames are reduced significantly
as demonstrated in Figure 9.

The lateral accuracy was evaluated on a set of nine
different real-world scenarios, containing curved and straight
line curbs, having heights between 4 and 15 cm. Each
scenario consists of a sequence of 20 frames. For all images
the position of the curbs bottom edge was annotated by an
expert for each image row. These annotated bottom edge is
then projected on the estimated street surface, yielding lateral
ground-truth information. From this, we evaluate the lateral
accuracy by computing the lateral error of the respective curb
positions estimated by the proposed reconstruction approach.
In Figure 7, the joint Root Mean Squared Error (RMSE)
concerning all frames of all scenarios is plotted against the
distance to the camera.

The result shows that the filtered approach significantly
outperforms the unfiltered method, when using just one
iteration (green and red dashed lines). Further, the unfiltered
method requires four iterations, to reach results comparable
to the filtered method after two iterations (blue dashed and
dotted lines). We observe the lateral error to be approxi-
mately given by the half of the lateral resolution near the
camera, exceeding this resolution in greater distances. This is
an intuitive result, considering the interpolation properties of
the sigmoid (5) on the one hand and the exponential growing
of the measurement noise with increasing distance to the
camera on the other hand.

VII. CONCLUSION AND FUTURE WORK

We proposed a temporal filter approach for robust detec-
tion and reconstruction of curbs and street surfaces in real-
time. In experiments on real-world scenarios, the advantages
over an unfiltered version, due to robustness, accuracy and
computational effort, were demonstrated.

The evaluation of the lateral accuracy have shown the
ability of the method to yield accurate reconstruction results
up to distances of 20 meters to the camera.

Future work is required for the development of a more
general and flexible curb model. The utilized curb model

is designed for curbs being collateral to the vehicles driving
corridor. This limits the ability of the approach to reconstruct
curbs violating this assumption to much, such as small traffic
isles as illustrated in Figure 8.

Furthermore, the fusion with additional vision based in-
formation, e.g. texture and gradient information, will be part
of future work.
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