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Integration of conditional random fields and attribute grammars for range data interpretation
of man-made objects

Jörg Schmittwilkena*, Michael Ying Yangb, Wolfgang Förstnerb and Lutz Plümera

aDepartment of Geoinformation, Bonn University, Bonn, Germany; bDepartment of Photogrammetry, Bonn University, Bonn, Germany

(Received 15 August 2009; final version received 14 October 2009)

A new concept for the integration of low- and high-level reasoning for the interpretation of images of man-made objects is
described. The focus is on the 3D reconstruction of facades, especially the transition area between buildings and the surrounding
ground. The aim is the identification of semantically meaningful objects such as stairs, entrances, and windows. A low-level
module based on random sample consensus (RANSAC) algorithm generates planar polygonal patches. Conditional random fields
(CRFs) are used for their classification, based on local neighborhood and priors from the grammar. An attribute grammar is used to
represent semantic knowledge including object partonomy and observable geometric constraints. The AND-OR tree-based parser
uses the precision of the classified patches to control the reconstruction process and to optimize the sampling mechanism of
RANSAC. Although CRFs are close to data, attribute grammars make the high-level structure of objects explicit and translate
semantic knowledge in observable geometric constraints. Our approach combines top-down and bottom-up reasoning by
integrating CRF and attribute grammars and thus exploits the complementary strengths of these methods.

Keywords: attribute grammars; conditional random fields; range data; facade interpretation; high- and low-level integration

1. Introduction

In this article, we describe a concept for integrating low- and
high-level reasoning for the interpretation of images of man-
made objects. Our focus is on interpreting range data of
building facades, especially the transition area between the
building and the surrounding ground, what we call the ‘build-
ing collar’. The complexity of man-made objects requires
flexible interpretation techniques that can handle the seman-
tic knowledge about the domain as well as the richness of the
appearance of all details in the image data. The variability of
the number of parts and their hierarchical and neighborhood
relations, which occur similarly also in natural language
understanding, can be described efficiently with grammars
that represent the semantic high-level structure of the scene
together with random fields, which can efficiently cope with
the fusion of structural knowledge and sensor data.

Our research is motivated by the urgent need to enrich
3D city models, which are mainly used for visualization
purposes, by thematic attributes to eventually obtain truly
3D geoinformation systems for complete cities. Because
Google and Microsoft provide worldwide access to spatial
data, also 3D for an increasing number of cities around the
world, the relevance of truly spatial information becomes
obvious. Applications are manifold: car and pedestrian
navigation, access analysis for fire brigades, location plan-
ning for industry, microclimate investigations, or risk
analysis.

For a long time, the difficulty of interpreting range and
intensity data has been underestimated. The main reason is
the high variability of man-made structures and their
appearance, and the resulting complexity of the acquired
data allowing us to identify objects but also to model object
parts, which, in general, are not part of a 3D GIS.

Early attempts in 3D city modeling were based on sets
of prototypes or parameterized geometrical models (Fischer
et al. 1997) with the possibility of aggregation (Fischer et al.
1999), on the restriction to roof structures (Brenner et al.
2001) made possible by using the ground plans of the
buildings from a 2D GIS. Practical approaches were clearly
interactive, for example, ‘InJect’ (Guelch 2001),
‘CyberCity Modeler’ (Gruen and Wang 1999), with some
support by automatic procedures. Modeling the architecture
of complete building blocks by using generative models
(Dick et al. 2004) pushed theoretical research onto a new
level. Mobile mapping systems increasingly provide terres-
trial data, which changed the focus on facades. Because of
their specific structure, models based on grammatical rules
were developed, exploiting the long tradition in natural
language understanding. Stochastic attribute grammars
(Abney 1997) have evolved and today appear as general-
izations of Markov random fields (MRFs) and Bayesian
networks (cf. Liang et al. 2009).

Parallel to these developments aiming at a semantically
complete model of a scene, attempts were made to exploit
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the neighborhood structure for semantic image partitioning
by using random fields. MRFs have been used for image
interpretation since 1992 (Modestino and Zhang 1992);
their limiting factor that they only allow for local image
features has been overcome by conditional random fields
(CRFs) (Kumar and Hebert 2003), where arbitrary features
can be used for classification, at the expense of a purely
discriminative approach.

This article describes an approach attempting to exploit
the strengths of both models by integrating CRFs with
attribute grammars, thereby exploiting their potential for
the interpretation of range images of man-made objects,
especially in the area around an entrance with stairs and
windows as dominant scene objects.

The article is organized as follows: In Section 2, the
concept of the system’s structure and the communication
between modules are introduced and the main contributions
of the article are presented. Low- and high-level reasoning,
the notations of CRF, and attribute grammar are described in
Section 3. Section 4 presents the integration of low- and
high-level reasoning for range data interpretation. The
experimental results are given in Section 5, followed by
the concluding remarks.

2. Concept

The range data we address in this article may come from
many ways: laser scanning, point clouds generated from
videos (Heinrichs et al. 2008), and so on. Our focus is on
highly detailed 3D building models with focus on facades,
that is, the (front) part of the building. As facades are well
structured, frequently symmetrical and often even prettily
decorated, they combine both good-natured and malicious
properties concerning their automatic reconstruction.

In the following, we explain the system’s structure, the
communication between modules, and present the high-
lights of characteristics, respectively.

2.1. System’s structure

It includes three parts (see Figure 1): low-level module,
CRF module, and grammar module. The low-level module
generates planar patches using the random sample consen-
sus (RANSAC) algorithm (Fischler and Bolles 1981) from
3D point cloud. Here, planar patches refer to sets of points
that lie within a plane and are within a certain local range. In
the CRF module, a CRF is used as a discriminative neigh-
borhood model of the facade. Patch labels are classified
with respect to their local neighborhood. In the grammar
module, an attribute grammar is used as a semantic model of
the whole building with focus on the facade. Some of the
symbols can be interpreted geometrically. The reconstruc-
tion of the 3D point cloud is done by a special parser based
on the given grammar. The parsing process also uses a
RANSAC-based algorithm to estimate the parameters of
the symbols with a geometric interpretation.

2.2. Communication

The communication between the modules is as follows:
Initially, the low-level module generates patches from 3D
point cloud, that is, planar polygons and their normal vec-
tors. The CRFs operate on these planar patches. They are
used to estimate the class labels of the patches with respect
to their local neighborhood and priors from the grammar
module. The parser uses the probability of the classified
patches to control the reconstruction and to optimize the
sampling mechanism of RANSAC. The whole proposed
scheme is illustrated in Figure 1.

Figure 1. System’s structure. (a) Range data with sites referring to planar patches. (b) Graph for conditional random field, referring to sites
and their neighborhoods. (c) Reconstructed 3D structure based on the result of the CRF and (d) the derivation tree generated by the grammar.
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2.3. Characteristics

We present means for geometric and semantic reconstruc-
tion in this article. CRF is close to the data but limited to
local neighborhoods, whereas the attribute grammar is close
to the semantic model but limited to a priori probabilities.
Our contribution is highlighted by the integration of these
two bottom-up and top-down methods. We make use of the
individual strength of each method and remove their indi-
vidual weakness by the complementary combination.

3. Low- and high-level reasoning

3.1. Conditional random fields

CRFs have been proposed as a discriminative model for
taking into account the interactions between neighboring
elements during classification. CRFs are used in a discrimi-
native framework to model the posterior over the labels x
given the observations y (Lafferty et al. 2001), and thus
provide full freedom in exploiting observation data. The
CRF framework has already been used to obtain promising
results in a number of domains where there is interaction
between labels, including tagging, parsing, and information
extraction in natural language processing (McCallum et al.
2003), as well as in the modeling of spatial dependencies in
image processing (Kumar and Hebert 2003). In this article,
the considered CRF (Kumar and Hebert 2003) is a distribu-
tion of the form given below:

P xjyð Þ ¼ 1

Z
exp

X
i2S

Ai xi; y;wð Þ þ
X
i2S

X
i2Ni

Iij xi; xj; y; v
� � !

(1)

where y ¼ {yi}i2S are observations, yi is the observation
from the site i, x¼ {xi}i2S represents the labels, and xi 2 L is
a category label at the site i, L¼ {1, . . ., C}. Furthermore, Z
is the partition function for normalization, S a set of sites,
and Ni a set of neighbors of the site i. The neighborhoods
should be chosen in such a way that the observations may
support or contradict the labeling of neighboring sites. The
sites provide observations y, and the task is to derive the
class labels x. The two functions Ai and Iij are called ‘unary
potential’ and ‘pairwise potential’, respectively. They
model the relationship between the observations y and the
labels. The value of Ai and Iij should be large in case the
observation supports the label xi or the label pair (xi, xj). We
denote the unknown CRF model parameters by θ ¼ {w, v},
the parameters w specifying the classifier for individual
sites, the parameters v specifying the classifier for site
neighborhoods. They need to be learned from training data.

The unary potential Ai represents relationships between
labels and local features. It predicts the label xi based on the
local features at the site i. Various local features are useful to
characterize site i. For instance, the CRF (Shotton et al. 2006)

uses shape-texture, color, and location features. The pairwise
potential Iij represents relationships between labels of neigh-
boring sites. It models compatibility between neighboring
labels. If neighboring sites have similar features, Iij suggests
the same category label for them. If the sites have dissimilar
features, they might be assigned different category labels.
BothAi and Iij can bemodeled as arbitrary unary and pairwise
classifiers (Kumar and Hebert 2004). Features extracted from
each site are used as observations in the CRF.

3.1.1. Unary potential

The unary potential Ai independently predicts the label xi
based on the observations y: Ai(xi, y) ¼ log P(xi|y). The label
distribution P(xi|y) is calculated by a classifier. We employ the
multiple logistic regression model, P(xi ¼ c|uc(y)) ¼ exp
(uc(y))/

P
c´exp(uc´(y)), where uc(y) ¼ wc

Thi(y), with
wc ¼ [w0, w1, . . . , wM] M + 1 unknown parameters per
class, andhi¼ [1, h1, . . . , hm, . . . , hM]

TcontainingM features,
hm depending on observations y. w ¼ {wc}c¼1, . . . , C are the
model parameters. Consequently, the unary potential is

Ai xi; yð Þ ¼
X
c

� xi ¼ cð Þ logP xi ¼ cjuc yð Þð Þ (2)

3.1.2. Pairwise potential

The pairwise potentials Iij describe category compatibility
between neighboring labels xi and xj, which here take the
form of a contrast-sensitive Potts model (Potts 1952):

Iij xi; xj; y
� � ¼ vTμij yð Þ� xi�xj

� �
(3)

where the function μij(y) is the pairwise relational vector for
a site pair (i, j), and v are the model parameters. Note that in
the case of object detection, the vector μij(y) encodes the
pairwise features that are required for forcing geometric and
possibly photometric consistency for the pair of parts.

3.2. Attribute grammars

Grammars have received increased attention in computer
graphics, image interpretation, and reconstruction within
the last years (Marvie et al. 2005, Müller et al. 2006, Zhu
and Mumford 2006, Huang and Mayer 2007, Müller et al.
2007, Ripperda 2008, Han and Zhu 2009, Ripperda and
Brenner 2009).

In the following, we present a concept that is based on
attribute grammars (Knuth 1968, 1971, Abney 1997),
which extend context-free grammars (Chomsky 1956,
1959). In contrast to other approaches such as shape or
split grammars, they have specific advantages in making
semantic assumptions explicit and formally specifying geo-
metric constraints of aggregated objects (cf. Schmittwilken
et al. 2009).
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Table 1 gives an excerpt of the grammar. Upper case
initials indicate nonterminals and lower case initials indicate
terminals. For production rules, | is used to separate con-
current production rules. For semantic rules, the ‘.’ notation
is used for the attributes of specific symbols: Symbol.
attribute.

In general, production rules describe the relation
between aggregated objects and their parts. Semantic rules
and attributes specify the constraints that govern these
aggregations. Together, they specify the partonomy of
objects in an explicit and precise way. For instance, produc-
tion rule P12 aggregates a door and a stair to an
entrance. The semantic rules R5 and R6 constrain the
relative position of both objects considering the stair’s
shape parameters.

Furthermore, attributes define parameters, for example,
location parameters and shape parameters. Semantic rules
then describe the propagation of attributes within the deri-
vation, even between remote symbols. For instance, R1–R4

propagates the direction of the facade to the stair and the
door. Hence, all these objects are parallel. Semantic rules are
also used to constrain attribute values by thresholds or
probability distribution functions.

Finally, we apply specific semantic rules that we call
guards (Ueda 1986, Schmittwilken et al. 2007). Generally,
production rules with the same nonterminal on the left-hand
side represent different models. Guards support the selec-
tion of the best model with regard to the given data, see
Section 4.3.

If we take facades as an example, L-, T-, or U-shaped
buildings (production rules P2–P4) may be differentiated by
the occurrence of different parallel and/or coplanar facade
faces. L-shaped buildings for instance consist of two paral-
lel principal planes, T- and U-shaped buildings of three

parallel principal planes. Therefore, we introduce the term-
inal facadeRectangle that represents the contour rec-
tangle of each part of the facade. The guards for L-, T-, and
U-shaped buildings can be outlined as given in 4–6 where i
denotes the index of the plane.

facadeRectanglei:geometry

¼ ai; bi; ci; di|fflfflfflfflfflffl{zfflfflfflfflfflffl}
plane

; xi; yi|{z}
location

; wi; hi|ffl{zffl}
shape

8><
>:

9>=
>; (4)

facadeRectanglei:precision ¼ pi (5)

Facade:precision

¼
X
i

Pi ;
(6)

The precision pi ¼ 1
�
�2
i is related to the variance of the

plane fitting. The guard calculates the Hessian normal para-
meters of the planes ai, bi, ci, di and the location and shape
parameters xi, yi, wi, hi. The best model is given by the rule
that is given the highest precision by the guard.

4. Integration of low- and high-level reasoning for
range data interpretation

4.1. Preparation

Three-dimensional data labeling is done mostly point based
(Anguelov et al. 2005). For example, for every point to be
labeled, a fixed number of neighboring points is randomly
picked: three points are taken randomly in a fixed radius

Table 1. Selected production rules (top), attributes and semantic rules (bottom).

No. Production rule

P1 Building! Roof Facade Left Right Back
P2-P4 Facade! IFacade | LFacade | TFacade| UFacade
P5 IFacade! FacadePart
P6 LFacade! FacadePart FacadePart
P7 TFacade! FacadePart FacadePart FacadePart
P8,P9 FacadePart! WindowFacadePart | EntranceFacadePart
P10 WindowFacadePart! windowGrid facadeRectangle
P11 EntranceFacadePart! Entrance windowGrid facadeRectangle
P12,P13 Entrance! stair door | door

No. Semantic rule

R1(P9) EntranceFacadePart.direction ¼ FacadePart.direction
R2(P11) Entrance.direction ¼ EntranceFacadePart.direction
R3(P12) stair.direction ¼ Entrance.direction
R4(P12) door.direction ¼ Entrance.direction
R5(P12) door.y ¼ stair.y + stair.numberOfSteps * stair.treadDepth
R6(P12) door.z ¼ stair.z + stair.numberOfSteps * stair.rise
R7(P12) door.width ¼ stair.width

120 J. Schmittwilken et al.
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sphere and another three points in a fixed radius cylinder.
However, individually classifying neighboring points that
belong to the same class is unnecessary and a large amount
of computation is required for high-resolution data.

As we focus on building facades, planar patches are
generated and then classified, instead of classifying indivi-
dual points. In the following, we show how we generate
planar patches. RANSAC is applied to extract planes. The
basic idea is to estimate the model parameters using the
minimum number of data possible and then to check which
of the remaining data points fit the model estimated.

Based on the observation that RANSAC may find
wrong planes if the data have a complex geometry, we use
the following scheme for planar patch extraction: first, the
point cloud is partitioned into small rectangular blocks to
make sure that there will be a maximum of three planes in
one block; second, RANSAC is applied to extract planes in
each block; third, the minimum description length principle
is used to decide howmany planes are in each block (cf. Pan
1994). Eventually, there are zero to three planar patches in
each block. Each planar patch is considered to be a site in
the considered CRF model. The rectangular block serves as
bounds to build neighboring features.

4.2. CRFs with priors

According to our CRF model, the interaction between part
labels has to use observed data (e.g., the location of
patches). Because in CRFs the pairwise potential Iij is a
function of the observed data, these fields allow for a way
of solving the problem in a random-field framework. On the
contrary, in conventionalMRFs, the conditional distribution
over labels is modeled as P(x|y) / P(x,y) ¼ P(y|x) P(x),
where P(x) is used for modeling the label interaction.
Because P(x) does not allow us to use data ywhile modeling
label interactions, conventional forms of MRFs cannot
model the geometric consistency simultaneously with
appearance.

On the contrary, although CRFs explore neighborhood
relations, they cannot model long-range interactions. For
instance, if there are three windows on the facade, the
relation between every pair of them can hardly be modeled
by CRFs. The grammar model representing the semantic
high-level structure serves as priors for the CRFs. These
priors include different distributions for different classes
and different distributions for object parameters. If there is
no prior for a class, it is assumed to be uniformly distributed
in the whole domain.

We compute two different types of feature vectors at
each site i. First, a single-site feature vector hi(y) is com-
puted from the geometric property of the data yi at the site.
Obviously, this vector does not take into account the influ-
ence of the data in the neighborhood of that site. Next, μij(y)
is calculated, which explicitly considers the dependencies in

the data of neighboring sites. In the following, we describe
the details of feature extraction at each site as follows:

(1) Range of point coordinates on the planar patch: Δx,
Δy, Δz;

(2) Mean position of the planar patch: �x;�y;�z;
(3) Number of points on the planar patch;
(4) Angle between planar patch normal and Z-axis;
(5) Priors for stair, door, window, and facade;
(6) Angle between neighboring planar patch normals.

The parameters θ of the CRF model are learned in a super-
vised manner. Hence, we use training data and the corre-
sponding ground-truth labeling. We use the standard
maximum likelihood approach and thus, in principle, aim
at maximizing the conditional likelihood P(x|y,θ) of the
CRF model parameters. However, this would involve the
evaluation of the partition function Z, which is in general
NP-hard. To overcome this problem, one may either use
sampling techniques or resort to some approximation, for
example, mean-field or pseudo-likelihood, to estimate the
parameters.

In this article, we use an alternative way to learn the
parameters θ. We set v to 0 and put neighboring features into
the single-site feature vector, which reduces CRF parameter
learning to efficient logistic regression parameter learning.
In future work, we plan to apply mean-field approximation
to learn the CRF parameters θ. Therefore, we modify feature
angle between neighboring planar patch normals to mean
angle within one block with respect to Z-axis, and add one
feature: the mean angle with neighboring blocks with
respect to Z-axis. Hence, for each site i, a 15D feature vector
hi is obtained. We apply bounded logistic regression by
solving logistic regression as a convex optimization pro-
blem with constraints (cf. Roscher and Förstner 2009). The
3D data are classified into five classes: facade,
window, door, stair, and unclassified. It is
important to select appropriate features that are capable of
differentiating the different classes. For stair, door,
window, and facade, we only use location priors here,
that is, window and facade are assumed to be uniformly
distributed over the whole blocks, and stair and door
over a part of the blocks. Within one block, there is the same
prior probability for the sites.

4.3. Parsing range data with attribute grammars

The modeling of 3D objects with attribute grammars was
presented in a previous section. Now we discuss how the
attribute grammar is used for the reconstruction of 3D
objects. The planar patches that have been classified by
the CRF are used as input data for the parsing algorithm.

Parsing range data with attribute grammars has its own
intrinsic complexity. Parsing techniques from natural and
formal language processing cannot be applied for several
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reasons: (1) Words of formal languages are 1D and have a
natural left to right ordering. However, there is no such
ordering in 3D. (2) Formal language processing assumes
that there is a set of symbols that is correct and complete. In
3D reconstruction, we start from noisy observations that are
neither correct nor complete. To find the best model in the
set of possible interpretations, an appropriate search strat-
egy is needed.

Generally, parsing aims at finding the most likely deri-
vation of a given grammar. The parsing algorithm presented
is based on the exploration of an AND-OR tree (Nilsson
1980, Zhu and Mumford 2006). The latter supports the
guided search of the most plausible derivation. Figure 2
shows the slightly trimmed AND-OR tree of the grammar
defined in Table 1. The AND branches are connected by
arcs. Two exemplary derivations of the grammar are high-
lighted. However, the parsing algorithm will only explore
one of these derivations, namely, the most evident one.

Based on the type of the respective node, two different
kinds of decisions have to be made for AND or OR nodes,
both of which are introduced in the following:

(1) Starting at the root node of the tree, that is, the start
symbol of the grammar, the algorithm selects at
each AND node, the most evident one from the
literals that are known so far. Because literals like
FacadePart, door, and window correspond to
different patches, the grouping of the latter gives an
estimation which of the literals are best supported
by the data. The selection of literals has no effect on
the final models, but on the performance of the
algorithm. Choosing a ‘good’ literal promises to
start the reconstruction with the object that is
strongly supported by the data and can therefore
be reconstructed more accurately. At the same time,
those objects imply constraints and derive para-
meters that can make the reconstruction of the
remaining objects easier. The facade, for instance,

will generally have the strongest support. Its deri-
vation yields parameters for the orientation and
location that simplify the identification of windows,
entrances, and stairs.

(2) At each OR node, the parsing algorithm evaluates
the guards of the applicable production rules to
select the best production rule, that is, giving the
highest precision. The latter is applied to the
selected literal. The guards use low-level operators
such as RANSAC to estimate the parameters of the
derived symbols. The low-level operators include
some semantic knowledge about the objects. First,
the single parts of the objects are estimated and
afterwards their precision is simply added to receive
the total precision, for example, the precision of the
facade and its parts in Equation (6). The guards
consider the set of global constraints generated by
all production rules that have been applied so far.

The pseudocode of the parsing algorithm parse3d is
given in Table 2. The search strategy for exploring the
AND-OR tree is similar to A* (Russel and Norvig 2003).
The subprocedures selectRule (decision at OR nodes)
and selectLiteral (decision at AND nodes) imple-
ment heuristic functions. These subprocedures are the sen-
sitive parts of the algorithm. As explained above, they affect
the efficiency of the search and the quality of the results.
The selection of an inappropriate literal with weak support
in the data makes the search for the best rule more difficult.
The selection of an inadequate rule will yield the wrong
model. To simplify the presentation, the AND-OR search
algorithm assumes that an informed heuristic is available.
This is the case whenever the evaluation of the guards is
guaranteed to predict the best model. In this case, an irre-
vocable search strategy such as AO* (Nilsson 1980) is
complete. Otherwise, a tentative search strategy has to be
applied with either backtracking or parallel evaluation of
different choices (Russel and Norvig 2003).

Figure 2. Slightly trimmed AND-OR tree of the grammar given in Table 1. The following acronyms are used: F: Facade, FP:
FacadePart, IF: IFacade, LF: LFacade, TF: TFacade, fR: facadeRectangle, E: Entrance, wG: windowGrid, d: door,
and s: stair. AND branches are connected by arcs.
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5. Results

In the following we give a short overview of the perfor-
mance of the implementation of our concept. First, we
demonstrate the classification of synthetic data with CRF
and show the results of the application to real-world range
data acquired from a terrestrial laser scanner afterwards.

The CRF model is trained with nine synthetic point
clouds. In total the training samples consist of ,3.5 Mio.
data points, and the total training time is around 3 hours with
an Intel© Core 2 Duo 2.50 GHz CPU and 2 GB of RAM.We
validate our algorithm with several synthetic data sets. Each
data set is of a different size, but each point cloud is divided in
nonoverlapping 32 � 32 rectangular blocks.

The synthetic data are derived from the attribute gram-
mar by a random-based derivation – just the other way
around than parsing. Because the derivation of a grammar

gives the semantic structure, the point clouds can be labeled
with their class attributes.

5.1. Synthetic data

Wehave tested our algorithm on several synthetic data sets that
led to similar results. Therefore, we exemplarily present only
one of the tested synthetic data sets (see Figure 3 top left).

The 0.4 Mio. original points are reduced to 2165 planar
patches. Figure 3 bottom shows the classified planar patches
of a window and the entrance. The plane normal vectors are
also shown. Because of semitransparent rendering, light
areas are caused by covered planar patches.

Figure 3 top right shows the classified points that inherit
their classification from the planar patches. The computa-
tion time for feature extraction is around 7 minutes, and

Table 2. AND-OR search algorithm for the parsing of range data.

function parse3d (grammar, crfPatches) returns derivation
inputs

grammar // set of production rules
crfPatches // classified and grouped 3D points

output
derivation // the most evident derivation, i.e. set of

// terminal symbols
local variables

openLiterals  {} // non terminals that still have
// to be rewritten

constraintStore  {} // set of globally valid constraints incl.
// derived parameters and their distributions

terminals  {} // so far derived terminals of the grammar

openLiterals  openLiterals ¨ start symbol of the grammar
while openLiterals is not empty do

activeLiteral  selectLiteral (openLiterals, crfPatches)
[precision, rule constraints]  selectRule(

activeLiteral, grammar, crfPatches, constraintStore)
openLiterals  (openLiterals ¨ non-terminals in the body of rule) \

activeLiteral
terminals  terminals ¨ terminals in the body of the rule
constraintStore  constrainStore ¨ constraints

return derivation

function selectRule (literal, grammar, crfPatches, constraints) returns [p, r, c]
output

p // precision estimated by the guard
r // the most evident production production rule
c // the constraints raised by the guard

ask the guards of all applicable production rules for their precision
return [precision, rule, constraints] of the strongest guard

function selectLiteral (literals, crfPatches) returns literal
output

literal // the most evident literal

return that literal with the highest support by the crfPatches
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CRF inference takes 0.06 seconds. The classification accu-
racy is around 67%.

5.2. Real data

We have applied our concept to real 3D range data of
facades. We present some of the results of a data set of
about 1.3 Mio. points (see Figure 4 top left). Low-level
processing generated about 1600 planar patches.

Figure 4 top right shows the classified points. The color-
coded classification is inherited from the planar patches that
are derived from the CRF. The computation time for feature
extraction is around 8 minutes and 0.02 seconds for CRF
inference. Training using synthetic data leads to some mis-
classification because of the noisy real data. The CRF and

the grammar have problems with the large ground plane
because both the CRF and the grammar do not include the
class ground yet.

We also applied the parsing algorithm to the same data
set. Figure 4 bottom shows the stair estimated in front of the
door and the facade. The four sample points used by
RANSAC are visualized by spheres. The spheres have been
used for the estimation of treads (horizontal parts) and risers
(vertical parts). The rise parameter (height differences) has
been estimated correctly: 17 cm. The estimation of tread
depth was not well performed because there are still some
points not classified as stair on the vertical parts of the steps.
Because of the missing class ground, we estimated and
eliminated the points of the ground plane before parsing.
Because the ground is not a plane, some points remain and

Figure 3. Top Left: Input point cloud of facade, with color-coded ground truth. Top Right: Point cloud with color-coded classification
inherited from planar patches (CRF). Bottom Left: Zoom-in part of window planar patches from CRF classification. Bottom Right: Zoom-in
part of stair and door planar patches from CRF classification. Color-coding: facade: light gray; window: dark gray; door and
stair: medium gray; and unclassified: white.
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are falsely classified as stair (see dark gray points to the
left of the stair). An improved guard could yield a better
estimation of the width of the stair and therefore avoid such
misclassification.

6. Conclusions

We have proposed a novel approach for the interpretation of
3D range data and the semantically meaningful reconstruc-
tion of man-made objects. It combines top-down and bottom-
up reasoning by integrating CRFs with attribute grammars.
Although MRFs have been used for image interpretation for
more than a decade, they are limited to local features. This
has been overcome by CRFs where arbitrary features can be
used for classification. We use CRFs to classify planar poly-
gonal patches derived by RANSAC. CRFs are close to the
data. They represent the bottom-up part and start the
reconstruction.

Attribute grammars specify meaning and structure of
objects. Their specific advantage is the explicit representa-
tion of semantic assumptions and the precise specification
of geometrical constraints. They translate semantics into
observable features. Attribute grammars represent the top-
down part of the reconstruction process.

The approach starts by grouping of 3D points into patches
and classifying patches by CRFs. An uninterpreted point

cloud is thus transformed into a set of meaningful symbols.
From the grammars’ perspective, this set of symbols, how-
ever, is neither complete nor (fully) correct in a logical sense.
This makes parsing different from formal language proces-
sing. We use AND-OR trees to specify the parser and to
control the search. The critical part of the search is the selec-
tion rule that is meant to predict the best model. We introduce
the concept of guards to compare competing models and to
select the one with the highest precision yielding an informed
heuristic as part of an A* search strategy. More sophisticated
control rules, however, are conceivable.

The methods developed so far allow further general-
izations. The learning for the CRF, which up to now has
been performed per class, will be generalized to a joint
learning scheme, which is expected to yield better results.
The grammar presented for stairs will be extended to the
main facade elements such as windows, doors, and balco-
nies. The guards will also be improved to obtain more
accurate parameter estimation. The single pass from the
data to the grammatical inference through the CRF will be
extended to an iterative procedure where the posteriors of
both methods are used as priors for the other. This will
require the development of a random field containing a
mixture of generative and discriminative model parts.
Finally, the stochastic model of the attribute grammar will
be enriched by adequate priors, which will be learned from
annotated data sets.

Figure 4. Top left: Unclassified point cloud of the facade. Top right: Point cloud with color-coded classification inherited from planar patches
(CRF). Bottom: Result of the grammar-based parsing: skeleton of the reconstructed stair (white) superimposed on the improved classification of
stair. Color-coding: facade: light gray; window: dark gray; door and stair: medium gray; and unclassified: white.
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