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Summary: The automated extraction of high resolution 3D building models from imagery and laser 
scanner data requires strong models for all features which are observable at a large scale. In this paper 
we give a semantic model of stairs. They play a prominent role in the transition from buildings to the 
surrounding terrain or infrastructure. We name the transition area between terrain and building collar, 
and the focus is on stairs in building collars. Simple and complex stairways are represented by UML 
class diagrams along with constraints reflecting semantic and functional aspects in OCL. A systematic 
derivation of an attribute grammar consisting of production and semantic rules from UML/OCL is 
presented. Finally, we show how hypotheses with comprehensive predictions may be derived from 
observations using mixed integer/real programming driven by grammar rules. 
 
Zusammenfassung: Die automatisierte Extraktion hochaufgelöster 3D-Gebäudemodelle aus Bildern 
und Laserscanner-Daten erfordert starke Modelle für alle Objekte, die im großmaßstäbigen Bereich 
beobachtbar sind. In diesem Beitrag konzentrieren wir uns auf die Entwicklung eines semantischen 
Modells für Treppen. Sie spielen eine wichtige Rolle beim Übergang vom Gebäude zum umgebenden 
Gelände und der Infrastruktur. Diesen Übergangsbereich von Gelände zu Gebäude bezeichnen wir als 
Gebäudekragen und betrachten Treppen in eben diesem Gebäudekragen. Einfache und komplexe 
Treppen werden durch UML-Klassendiagramme repräsentiert, wobei semantische und funktionale 
Aspekte in OCL ausgedrückt werden. Es wird die systematische Ableitung einer attributierten Gram-
matik mit ihren Produktionsregeln und semantischen Regeln aus UML/OCL vorgestellt. Schließlich 
wird gezeigt, wie aus Beobachtungen Hypothesen mit umfassenden Prädiktionen unter Verwendung 
von Methoden des Mixed Integer/Real Programming und gesteuert durch Grammatikregeln kon-
struiert werden. 

1 Introduction 
3D building models have been developed since more than a decade, now being readily available for 
everybody through the Internet. Google Earth, Microsoft’s Virtual Earth and NASA World Wind 
provide high visibility. As a rule, however, existing building models have a low level of detail. Build-
ings are represented as boxes without roofs and substructures. File formats, such as KML (Keyhole 
Mark-up Language) used by Google Earth, are poor. Neither topology nor semantics are available. 
Advanced applications such as planning, disaster management, escape route findings and integrity 
preserving transactions require a higher level of detail and an explicit representation of semantics in a 
formal language. 
Our research focuses on the design of models, methods and tools for the semi-automatic, interactive 
refinement of 3D city models. Starting from models consisting of simple blocks and roof structures, 
the aim is to identify and reconstruct stairs, balconies, windows, doors, and arcades from terrestrial 
images or laser scans. It is rather obvious to start with entrance stairs. Due to their regular, recursive 
structure, high-resolution and detailed geometry they may be specified by a handful of parameters. 
Their semantic relevance is high. An entrance stair connects a route with the entrance door, a building 
with the outside world. Its detection and reconstruction helps to identify the entrance door and the 
ground floor level of a building which is not directly observable. 
Building models and digital terrain models (DTM) often stem from different sources. This leads to 
problems of interoperability and homogeneity. A ground edge, if given, helps to glue DTM and build-
ing together. If there is no exact match, the fiction of a ground edge helps to find an optimal gradua-
tion. On a low level of detail a ground edge may be presupposed, although, due to occlusion, it may 
not be visible. On a higher level of detail a ground edge may never exist. Instead, there could be a 
transition zone with intermediate objects such as arcades, light wells etc. We call this transition area 
the building collar (SCHMITTWILKEN et al. 2006). 
The aim of this paper is to provide a semantic model of stairs as part of a building collar especially 
exposing the path from the semantic model to a model usable for data interpretation. It should enable 
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strong hypotheses and predictions based on a small number of noisy and incomplete observations (3D 
blobs from images or laser range data). 
After introducing the main concepts in Section 2 our starting point is the ontology of stairs and a 
formal specification of object classes, generalization, aggregation and constraint rules defined by the 
Unified Modelling Language UML and the Object Constraint Language OCL (Section 3). The UML-
OCL model allows deciding whether or not a given object is a valid stair but it can’t be used to gener-
ate a valid stair. Just for interpreting image data using hypotheses-test mode a generative model is 
needed. For this an attributed context-free grammar is introduced in Section 4. By translating aggre-
gation into (right linear) recursion and OCL rules into semantic rules we show how the UML-OCL 
model is mapped to an attributed grammar. Whereas a grammar is able to generate all valid sentences 
of a language, it also may identify the syntactical and – if attributed – semantical structure of a given 
sentence. The latter is called parsing. Here the problem, however, is not to parse a complete sentence 
with fixed symbols but to generate reasonable hypotheses from incomplete, noisy observations. In 
Section 5 we illustrate how hypotheses with comprehensive predictions are derived from observations 
using thresholds as a bound on distributions from a database of real stairs and mixed integer/real 
programming. In Section 6 the paper finishes with a discussion on the genericity of the model and 
future work. 

2 Ontology and grammars 
Semantics deals with the meaning of words.  Ontology deals with the essence of things. Having its 
roots in philosophy and metaphysics, Plato and Aristotle, Hegel and Kant, Husserl and HEIDEGGER 
(‘Sein und Zeit’, 1967) are some of the most prominent thinkers having meditated on this topic. Phi-
losophers put questions like: ‘What is the essence of the world?’ and ‘What characterizes an object?’ 
and studying their approach helps us to make the semantics of objects explicit. 
Computer science deals with ontologies (in plural). Ontologies make semantics explicit in formal 
symbolic representations. In other words, an ontology is ‘a description of the concepts and relation-
ships that can exist for an agent or a community of agents’, generally written ‘as a set of definitions of 
formal vocabulary’ (GRUBER 1995). They help to design software providing reasonable answers to 
sensible questions e.g. they are part of the Semantic Web. Ontologies can be used to identify meaning-
ful patterns in noisy observations. Ontologies have roots in Artificial Intelligence (knowledge repre-
sentation, logic, deduction and automated reasoning), database design (semantic data models) and 
software engineering (object oriented modelling). Nowadays, there are many ontologies (STAAB 
2004), description languages (OWL, ANTONIOU 2004), and platforms (Protégé, GENNARI et al. 2003). 
We use UML and OCL, the Unified Modelling Language together with its Object Constraint Lan-
guage (BOOCH et al. 2005, OMG 2007). The reason is pragmatic: We have developed a large database 
for approx. 5.000.000 buildings of the German capital city Berlin and the German state North Rhine-
Westphalia which is based on the semantic data model of CityGML (GROEGER et al. 2006). CityGML 
is specified in UML and our model of stairs uses and extends CityGML. 
UML is a formal specification and graphical notation which supports the definition of classes, attrib-
utes and associations (relations), namely aggregation (building of composites from parts) and inheri-
tance (defining subclasses which inherit attributes and methods from the super class refining the latter 
by additional attributes and constraints). Generalization/specialization allows defining that the general 
concept of a stair includes linear stairs having a fixed number of steps, composite stairs with one or 
more landing in between, branching stairs and many other variants. Aggregation describes the relation 
between a stair and its steps. In order to claim that all steps of a stair have the same shape OCL has to 
be used. OCL is a subset of first-order predicate logic including predicates, logical operators such as 
AND, OR, NOT, IMPLIES and existential and universal (∃ and ∀) quantifiers (OMG 2006). 
Generative grammars have been introduced by CHOMSKY (1956, 1959) in order to reconstruct the 
syntax of sentences in formal or natural languages. Context-free (type-2) languages have a special 
importance. A context-free language is given by a start symbol S, a set of non-terminals denoted by 
uppercase letters, a set of terminals denoted by lowercase letters and a set of production rules. Produc-
tion rules have the form A → α where A is a non-terminal and α a sequence of terminals and/or non-
terminals. It reads: Each occurrence of the symbol A may be substituted by the string α. 
Stairs are taken as an example and denoted as follows: stair by S, riser by R and tread by T. The start 
symbol S, the set of non-terminals N={S,R,T}, the set of terminals T={r, t} and the following set of 
production rules are given: 
P={ S → R T S → R T S 
 R → r T → t} 
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A typical sentence of this language would be ‘rt rt rt rt rt = (rt)5 ’ denoting a stair with 
five steps (‘rt’s). 
Context-free grammars define context-free languages. They are expressive enough to define regular, 
recursive structures such as {anbn|n>0}. Where an stands for n occurrences of a. It is generated by 
the rules A→ab and A→aAb. The string anbncn , however cannot be generated by a context-free 
grammar. An informal reason is ‘the number of occurrences of a and c is the same’ is context-
sensitive and not context-free. This deals with remote substrings. A technical argument using pump-
ing lemma is given by HOPCROFT et al. (2001). An important consequence for us is the statement ‘all 
steps of the same stair have the same size’ is not context-free. 
KNUTH (1968, 1971) proposed the concept of attribute grammars which extend context-free gram-
mars to remedy these deficiencies. Terminals and non-terminals are augmented by attributes (vari-
ables) and production rules by semantic rules which specify constraints between attributes. In our 
example semantic attributes could be height and depth. Semantic rules for the production 
S→RTS’ could be S.depth=R.depth and S.depth=S’.depth. Note that an apostrophe is 
used to differentiate between occurrences of the same symbol. A more elaborated attribute grammar 
for stairs will be given in Section 4. 
Attribute grammars are applied in compiler design (AHO et al. 1985). Attributes are used to link re-
mote occurrences of the same symbol, for instance the declaration and instantiation of a variable. 
Semantic rules are used to generate look-up tables for variable declaration and the generation of 
fragments of the target code language. Attribute grammars differentiate between synthesized and 
inherited attributes in order to specify the flow of information (from right to left or from left to right 
in a production rule) and the evaluation strategy in a derivation tree. As can be seen later, in our case 
the flow of information cannot and should not be fixed in advance. On the one hand observation resp. 
estimation of parameters leads to parameters of a stair, but on the other hand these stair parameters 
give prediction of unobserved steps and their parameters. Parsing of sentences of a formal language 
and classification and object reconstruction in noisy images are as a rule rather different. Parsing 
recognizes the syntactic structure of complete sentences with safely identified non-terminals. Our aim 
is to deduce reasonable, comprehensive hypotheses and predictions from incomplete observation in 
noisy images. Attribute grammars and their variants have been used in computer vision and pattern 
recognition since more than two decades (FU 1982). More recent work on their application in building 
reconstruction is reported in BRAUN et al. (1995) and STEINHAGE (1999). 
Probabilistic (or stochastic) grammars are used to control the generation of words by known a priori 
probabilities. A stochastic grammar is a grammar where the production rules are associated with pro-
babilities. The probability of a whole derivation equals the product of the probabilities of the single 
productions of that derivation. The probabilities of all productions A→α starting with the same non-
terminal A sum up to 1 (FU 1982). 
In shape grammars (STINY & GIPS 1972) terminals and non-terminals are geometrical patterns. They 
have been used to create designs with symmetric, recursive patterns. Shape grammars are appealing 
because shaped production rules address the intuition of the designer. 
For our purpose the main disadvantage of shape grammars is that regularities just have geometrical 
but no formal symbolic representations. It is more a sketch than a specification. Dependencies and 
constraints remain implicit. Therefore we prefer attribute (probabilistic) grammars which are as ex-
pressive as shape grammars but represent constraints explicitly. In our grammar shapes are repre-
sented by attributes and constraints on them. This will be shown in Section 4. Attribute grammars 
nicely fit to sophisticated constraint solvers (HOOKER 2006). 
Research on object modelling using stochastic attribute grammars has been done by MÜLLER et al. 
(2006) and PARISH & MÜLLER (2001). They use L-Systems, set grammars, and split grammars to 
generate virtual scenes. However they do not deal with reconstruction from images or 3D point 
clouds. WONKA et al. (2003) also generate virtual models using split grammars. BRENNER & RIP-
PERDA (2006) and RIPPERDA & BRENNER (2006) use rjMCMC techniques to control the generation of 
the derivation tree. MAYER & HUANG (in this issue) use L-Systems and MCMC techniques to gener-
ate 3D hypotheses for trees. 

3 Ontology of stairs 
Stairs are designed to allow pedestrians to surmount the altitude difference of several levels. Contrary 
to ladders on one hand and ramps on the other hand stairs combine the comfort of walking with sav-
ing of space. Stairs are regularly formed from steps having the same rise and depth. Sometimes they 
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are discontinued by one or more landings. The rise of a riser and depth of a tread are adapted to the 
step length of adult humans as BLONDEL already assumed in 1698. The vocabulary of stairs and parts 
of the taxonomy are defined in ISO 3881 (ISO 1977) to which the following specification adheres. 
It is a general observation in ontological engineering that there are several ontologies for the same 
class of objects. An ontology refers to a domain of discourse, a cognitive interest and a greater con-
text. It is difficult in general to match different ontologies for the same entities, but this discussion is 
beyond the scope of this paper. FRANK (1996, 2003) and KUHN (2005) advice to identify the actions 
to which the ontology refers. For us two perspectives and two actions are relevant: The pedestrian has 
to cover an altitude difference. To this end he uses a stair. His action is stepping. A completely differ-
ent perspective starts with terrestrial images or laser scans and ends up with the reconstruction of a 
stair. The action is classification and object reconstruction. Both kinds of action include that the visi-
ble surface plays an important role – walking on the surface on one hand and its observation and 
reconstruction on the other hand. The visible surface is associated with meaningful objects. Stairs are 
specified in ISO 3881 (cf. Figure 1). In this norm the basic terms of stairs are standardized, their 
meaning is defined, and their translation into German and French is fixed. ISO 3881 provides a the-
saurus. 
 

Figure 1: Basic terms of stairs defined by ISO 3881  
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Figure 2: UML diagram of stairs as one part of an ontology 

The UML diagram shown in Figure 2 provides a semantic model of stais.. It gives a general overview 
of stairs, its parts and their dependencies. On the top level there is the abstract class Stair (S) 
which is specialised into the classes Staircase and Flight (F). Since attributes should be 
observable pitch is marked as a derived attribute. The class Step is aggregated by one Tread and 
one Riser. As mentioned above tread and riser are the basic components of a stair. All referen-
cePoint attributes are dependent on each other due to the recursive and regular structure of stairs. 
The step class also has an association next with itself. So each step points to its successor (in up-
ward direction). Three or more steps aggregate to a stair. Here we follow the German norm DIN 
18065 (DIN 2000). Single and double steps have rather different patterns. A flight is exclusively 
made of steps. A staircase is an aggregation of flights and landings. Two associations express which 
flights are upstairs from the landing (optional) and which are downstairs (at least one flight). A land-
ing has to have at least one lower flight and optional upper flights. Furthermore LinearStair-
case (L) and YStaircase (Y) are special staircases and hence special stairs. A linear staircase 
is introduced as a staircase with one lower flight and one upper flight per landing and a Y-staircase as 
an aggregation of a landing with two lower flights and one upper flight or vice versa. In the following 
it is assumed that each flight has a constant width and a straight ground plan. 
Whereas classes, attributes association, aggregation and inheritance structures are represented in the 
UML diagram as described above, essential regularities which characterize the essence of stairs are 
not given yet. They are specified by object constraint rules. Some basic assumptions and observations 
on stairs in general and thus on entrance stairs are the following ones, given in natural language. The 
corresponding lines of the transcribed OCL expressions shown in Table 1 are given in brackets. 

1. All steps of a stair have the same rise and tread. This holds both for linear staircases with or 
without landing and for Y-staircases (lines 4-5). 

2. Subsequent steps are connected seamlessly, i.e. the succeeding step follows the preceding 
step immediately (line 8). 

3. The altitude difference between the two ends of a stair is given by the number of steps times 
the rise (line 9). 
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4. Tread and rise specify a vertical angle called pitch (line 3). There is another horizontal an-
gle, the azimuth (line 3), which is the same for the steps of a flight (line 6), which may or 
may not be different for flights connected by a landing and which is different for y-
staircases (lines 10-12). In all cases, there is a defined relationship between the azimuth and 
the orientation of the front façade of the corresponding house. 

5. Since stairs are for human adults, depth and rise both have a given range. On the basis of a 
database containing parameters of 120 entrance stairs, one may very well (a) assume the 
rise, the tread depth, and the footstep of different stairs to be normally distributed (cf. lines 
1, 2, and 9) and (b) observe the footstep formula 2r + d as the most stable parameter for 
stairs (line 7). Average values and standard deviations for the observed parameters are 
given in Table 2. 

The OCL rules are given in Table 1. For the sake of readability the notation is slightly modified for 
this example. Each rule defines an invariant in the context of a specific class. 

01 context Riser inv:  rise ~ N(17.0, (1.2)²) 
02 context Tread inv: depth ~ N(30.8, (2.7)²) 
03 context Step inv:  pitch = riser.rise / tread.depth & azimuth = riser.normalVector 
04 context Flight inv: step → ∀ s1, s2 : s1.tread.depth = s2.tread.depth & 
05  step → ∀ s1, s2 : s1.riser.rise = s2.riser.rise & 
06    step → ∀ s1, s2 : s1.azimuth = s2.azimuth &  
07    step → ∀ s : (2 * s.rise + s.tread) ~ N (62.6, (3.0)²) & 
08    step → ∀ s : s.upperCurve = s.next.lowerCurve 
09 context Staircase inv: getAltitudeDifference() = sum(flight.riser.rise) * flight.riser->size() & 
10    flight → ∀ f1, f2 : abs(f1.azimuth - f2.azimuth) = 0 or 
11 abs(f1.azimuth - f2.azimuth) = π / 2 or 
12    abs(f1.azimuth - f2.azimuth) = π 

Table 1: OCL rules expand the UML diagram with constraints  

 
riser 
[cm] 

tread 
[cm] 

r / t 
[ ] 

2r + t 
[cm] 

μ 17.0 30.8 0.6 62.6 
σ 1.2 2.7 0.1 3.0 
μ / σ [ ] 0.07 0.09 0.13 0.05 

Table 2: Parameter distribution on staircases 

4 From ontology to grammar 
Table 3 gives the production rules corresponding to the UML diagram shown in Figure 2. The pro-
duction rules are derived from the UML diagram by a method which consists of the following rules 
plus some technical details. 
Each class name is associated with a non-terminal symbol. Non-terminals are given by the set 
{S,L,Y,F,LANDING,STEP,RISER,TREAD}. For the sake of brevity the non-terminals for stair 
(S), linear staircase (L), Y-staircase (Y), and flight (F) are abbreviated. The rest of them will drop out 
as can be seen in the following. All non-terminals have a one-to-one correspondence with the classes 
of the UML diagram.  
The terminals are in the set {riser,tread,landing}. They correspond to – but are not identi-
cal with – features which are directly observable. The main point here is that the corresponding 
classes of the terminals are primitive in a specific sense: delete from the UML ‘graph’ all edges which 
are neither aggregation nor generalization. Give the generalization edges a direction from super class 
to subclass and the aggregation edges a direction from whole to part. If a super class defines an ag-
gregated object, add the corresponding edges to their subclasses, too. The primitive classes are just 
those nodes of the resulting directed graph which have no off-going edges. Thus one gets the primi-
tive classes Landing, Tread and Riser. These primitive classes form the set of terminal symbols. 
Note that L and Y are no leaves since they participate in the aggregation of Staircase. 
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As the three rules for stair illustrate, generalization is easy to handle: Translate generalization to a set 
of rules, where the super class non-terminal is on the left hand side and each subclass non-terminal 
gives a right hand side. 
Aggregation is more difficult to handle, but there are two important patterns. The first case is where 
the whole (step) is composed from two or more different parts (tread and riser) the number of which 
is given in advance. Then the part non-terminals form the right hand side and the aggregate forms the 
left hand side of the corresponding rule. Second case: if there is a non-fixed number of parts, as it is 
the case with flight and steps, recursion is applied. As the case of flight shows, one linear right recur-
sive rule 
(F → STEP F) 
and one non-recursive rule 
(F → STEP) 
suffice. A recursive production rule is called linear recursive, if there is only one occurrence of the 
left hand symbol on the right hand side of the production. It is called right recursive, if the recursive 
symbol is right-most. This is an easy case of recursion since it forms the special case of a regular 
(Chomsky 3) grammar. The case of landing is similar. 
The derived grammar makes the immediate correspondence to the UML diagram explicit but it has 
some redundancies which can easily be removed by rewriting. The three production rules for landing, 
tread, and riser just have one non-terminal symbol on the left and one terminal on the right hand side. 
When all occurrences of these non-terminal symbols in the remaining productions are replaced by the 
terminals, both the three production rules and the non-terminals can be cancelled. 
There are three additional terminal symbols which correspond to no class, namely ‘;’, ‘(‘, and ‘)’. 
These are just meta-symbols which are used in the case of Y-staircases in order to make a non-linear 
tree-like structure explicit. They support readability, but do not provide additional information. 

p1: S → L | Y | F  
p2: L → F landing L | F 
p3: Y → F landing (F ; F) | (F ; F) landing F  
p4: F → riser tread F | riser tread 

Table 3: Excerpt of the grammar derived from UML diagram 

So far only classes, aggregation and generalization have been reflected. Other associations may be 
mapped as well provided that their multiplicity is given and their precise semantics are specified by 
constraint rules. This, however, is beyond the scope of this paper. What about the attributes? They 
become attributes of the respective terminals and non-terminals. Table 4 shows some examples of 
semantic rules. (Apostrophe is used to differentiate between multiple occurrences of the same symbol 
in one production. Non-scalar attributes are underlined.) Following this pattern the other semantic 
rules may easily be derived from the OCL rules. A comprehensive list of OCL rules (as well as de-
tailed production rules, attributes and semantic rules) can be found at http://www.ikg.uni-
bonn.de/fileadmin/data/schmittwilken_07_modeling_appendix.pdf. Although the correspondence 
between semantic rules and OCL rules is rather obvious, the translation is a bit tricky. Firstly, note 
that aggregation with identities on a non-fixed number of parts (flight and step) affords a quantifier on 
all steps s1 and s2 in the OCL rule. In the production rule, aggregation is represented by (right lin-
ear) recursion, and in the semantic rule, there are dependencies between the attributes of the two 
recursive occurrences of flight and the non-recursive non-terminal riser and tread. Secondly, inaccu-
racy is represented differently. OCL rules define constraints for the strict ontological model. For 
example they ensure that all steps have the same attributes and they provide parameters (mean μ and 
standard deviation σ) of the respective distributions. On the other hand there are the semantic rules of 
the attribute grammar. They are used in an operational scenario in order to guarantee a given func-
tional context for each attribute e.g. the attributes of a specific flight equal the weighted mean of the 
respective attributes of its steps. The exact stochastic definition of the functions weightedMean() and 
f() is not precisely specified here. 
Table 4: Excerpt of the semantic rules for the unknown attributes 
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F → riser tread F’  
F.numberOfSteps = F’.numberOfSteps + 1 
F.rise = weightedMean(riser.rise, F’.rise) 
F.azimuth = f(riser.normalVector, F’.azimuth)  
tread.referencePoint = sum(riser.referencePoint, dx, dy) 
… (e.g. topological connection of riser and tread) 

Thresholds may be derived from the deviation (f.i. Δ = 3σ) and used to define boolean-valued seman-
tic rules called guards. Guards control the search and allow to prune the search space for candidate 
models early. Examples are given in Table 5 referring to a (simplified version of) production rule p2 
in Table 3. Guarded semantic rules mimic Guarded Horn Clauses described in UEDA (1985). The 
guard of a production rule is the conjunction of all guarded semantic rules. An application of a pro-
duction is valid if its guard evaluates true. A derivation is valid if all applications of production rules 
are valid, and a sentence is valid if it has a valid derivation. Formally, the valid sentences form a 
subset of the syntactically correct sentences specified by the corresponding non-attribute grammar. 

L → F landing F’ 
| F.treadDepth – F’.treadDepth | < 8.02  
| F.rise – F’.rise | < 3.57  
| F.pitch – F’.pitch | < 0.22 
… 

Table 5: Guard rules for the unknown attributes 

5 Hypotheses by solving mixed linear constraints 
In this paragraph it is illustrated how the semantic rules and the guard rules may be used to derive 
hypotheses being consistent with given observations. To simplify illustrations we study a 2D projec-

tion of stairs. Generalization to 3D is obvious. 
Figure 3: Variables used for the reasoning example. 
 
Assume that for the surfaces of stairs we have observed 2D points and their accuracies distinguished 
from points on horizontal and vertical faces (c.f. Figure 3). Each point ‘knows’ his direction i.e. the 
normal vector of ‘his’ face, so we call this points 2D needles. 
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The major construction principle of stairs is the constancy of rise and tread depth within a stair. So we 
claim 

consttconstr =∧=   (2) 
Thresholds for these values can be derived from the stair database mentioned in section 3: 

38182014 ≤≤∧≤≤ tr  (3) 
The number of steps within a stair is an integer number, i.e. the number of treads (n) and the number 
of risers (m): 
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NmNn ∈∧∈   (4) 
The structure of a 2D stair with origin (0,0) is defined by its rise and tread depth apart from its num-
ber of steps. So reference points can be introduced with coordinates resulting from a multiple of rise 
or tread depth: 

tnXXrmYY nn ** 00 +=∧+= (5) 
The coordinates of observed points supporting a given set of stair parameters can be specified by the 
following constraints. Inequalities of ‘vertical points’ can be derived analogously. 
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 We give the chain of reasoning which is used to determine the parameters of a stair from given ob-
servations. We assume that the observations are given within the stair coordinate system. Without loss 
of generality, the origin of the stair is claimed to be (X0,Y0) = (0,0) and all accuracies are assumed to 
be 1. 
Which kind of solver is necessary in order to support and implement this kind of reasoning? 
Based on the ontology of stairs, constraints defined in OCL and the semantic rules of the attribute 
grammar turn out to become linear equalities and inequalities. The products m*r and n*t will disap-
pear by constraint propagation and/or tentative instantiations of n and m. Thus a solver for linear 
inequalities (where equalities are a special case) is needed. The method of choice would be Simplex, 
but it does not suffice in our case. Simplex assumes real valued variables but there are integer vari-
ables as well (number of steps). Linear optimization on integers is computationally more demanding 
than optimization on real numbers. Optimization here becomes combinatorial and in fact NP-
complete. More specifically, the given problem is mixed-integer. Fortunately, there are algorithms 
and solvers for this kind of constraints (HOOKER 2006). 
We use the constraints solver ECLiPSe (APT & WALLACE, 2007) to estimate integer values or real 
intervals for the interdependent parameters. All constraints have been implemented. Table 6 shows an 
excerpt of the programm: two clauses for estimating the reference point from an observed point lying 
on a horizontal face. 

estimate_RefX_from_hPoint( ) :- 
  x $>= RefX - Sigma_x_horizontal, 
  x $=< RefX + Sigma _x_horizontal + Tread, 
  RefX $= X0 + N * Tread. 
 
estimate_RefY_from_hPoint( ) :- 
  y $>= RefY - Sigma _y_vertical, 
  y $=< RefY + Sigma _y_vertical, 
  RefY $= Y0 + M * Riser. 

Table 6: Excerpt of the constraint solver program 
 
Starting with the observation p1=(22,0) we cannot reduce the intervals for riser and tread depth: tread 
∈ [18,38] and riser ∈ [14,20]. Obviously we can fix the coordinates of the origin as (0,0). Insertion 
of the observation values into (7) we get 

1010

122]38..18[122

1

1

+≤≤−

+≤≤−−

Y

X
 

and due to (2-5) we get X1∈ [0,23], and Y1∈  [0,1]. This leads to the number of risers and treads 
(from origin to reference point): n1 = 0 and m1 = 0.  
The second observation p2=(140,75) restricts the domain but the parameters are still ambiguous: tread 
∈ [20.19,35.25] and riser ∈ [18.25,19.0]. So we estimate for the second reference point X2 ∈ 
[103.75,141.0], and Y2 ∈  [74.0,76.0] with n2∈ [4,5] and m2 = 4. The intervals of the coordinates of 
the origin and the first reference point remain the same. 
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The third observation p3=(71,26) will resolve the ambiguity: tread ∈ [34.5,35.25] and riser ∈ 
[18.25,19.0] with the following numbers of steps: n1=0, m1=0, n2=4, m2=4, n3=2, and m3=2. 
If we get a fourth observation such as p4=(291,115) we can even detect landings within the stair. The 
estimation of the fourth reference point and its numbers of steps from the origion leads to an incon-
sitency: n4=8 and m4=6. The difference between n4 and m4 can only be explained by a landing be-
tween p4 and p3. 

6 Conclusion and final remarks 
We have specified an ontology of stairs in the building collar based on ‘common sense’ and ISO 
3881. The UML/OCL model presented in Section 3 and the attribute grammar of Section 4 specify a 
subset of the variety of stairs which is observed in reality. How to derive the UML diagram and the 
constraint rules from examples automatically remains an open question. We have sketched a proce-
dure which maps the UML diagram and the constraint rules to an attribute grammar. With regard to 
associations the focus was on aggregation and generalization. The mapping of other associations 
depends on their multiplicity and their semantics specified by OCL rules. 
One main contribution of this paper is the derivation of logical formulas (conjunctions of constraints) 
from the ontology of stairs linked by the (stochastic) attribute grammars. We provide a method to 
solve these constraints and generate candidate models. This method has been implemented as a proto-
type in ECLiPSe and is available on the internet at http://www.ikg.uni-
bonn.de/fileadmin/data/schmittwilken_07_modeling_appendix.pdf. The candidate models fix num-
bers of integral domains and specify precise intervals for the real domains. The stochastic estimation 
of most probable values within these intervals with Bayes statistic (RUSSEL & NORVIG 2003, BISHOP 
2006, PEARL 2000) is left as a topic for future research. 
The constraints solver generates candidate models from consistent observations. A set of observations 
is consistent if there exists an instantiation of the model parameters satisfying the constraints. These 
parameters constitute a model explaining the observations. Under certain conditions three points (3D 
needles) suffice to specify a single candidate model. Thus the constraint solver is able to handle in-
complete observations. In realistic scenarios, however there will be a large number of 3D points with 
substantial percentage of outliers. The reconstruction of stairs from noisy observations requires the 
differentiation between inliers and outliers. From a logical point of view inliers constitute the largest 
consistent subset of the given observations. Exact algorithms for the identification of this subset are 
not feasible. An obvious probabilistic approach to identify this subset is the RANSAC algorithm 
(FISCHLER & BOLLES 1981) which nicely fits to our constraint solver and will b implemented in a next 
step. For a randomly chosen minimal set of observations the constraint solver derives one or more 
candidate models if this set of observations is consistent. In a next step RANSAC calculates the ‘con-
sensus set’ of consistent observations which fits into the candidate model. The RANSAC algorithm 
iterates its steps and terminates when a sufficiently large set has been found. 
Although we focus on entrance stairs of ‘ordinary’ buildings which are less complex than those to be 
seen in pleasure grounds, natural parks and in front of castles, some restrictions should be mentioned. 
We assume that stairs have constant width. In some cases the width decreases (e.g. parallelogram 
layout), and it is a linear function of the index of the step. We also assume that stairs are straight, 
branching (Y-stairs) or interrupted by landings. Some stairs have more sophisticated, curved layouts. 
Another assumption is that steps are compact solids. However some steps have nosing, others rest on 
piles (open stairs). Reconstruction and classification of the mentioned details is more demanding and 
requires an extension of the ontology and thus additional model parameters. 
An important subclass of stairs is spiral stairs. They have limited relevance for building collars , fire 
escapes and indoor staircases, however, sometimes have this shape. Whereas riser and number of 
steps can be estimated by the constraints given in Section 5 the tread depth and the width of the stair 
are more sophisticated and require trigonometric functions in a Cartesian coordinate system. Linearity 
can be achieved in a polar coordinate system. But this affords that the centre point(s) of the spiral stair 
can be derived Curved transitions between two flights have a similar pattern. An effective system of 
constraints for this case is topic for future research. 
The ontology and the attribute grammar are generic. Extensions for the cases mentioned above can be 
handled in this framework. They require additional parameters and more sophisticated constraints. 
Above, they require non linear constraint solvers. However there are algorithms (BOYD & VANDEN-
BERGHE 2006) and systems like CPLEX (ILOG 2006), ECLiPSe (APT & WALLACE, 2007), or Front-
line solver (FRONTLINE SYSTEMS, INC., 2007) which are able to handle large numbers of non-linear 
constraints if they are convex. Even non-convex collections of constraints can be solved if they meet 
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the requirement that the modelling of the independencies of the constraints supports constraint propa-
gation. In Section 5 we have shown that the non-linearity of n * tread disappears when the domain of 
n becomes a singleton due to constraint propagation. Thus we claim that the integration of strong 
constraint solvers with graphical models / Bayes networks will help to bridge the gap between onto-
logical engineering and 3D object reconstruction. 
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