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Abstract— This paper presents a generic framework for
curb detection and reconstruction in the context of driver
assistance systems. Based on a 3D point cloud, we estimate
the parameters of a 3D curb model, incorporating also the
curb adjacent surfaces, e.g. street and sidewalk. We apply an
iterative two step approach. First, the measured 3D points,
e.g., obtained from dense stereo vision, are assigned to the
curb adjacent surfaces using loopy belief propagation on a
Conditional Random Field. Based on this result, we reconstruct
the surfaces and in particular the curb. Our system is not
limited to straight-line curbs, i.e. it is able to deal with curbs
of different curvature and varying height.

The proposed algorithm runs in real-time on our demon-
strator vehicle and is evaluated in urban real-world scenarios.
It yields highly accurate results even for low curbs up to 20 m
distance.

I. INTRODUCTION

Robust detection of obstacles endangering the driver’s
safety is an essential task for driving assistance. Although
curbs in general are of low height a collision is a potential
risk of severe tire damage. Even minor damages bear the
risk of delayed blowouts and may result in critical situations.
Furthermore, curbs usually represent the boundary between
driving lane and sidewalk. For this reason they are of special
interest for traffic scene interpretation tasks.

Approaches modeling the car’s free driving space, as for
example the Stixel World representation by Badino et al. [1],
are designed to model objects with a certain minimum height
to be robust against artifacts caused by measurement noise.
This makes them unsuitable for the curb detection task due
to the curb’s low height occurrence.

There are several approaches addressing this task explic-
itly. Se and Brady [2] detect curb candidates from clusters of
parallel straight lines in the image. The lines are extracted
via a Hough transformation [3] from edge points detected
by means of a Canny edge detector [4]. Using brightness
information exclusively is risky since straight lines in the
image may also result from lane markings and pavement
transitions. In a similar approach, Turchetto and Manduchi
[5] additionally include 3D information. The vote for each
single edge point within the Hough accumulator is weighted
by a function of the brightness gradient and the 3D elevation
gradient. This idea is extended by introducing the estimated
surface curvature to the weighting function [6].

However, not all methods are based on the image domain.
In [7] the 3D points are arranged in an horizontal height

Fig. 1. Example of a reconstructed curb. The estimated curb stone edge is
displayed by red vertical lines. The attachment pieces of street and sidewalk
surface are denoted by the orange horizontal lines.

grid, denoted as Digital Elevation Map (DEM). For each grid
cell a height value is determined. Curb candidates are then
detected from discontinuities between heights of neighboring
cells. This is done by using the combination of a Canny edge
detector and a Hough transformation on the DEM.

All these approaches have in common that they are re-
stricted to the detection of straight-line curbs. Furthermore
the detection of curbs via the elevation gradient is very
sensitive to artifacts caused by measurement noise. The
observed height discontinuity gets blurred with increasing
distance to the camera. Thus, for the detection of low and
distant curbs the threshold of the edge detector needs to
be scaled down. However, this results in many false curb
candidates. Oniga et al. show how to remove these false
candidates by temporal integration if reliably egomotion
information exists [8]. They present a robust and real-time
capable approach to detect curbs of a constant height of at
least 5 cm up to a distance of 10 meters. Even curved curbs
are modeled using chains of straight-line curb segments.

In this contribution we present a new approach to detect
and reconstruct curbs even of low height up to a distance
of 20 meters. This includes curved curbs as well as those
with non constant height as shown in Figure 1. Our method
is based on 3D point observations, e.g., received from dense
stereo vision, which we arrange in a DEM similar to [8]. The
underlying idea is that even at great distances the average
measured height levels of the curb adjacent surfaces, e.g.,
street and sidewalk, still differ. We exploit this fact by using a
parameterized environment model, where the curb is defined
as horizontal separation of its adjacent surfaces. In order to
reconstruct the curb we need to determine the parameters
of this model from the measured height data. Therefore we
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Fig. 2. Original input image and result of the SGM stereo algorithm.
The color encoding denotes red for close and green for far disparity
measurements.

assign each cell of the DEM to one part of the environment
model using a Conditional Random Field (CRF) [9]. CRFs
have successfully been used for road scene interpretation,
e.g., in [10] or [11]. Contrary to these methods, we align
the CRF’s graph structure to the grid of the DEM, which
has a considerably smaller resolution than the camera image.
Thereby we reach real-time performance.

The remainder of this paper is structured as follows. Sec-
tions II and III describe the data acquisition and construction
of the DEM. Section IV comprises the definition of the
environment model. Section V presents an iterative two-step
approach for simultaneous classification and reconstruction.
Results are presented and discussed in Section VI. Section
VII concludes the paper.

II. DATA AQUISITION

In our contribution the 3D point cloud data is computed
from dense stereo vision. Other sensors that capture punctual
data in real-time, e.g., laser scanners, would also be suitable.
We use the implementation of [12] which is based on
the Semi-Global Matching algorithm (SGM) of [13]. This
implementation runs on a Xilinx FPGA platform at 25 Hz
with a power consumption of less than 3 W. The image
data (VGA images) is captured by a stereo camera system,
with 0.3 m baseline. The cameras are mounted behind the
windshield of a test vehicle, pointing in the direction of the
vehicle’s front. In Figure 2 an exemplary scene is illustrated
with the corresponding SGM result given besides. We define
the coordinate system for the 3D reconstructed points relative
to the viewing direction of the camera as follows. The x-
axis points right, the y-axis points upwards, and the z-
axis completes the right-handed system pointing into the
camera and thus in negative viewing direction. The origin
is positioned on ground level straight under the projection
center of the left camera.

III. DIGITAL ELEVATION MAPS

Grid based representations are an established method
to model the environment and to concentrate and prepare
information for data fusion. In [14], Badino et al. present a
technique for modeling occupancy evidence for the vehicle
environment. Oniga et al. employ Digital Elevation Maps not
to model the degree of occupancy but to determine the height
of the area observed [15], [7].

Fig. 3. A Cartesian grid (left) and a column disparity grid (right) are
illustrated in a top down view. The green cone represents the field of view
(FOV) of the camera. The colors denote areas that lie either outside of the
FOV (red), or are not covered by the grid (blue).

These grids can be defined over different coordinate sys-
tems. A common approach is to align the DEM grid paraxial
to the Cartesian xz-plane and to assign a constant width and
length to every cell of the DEM. These grids are comfortable
to handle but entail the issue that distant cells tend to get too
small (within the image), i.e., only a few stereo disparities
can be associated with them, while close cells - the ones that
are of particular interest in driver safety tasks - are still to
clumsy. A possible way out is to define different cell sizes
and/or to use hierarchical grid structures like quadtrees or
kd-trees. However, this would derogate the convenience in
the usage of the DEM due to the resulting irregular grid
structure and would cause a higher computational effort.

Another option is to define the grid to be regular and
paraxial to the column disparity space (u, d). Using this
domain for the grid structure, one intrinsically deals with
those mentioned perspective effects. All cells remain the
same size within the image, resulting in small close and
bigger distant cells with respect to the Cartesian xz-plane.
These two different methods are illustrated within Figure 3.
Another benefit of the column disparity grid representation
is, by definition, that it does not hold any cells that lie outside
the field of view of the camera.

In this paper the column disparity based grid representa-
tion is used. We assign all stereo disparities dk belonging
to image pixels (uk, vk)T within the rectified image Ω to
their corresponding grid cells. A grid cell is represented by
its center (ui, di)T and its index i ∈ I . Then we triangulate
(uk, vk, dk)T to their 3d coordinates (xk, yk, zk)T and reg-
ister the obtained height value yk to the corresponding cell
i. The coordinates of the cell centers with respect to our 3d
world coordinate system are denoted by xi = (xi, hi, zi)

T.
Here we use the alias hi := yi for the cell’s height value
and denote the vector of all height values of the grid by h.
Since xi and zi are independent of the image row they are
directly derived from (ui, di)T.

Numerous strategies exist to determine the final height
measurement hi from all height values yk registered to a cell
i. A mean based approach is a straightforward method, but
suffers from outliers and is likely to result in values that have
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(a) Cartesian (b) Column Disparity

Fig. 4. (a) Cartesian and (b) column disparity based DEM of the scene
illustrated in Figure 2. Both grids consist of the same amount of cells. One
can observe, that the Cartesian cells are relatively big in the front and get
tiny in the distance, while the column disparity based cells roughly remain
the same size.

not been measured at all. The use of median or histogram
based approaches is more reliable. For our purpose we use
histograms registering all heights yk in the range of yk ∈
[−0.5, 1.5] m with a discretization of 1 cm. We obtain the
final height measurement from the histogram bin containing
the maximum value, after smoothing the histogram by means
of a Gaussian kernel.

When the number of heights registered to a cell is beneath
a certain value (e.g. due to occlusions) the cell is flagged as
invalid and no height information is determined for that cell.
These invalid cells are ignored at all further computation
steps.

The Cartesian and column disparity DEMs, computed
from the disparity input image depicted in Figure 2, are
illustrated in Figure 4.

The projection of each cell center xi onto the left and
right image plane is given from the known camera geometry.
By means of the triangulation concept and an assumed
measurement accuracy σu and σv within the image, we
derive the theoretical height accuracy σhi for each cell by
error propagation. In our experiments, we assume σu = σv =
1/4 pixel. The covariance matrix containing all variances
σ2
hi
, i ∈ I , is denoted by Σhh = diag

(
σ2
h1
, ..., σ2

hI

)
.

IV. STATIC ENVIRONMENT MODEL

For simplicity we assume for now that there is just a single
curb to find on the right hand side of the car. The detection
of an additional curb on the left hand side will be adressed in
Section V-D. In general a curb C separates the street surface
S from a street adjacent surface A, such as a sidewalk or a
traffic isle, as shown in Figure 5. We model C as a vertical
structure, that follows a third order polynomial in the xz-
plane with respect to the z-axis. The vertical extent of the
structure is limited by upper and lower bounds U(z) and
L(z). Therefore the curb model is given by

C =
{

[x, y, z]T|x = fc(z), L(z) < y < U(z)
}
, (1)

where fc(z) := c0z
3 + c1z

2 + c2z+ c3, with the parameters
c = [c0, c1, c2, c3]T, defines the third order polynomial. Fur-
ther we model S and A by bounded second order surfaces.
Using the substitution q = [x2, z2, 2xz, x, z, 1]T we have

A =
{

[x, y, z]T|y = ga(x, z) := aTq, x ≥ fc(z)
}

(2)

S =
{

[x, y, z]T|y = gs(x, z) := sTq, x ≤ fc(z)
}
, (3)

with a = [a0, ..., a5]T, s = [s0, ..., s5]T being the surface
parameters.

(a) Environment Model: Perspective View

(b) Environment Model: Birds Eye View

Fig. 5. Illustration of the environment model comprising the surfaces curb
C, street S, street adjacent A, the upper and lower bounds U(z), L(z) of
the curb and its projection fc(z) onto the xz-plane.

Since the upper and lower bounds of the curb are given
by the heights gs and ga of the surfaces S and A we may
express L and U in terms of the surface and curb parameters
by combining equation (1) with (2) and (3) to

L(z) = min (ga (fc(z), z) , gs (fc(z), z)) (4)
U(z) = max (ga (fc(z), z) , gs (fc(z), z)) (5)

Note that the entire model is sufficiently described by the
parameters a, s and c.

When dealing with slanted curbs, our model limits the
reconstructed curb to be vertical. Nevertheless, this constraint
will not cause the algorithm to fail in such a situation, since
the average position and the height of the curb can still be
described by the separation of S and A.

V. SIMULTANEOUS CLASSIFICATION AND
RECONSTRUCTION

In order to reconstruct the curb using the specified model
from IV, we need to estimate the parameters a, s and c from
the measured height data h provided by the DEM. This is
realized in several steps:
• Classification l = [l1, ..., ln] of all valid DEM cells to

the labels li ∈ {’street’, ’street adjacent’, ’unassigned’}.
• Estimation of the parameters a and s of the street and

street adjacent surface S and A.
• Estimation of the curb parameters c.

The parameter estimation depends on the labeling results and
vice versa. Therefore we use an iterative two step approach
in the manner of the well known Expectation Maximization
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Fig. 6. Example of the sigmoidal function gb,c. Its zero level function fc
is marked in yellow.

algorithm [16]. Based on an initial labeling l(0) we perform
the following two successive steps for every iteration ν ∈
{1, ..., νmax}.

First we estimate the parameters of the surfaces a(ν), s(ν)

and the parameters of the third order polynomial c(ν),
depending on the labeling of the last iteration l(ν−1). In the
second step we search for a new labeling of the valid DEM
cells with maximized probability given the estimated surface
parameters and height observations.

The labels ’street’ and ’street adjacent’ represent the
assignment of the cells to the surfaces S and A. The label
’unassigned’ represents those cells which are not assignable
to one of the surfaces caused by measurement errors, or since
they contain vertical structures. In the following, we denote
the set of indices of all cells assigned with label ’street’ in
iteration ν by I

(ν)
s ⊆ I . Analog, the aliases I(ν)

a and I
(ν)
u

represent the cells assigned with the labels ’street adjacent’
and ’unassigned’ respectively.

The iterative process stops after a maximum number of
iterations νmax is reached, or if a termination criterion is
fulfilled.

The remainder of this Section explains the single steps in
more detail.

A. Parameter Estimation

1) Estimation of the surface parameters: We estimate the
parameters s(ν) in a weighted least squares sense given the
height values hi of the cells assigned with label ’street’:

s(ν) = argmin
s

 ∑
i∈I(ν)s

1
σ2
hi

(
hi − sTqi

)2 , (6)

with qi = [x2
i , z

2
i , 2xizi, xi, zi, 1]T. Further the variance

σ2
s
(ν) of the height data with respect to the estimated surface

is given by the normalized minimum in (6). From the cells
assigned with label ’street adjacent’ we derive a(ν) and σ2

a
(ν)

analog.
In general the curvature of the street and sidewalk surfaces

is small. Thus, we extend (6) to a Bayesian estimation
by adding a priori constraints on the second order sur-
face parameters, i.e., we a priori assume the parameters
s
(ν)
0 , ..., s

(ν)
2 , and a

(ν)
0 , ..., a

(ν)
2 respectively, to be zero with

a small variance.

2) Estimation of the curb parameters: As mentioned
above the parameters c(ν) define the separation function
fc which divides the xz-plane projection of S from the
projection of A. Given the classification result we search
for the function fc which is the most suitable separation of
the DEM cells assigned with label ’street’ and those assigned
with label ’street adjacent’. Therefore, we define fc to be the
zero level of the sigmoidal function

gb,c(x, z) =
2

1 + exp (b (fc(z)− x))
− 1 (7)

that separates all points [x, z] with gb,c(x, z) < 0 from the
points with gb,c(x, z) > 0 as illustrated in Figure 6. The
usage of the parameter b, which controls the steepness of
the sigmoid, will be discussed later in Section V-B.3. From
those cells that are assigned with the label ’street’ or with
the label ’street adjacent’, we obtain the curb parameters by

c(ν) = argmin
c

 ∑
i∈I(ν)a ∪I(ν)s

w2
i (φi − gb,c(xi, zi))2

 , (8)

where φi is the selective function

φi =

{
−1 , if l(ν)i = ’street’
1 , if l(ν)i = ’street adjacent’

(9)

We choose the weights wi to be the probabilities of the
particular assigned labels wi = p(l(ν)i ) as described in
Section V-B.5.

Further, we assume the cubic characteristic of the curb to
be low and thus constrain the third order parameter c(ν)0 to
be zero with a small variance, analog to the second order
parameters of the curb adjacent surfaces.

B. Classification

1) Initial labeling: If no labeling from the previous time
step is available, or if there has not been any curb detected
in the last frame, we start the iterative process with an initial
labeling. This is simply ’street’ for all cells left of the ego
vehicle’s center and ’street adjacent’ for all cells right of the
vehicle’s center, with respect to the lateral axis. Otherwise
we use the final labeling of the last frame as initial input.

2) Classification using a Conditional Random Field:
For the classification task we determine the label-
ing l(ν) which is most probable given the mea-
sured heights h and the set of model parameters
Θ(ν) =

{
a(ν), s(ν), c(ν), σ2

s
(ν)
, σ2
a
(ν)
,Σhh

}
:

l(ν) = argmax
l

(
p
(
l|h,Θ(ν)

))
(10)

We align the graph structure of the random field to the grid
structure of the DEM. This means that each cell represents a
node and each pair of neighbors out of the 4-neighborhood
N4 ⊂ I × I represents an edge. With this, the probability
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Fig. 7. Illustration of the height data likelihood for cell i sampled from the
Gaussian function ϕhi,σ2

hi

. The likelihood of a cell assigned with ’street’

or ’street adjacent’ is sampled at the estimated height of the corresponding
surface. The likelihood of a cell labeled to ’unassigned’ is sampled at 3σhi
distance.

Fig. 8. Top: Front view of a labeled DEM in combination with the
reconstructed surfaces. The height data likelihood is insufficient to properly
classify the cells near the intersection of the estimated surfaces gs and ga
encircled red. For this reason we introduce the dependency of the a priori
term to the sigmoidal function gb,c illustrated below.

in (10) factorizes to a product of unary and binary terms

p
(
l|h,Θ(ν)

)
∝∏

i∈I
p
(
li|hi,Θ(ν)

) ∏
(i,j)∈N4

p
(
li, lj |hi, hj ,Θ(ν)

)
(11)

The unary terms model the label probabilities with respect
to the local height value measurement while the binary
terms model the dependencies between neighboring labels.
We do not model higher order dependencies to keep the
computational effort of the inference manageable.

3) Unary terms: Using the Bayesian rule, the unary terms
factorize into

p
(
li|hi,Θ(ν)

)
∝ p

(
hi|li,Θ(ν)

)
p
(
li|Θ(ν)

)
. (12)

The first term describes how likely the measured height value
hi of a specified cell i is under the class assignment li
and given the parameters Θ(ν). We assume the hi to be
normal distributed around the reconstructed height value of
the assigned surface g(ν)

s (xi, zi), or g(ν)
a (xi, zi) respectively.

Thus, we obtain this likelihood by sampling the Gaussian
function ϕhi,σ2

hi
(y) centered at hi, with standard deviation

taken from the cell’s height accuracy σhi . The sampling
procedure is illustrated in Figure 7. Simply put, neglecting

ι p
“
hi|li = ι,Θ(ν)

”
p

“
li = ι|Θ(ν)

”
’street’ ϕi

“
g
(ν)
s (xi, zi)

”
1
ξ
σ2
s
(ν)

‚‚‚1− g(ν)b,c (zi)
‚‚‚

’street adjacent’ ϕi

“
g
(ν)
a (xi, zi)

”
1
ξ
σ2
a
(ν)

‚‚‚−1− g(ν)b,c (zi)
‚‚‚

’unassigned’ ϕi
`
hi + 3σhi

´
1
ξ

TABLE I
UNARY TERMS DIVIDED IN HEIGHT DATA LIKELIHOOD p

“
hi|li,Θ(ν)

”
AND A PRIORI INFORMATION p

“
li|Θ(ν)

”
.

Fig. 9. Likelihood functions for assigning neighboring cells with equal or
unequal labels dependent to the difference of the cells height values.

the second term, this yields the following properties to the
a posteriori probability p

(
li|hi,Θ(ν)

)
:

• A cell is the more likely assigned to a surface the
smaller the distance between the cell’s measured height
value and the estimated height of the surface is.

• The probability of the label ’unassigned’ is dominant if
the distance to both surfaces is larger than 3σhi .

The second term of Equation (12) is the a priori informa-
tion obtained by the previous iteration. Therefore, we prefer
the surface with lower variance of the assigned cell heights
represented by σ2

s
(ν) and σ2

a
(ν). In addition the a priori term

represses multi-regional labeling. An exemplary situation for
that to happen is illustrated in Figure 8, where the two
surfaces ga and gs intersect. For this purpose we reduce
the labeling to a region competition around the zero level
of g(ν)

b,c by weighting the probabilities with the distance of
g
(ν)
b,c (xi, zi) to 1 for li = ’street’ and respectively to −1 for
li = ’street adjacent’. The range of this region competition is
implicitly controlled by the steepness parameter b defined in
Equation (7). A small value of b allows large changes to the
last labeling while a large value leads to a sharp separation
of the labels along f (ν)

c . In our implementation we start the
iterative process with a small value and increment b with
each iteration.

In summary we achieve the probabilities charted in Table I
where we use the short term ϕi(y) for ϕhi,σ2

hi
(y). The factor

ξ ensures that the a priori probabilities sum to one.
4) Binary terms: The binary terms consider the height

difference information of neighboring cells. We assume
neighboring cells i and j to be more likely assigned with
the same labels if the height difference dij = ‖hi − hj‖ is
small. Vice versa, we assume them to be labeled different if
the height difference is large.

To distinguish real height differences from measurement
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Fig. 10. Exemplary classification result of a DEM, providing 3D height
information up to a distance of 20 m, projected into the image plane. Cells
assigned with the label ’street’ are plottet as green crosses and those assigned
with ’street adjacent’ appear as blue circles. The cells labeled to ’unassigned’
are represented by black dots. Note, that some cells do not contain enough
height values in the DEM and therefore are not used in the classification.

noise, the value of dij where both options are equiprobable
is set to 3σdij = 3

√
σ2
hi

+ σ2
hj

. The resulting likelihood
functions regarding equal and unequal labeling are plotted
in Figure 9.

5) Inference: Modeling the problem by means of a Con-
ditional Random Field allows us to make use of a broad
variety of procedures to estimate the best labeling. In our
implementation we use the Sum-Product algorithm, also
known as (Loopy) Belief Propagation. The algorithm is
described for example in [17] (pp. 334-340). The decision
is based on the fact, that this algorithm can be implemented
efficiently exploiting the potential for parallel processing of
the multi-core processor architecture of today’s computers,
which leads to the desired real time performance. As result
we obtain an estimation of the most probable labeling l

(ν)
i

for each cell along with the assigned probability p(l(ν)i ).
Figure 10 illustrates the projection of a labeled DEM to the
image plane.

C. Termination Criteria

The iterative process stops if a maximum number of
iterations is reached or the following termination criteria is
fulfilled. This criterion is designed to check for the absence
of a curb. For this purpose we verify if one of both surfaces
gs and ga sufficiently describes a certain percentage (say
99 percent) of all DEM cells either labeled to ’street’ or
to ’street adjacent’. In such a case all sufficiently described
cells are reassigned with the label ’street’ while the rest of
the cells is labeled to ’unassigned’. We define a cell i to be
sufficiently described by a surface if the difference between
hi and the surfaces height value g(ν)

a (xi, zi) and g(ν)
s (xi, zi)

respectively is smaller than σhi .

D. Extensions

In previous parts of this Section we demonstrated how to
reconstruct the environment model specified in Section IV
from an observed DEM. This approach is very general and
may easily be extended regarding the environment model as
well as additional input data. To consider further observation
data, which may be extracted from the images or given by

Fig. 11. Reconstruction result using the extended model described in
Section V-D for a scene containing curbs on both sides of the road.

additional sensors, we need to model its influence on the
unary and binary terms defined in the Sections V-B.3 and
V-B.4.

In the following, we exemplary extend the environment
model, by adding another curb on the left hand side.

We define this second curb Cleft analog to equation (1)
using the street surface S and an additional street adjacent
surface Aleft on the left side of S. The reconstruction
procedure then is analog to the case of a single curb.

The parameter estimation step requires to supplementary
estimate aleft and cleft, which are the parameters of the addi-
tional surface and separating function. For the classification
step we introduce a class-label ’street adjacent left’ and
model the unary and binary factors as in the case of a single
curb. Further we define the initial labeling by a tripartition
along the x-axis, assigning the new label to the left third, the
label ’street’ to the middle third and ’street adjacent right’
to the right third. Figure 11 illustrates the result of this
extension for a scene with curbs on both sides of the street.

VI. RESULTS

The proposed method was implemented in C++ and inte-
grated into our Mercedes Benz demonstrator vehicle. Tested
on extensive runs in suburban environments, the system has
proven to yield reliable results evaluated by live inspection
of a human expert.

For all tests we use a DEM having 64 × 32 cells with
respect to the column-disparity domain. It provides 3D height
information up to a distance of 20 meters from the camera.
Since the ground surface is occluded by the engine hood we
choose a minimum distance of 6 meters.

We have benchmarked the computation time on recent PC
hardware (4 × 3 GHz Intel Core2 Quad). It takes 2-3 ms
to calculate the DEM and 6-7 ms for each iteration of the
simultaneous classification and reconstruction process. The
process usually converges after 3-4 iterations. Otherwise, we
stop the iterative process after a maximum number of 7 iter-
ations. Thus, the system fulfills our real-time requirements.

In order to evaluate the accuracy of the reconstruction
with respect to the height of the curb, we have applied the
algorithm to a set of eight different scenes, containing curbs
of various heights. The curb heights are constant within each
scene and vary from 4 cm to 16 cm. Each scene comprises
20 frames. To compare the obtained results to the manually
measured reference height we calculate the joint Root Mean
Squared Error (RMSE) concerning all frames of all scenes
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Fig. 12. Joint RMSE of the measured heights regarding all frames in the
test set plottet against the distance to the camera. The 1-sigma interval is
marked by the blue dashed lines.

of the test set. In Figure 12 the joint RMSE is plotted as
function of the distance to the camera. The plot shows the
RMSE to be smaller than 1 cm up to a distance of 10 meters
and around 2 cm at 20 meter distance.

For comparison, we implemented a less complex approach
based on the detection of local height discontinuities in the
DEM, similar to [7]. The algorithm performs edge detection
on a Cartesian DEM by means of a Canny edge detector. In a
second step it extracts curb candidates from the set of edges
using a Hough transformation. We applied this algorithm
to the test set mentioned above and, for fairness, manually
adapted the edge detector’s parameters to the particular curb
height in each scene. While this approach performs well at
close-up range, it often fails to detect low curbs at distances
of more than 10 meters.

This problem is exemplary illustrated in Figure 13. The
algorithm successfully detects the curb of 5 cm height up
to a distance of approximately 11 meters 13(a). Lowering
the edge detector’s thresholds results in many false curb
candidates without significant improvement regarding the
real curb 13(b). Applying the approach to a DEM that is
aligned to the column disparity domain yields similar results
13(c). This problem is caused by measurement noise which
blurs the height gradients especially those of small curbs at
great distances.

Since our method additionally considers the average mea-
sured height levels of curb adjacent surfaces we gain ro-
bustness with respect to measurement noise. Figure 13(d)
illustrates the result of our method with regard to the
challenging scene. Figure 14 demonstrates another benefit of
this property. Although the curb is covered by snow and no
sharp height discontinuity can be detected around the curbs
position, our approach yields reliable reconstructions of the
actual street boundary.

Further results of our method with respect to straight-line
and curved curbs of various heights are shown in Figure 16.

VII. CONCLUSION AND FUTURE WORK

We proposed a novel approach for real-time reconstruction
of curbs based on 3D point clouds. So far the method is
not restricted to a special sensor. Although we use 3D data
obtained from dense stereo vision in this contribution, other

(a) Canny-Hough on Cartesian DEM

(b) Canny-Hough on Cartesian DEM (low edge detector threshold)

(c) Canny-Hough on column disparity DEM (low edge detector threshold)

(d) Our approach

Fig. 13. Example scene containing a low curb of 5 cm height. The curb
candidates detected by the Canny-Hough approach are marked by green
lines. In (a) and (b) a Cartesian DEM is used, while in (c) the DEM is
aligned to the column disparity domain. The reconstruction result of our
algorithm is illustrated in (d).

sensors that capture punctual data in real-time, e.g., laser
scanners, would also be suitable.

Tests in real-world scenarios have shown the system to
yield reliable results for curved and straight-line curbs up to
a distance of 20 meters. We do not use any explicit threshold
for the curbs minimum height and found the system to work
fine even for low curbs of just 4 cm height.

In comparison to a less complex approach which extracts
curb candidates from local height discontinuities, our method
appears to be more robust with respect to measurement noise,
especially at great distances. This is founded by the fact that
we model the static environment of the curb as a whole and
discover the global context of the curb’s adjacent surfaces
by means of an interpretation step.

However, the used environment model also limits the
flexibility of the reconstruction. The assumption that the
curb’s characteristic can be modeled using a third order
polynomial may not hold in all situations, as illustrated
in Figure 15. A more flexible formulation, e.g., based on
splines, is part of future work.
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Fig. 14. Reconstruction results of scenes with snow covered curbs.
Although the height discontinuity around the curbs position is not sharp,
the actual street boundary is well estimated.

Fig. 15. Example for a curb which cannot be modeled using a polynomial
of third degree with respect to the z-axis. Thus our algorithm fails to yield
a precise reconstruction.

Further steps will exploit the generic concept of our
approach to detect and reconstruct other static parts of the
scene, e.g., parking cars or chuckholes. Another interesting
task is to determine how additional information extracted
from the images, e.g., image gradients or texture boundaries,
support the reconstruction task.
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