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Abstract

We present a novel surface model and reconstruction

method for man-made environments that take prior knowl-

edge about topology and geometry into account. The model

favors but is not limited to horizontal and vertical planes

that are pairwise orthogonal. The reconstruction method

does not require one particular class of sensors, as long as

a triangulated point cloud is available. It delivers a com-

plete 3D segmentation, parametrization and classification

for both surface regions and inter-plane relations. By work-

ing on a pre-segmentation we reduce the computational cost

and increase robustness to noise and outliers. All reason-

ing is statistically motivated, based on a few decision vari-

ables with meaningful interpretation in measurement space.

We demonstrate our reconstruction method for visual recon-

structions and laser range data.

1. Introduction

Despite the tremendous progress in computer vision we

still lack the ability of a full semantic understanding of the

surrounding environment comparable to the human under-

standing. This interpretation of the environment is key,

e. g., for applications in robotics for navigational purposes.

Recent research in computer vision [4, 5, 7, 8] started to

address the problem by enforcing planar surfaces within

reconstructions of urban environments and indoor scenes.

Rather than limiting the process of enforcing planar recon-

structions to one particular class of sensors, in this paper we

propose a method that enforces the prior knowledge on any

input mesh provided. Specifically our method finds all sur-

face regions, which can be described by a low dimensional

parameterized surface model, e. g., a plane.

We assume a triangulated point cloud to be avail-

able either derived from image collections or videos us-

ing structure-from-motion techniques or directly from laser

range data. We wish to find uniformly describable surface

regions as well as their optimal parametrization. Moreover,

we are interested in a complete labeling of the mesh, rather

than detecting dominant regions only, yielding undefined

surface parts near boundaries and holes. Given the inher-

ent constraints of man-made environments we favor special

surface classes and relations between neighboring regions,

e. g., orthogonality of a horizontal and a vertical plane.

Our contribution is a surface model for man-made scenes

that takes prior knowledge about geometry and topology

into account. It incorporates classes for special regions like

orthogonal and vertical planes as well as relations between

neighboring regions like identity and orthogonality. Fur-

thermore we present a reconstruction method for applying

the surface model to triangulated meshes delivering both a

globally optimal surface classification and parametrization.

By working on a pre-segmented surface we reduce the com-

putational cost while increasing robustness to noise and out-

liers.

Our proposed surface model naturally encodes world

knowledge in an intuitive way. Therefore it is easily ex-

tendible with more classes and relations. All reasoning dur-

ing the classification and parameter estimation is statisti-

cally motivated and based on the statistics of the measure-

ments used. Hence our decision variables have a meaning-

ful interpretation in the measurement space. This is an ad-

vantage as all parameters can be chosen based on commonly

known uncertainties, e. g., the surface accuracy.

The remainder of the paper is organized as follows. First

we discuss related work in Section 2, before describing the

proposed surface model in detail in Section 3 and introduc-

ing our novel reconstruction method in Section 4. In Sec-

tion 5 we demonstrate the performance of our approach on

both stereo image reconstructions and laser range data.
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2. Related work

As argued in [2], extensive work exists on segmentation

of depth and range images, not being applicable to our prob-

lem due to its restriction to 2.5D. Others address reconstruc-

tion tasks in computer-aided design and thus solely focus

on laser scans or synthetic data with a very small amount

of noise and rare outliers compared to typical camera based

reconstruction [2].

RANSAC-driven approaches, e. g. [12, 8], due to com-

putational complexity are often limited to detecting the

most dominant surface segments only. In general they do

not yield watertight segmentations as they do not model the

inter-plane relations and hence fail to enforce intersections

of nearby planes, which is an intrinsic property in man-

made environments. Moreover an extension to more com-

plex surface models than planes involves a rapidly increas-

ing computational complexity.

Plane-sweeping techniques and their derivatives,

e. g. [13, 7], are only using local planar surface approxi-

mations and hence fail to obtain larger scale scene planes.

In [7] the authors obtain likely surface normal directions

to improve the local plane approximations for a gain in

accuracy and formulating a location prior. In contrast to our

proposed model this knowledge is not deployed to obtain

any global surface model.

Manhattan-world stereo, e. g. [4, 5], is a scene model

consisting of a set of strictly orthogonal planes. This fails to

model any general plane like roof tops as well as to explain

any other scene geometry present as pointed out in [8]. Our

proposed method is not limited to a strictly orthogonal plane

model. In [5] the fusion of multiple depth maps into an

orthogonal plane world model involves a volumetric world

model that gets computational infeasible with growing size.

Mesh segmentation, e. g. [1], is normally applied to

laser scanning data and fails on 3D points reconstructed

from multi-view stereo typically featuring higher noise lev-

els than laser scanning. The very promising approach [1]

can handle planes as well as higher order surfaces, but

does not involve constraints, like, e. g., orthogonality be-

tween neighboring planes, and is not devised for the noisier

stereo reconstruction data. Only local decisions are made

that could lead into problems, when noise and outliers are

present.

Region growing is widely used in segmentation tasks,

e. g., the authors of [2] present a sophisticated approach for

piecewise planar 3D reconstruction from point clouds and

show impressive results. Unfortunately their complex algo-

rithm is not extendible for any other architectural surface

types, which typically occur in man-made environments,

e. g., cylindrical surfaces modeling columns. Furthermore,

they exploits visibility constraints that might not be avail-

able for every 3D point cloud, depending on the acquisition

technique and post-processing.

Image-based clustering approaches like [16] yield a

high quality 2D separation of the different observed sur-

faces but do not provide a 3D interpretation of the surface,

which is essential to enforce the inter-plane relations in ur-

ban environments to ensure water tight surfaces. This mod-

eling of inter-plane relations is a key advantage of our pro-

posed method.

3. Surface model

We propose a model for describing a triangulated sur-

face consisting of piecewise analytically describable seg-

ments. Different semantic areas, in the following called re-

gions, can contain multiple segments that are expected to

have identical surface parameters. We assume that there is

a dependency between the parametrization of neighboring

surface segments, their class label and the explicit relation

between them.

3.1. Model for global classification

Each of the K surface segments Sk with k = 1 . . .K
is observed in the form of Euclidean coordinate vectors of

the 3D points Xk = {xk,i} with i = 1 . . . Ik. Our surface

model connects the parametrization θk with the class label-

ing ck for each surface segment and the label rn = rn(k, k
′)

for the relation n between two neighboring segments.

Figure 1 shows the relation n between two segments k
and k′ as a factor graph, encoding the unary and binary po-

tentials φk and φn

φk(ck, θk) = P (θk | ck)P (ck), (1)

φn(ck, ck′ , rn, θk, θk′) = P (θk, θk′ | rn)P (ck, ck′ | rn)P (rn).
(2)

The consistency term P (ck, ck′ | rn) links neighboring

classes and their relation. The joint probability of the con-

figuration is given by

P (c, r, θ) ∝
∏

k

φk(ck, θk)
∏

n

φn(ck, ck′ , rn, θk, θk′).

(3)

Next we detail the proposed parametrization and a set of

classes and relations, suited for man-made scenes.

3.2. Parametrization

In the most general case we represent each surface seg-

ment Sk by an implicit surface function f and a parameter-

ization θk satisfying

f(xk,i, θk) = 0 (4)

for each 3D point xk,i living on segment Sk. A possible

parametrization of f is the quadratic form f(xk,i,Qk) =
x
T

k,iQkxk,i with Qk being a 4×4 symmetric, homogeneous

parameter matrix of a quadric, i. e. a second order surface.
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Figure 1. Factor graph modeling the class labeling ck and ck′ of

two surface segments k and k′ as well as the relation rn between

both of them, all depending on the surface parametrization θk and

θk′ .
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Figure 2. Example instance of our surface model incorporating

slanted (s), vertical (v) and horizontal (h) planes as well as rela-

tions arbitrary (a), orthogonal (o) and identical (i) between two

of them.

Note that this representation is linear in the parameters Qk,

despite of a curved surface shape.

Since many man-made objects are piecewise planar, we

will use a more restrictive model in the following. We

model first order surfaces, i. e. planes, parametrized with

a 4-vector θ = [nT,−d]T with the normalized normal vec-

tor n and the distance d of the plane to the origin. Ideally

all points xk,i living on a segment Sk fulfill the condition

f(xk,i, θk) = x
T

k,iθk = 0. (5)

3.3. Surface classes

Besides arbitrarily oriented planes, in the following

called slanted, we often observe horizontal and vertical

planes (Table 1). This requires our coordinate system to

be aligned to the scene’s vertical direction, similar to [7].

While a slanted plane has all three degrees of freedom,

the other two classes involve constraints to the normal vec-

tor n. The expected value for one or two of its compo-

nents is zero. Instead of enforcing crisp constraints we treat

them as prior. E. g. the prior for the z-component of the

normal for a vertical plane has prior nz ∼ N(0, σ2

nz
) with

σ2

nz
= σ2

α since nz = sinα. The angle σα is the expected

deviation from the ideal model, being 0.25◦ in all our ex-

periments.

Different a-priori probabilities enforce vertical and hori-

zontal planes despite the constraints to be fulfilled. In gen-

eral, the probability for a segment being slanted ηs is small

and the other two priors are of equal size (1 − ηs)/2, so

that all priors sum to one. In all our experiments we use

ηs = 1 %, yielding most reasonable results.

Next we detail our proposed method to model the rela-

tionships in between different surface primitives.

Class Parameter distribution Prior

slanted — ηs
vertical nz ∼ N(0, σ2

α) (1− ηs)/2
horizontal nx, ny ∼ N(0, σ2

α) (1− ηs)/2
Table 1. Classes for separate surface segments. We model planes

with different orientation, fixing up to two degrees of freedom. In

order to penalize using the class slanted without any constraint we

choose a small a-priori probability ηs.

3.4. Inter­primitive relations

Two neighboring planes can intersect orthogonally or

arbitrarily, suggesting two relations orthogonal and arbi-

trary. However, when modeling neighboring surface seg-

ments, they not necessarily have to differ. Therefore we add

the identity relation (Table 2).

Again we model the relations using their priors. In case

of orthogonal normal vectors the dot product has to be zero,

while for identical normal vectors the cross product van-

ishes. Furthermore, the center of gravity x̄k of all points

xk,i on segment Sk has to lie within the neighboring plane

θk′ , enforcing identical planes not only to be parallel but

coincident. The variances of these constraints are derived

in a similar way like in Section 3.3 from a deviation angle

σα and a tolerance σδ for the distance between two identical

planes.

Table 2 also lists multiple pairs of surface classes for

each relation, since specific relations are only allowed for

certain classes. E. g. the identity relation can only occur

between two segments of the same class. The permission

and prohibition of certain combinations are encoded in the

consistency term in (2).

Relations orthogonal and identical have equal a-priori

probability, while we chose a small value ηa = 1% for ar-

bitrarily related segments.

Figure 2 shows all modelled surface classes and rela-

tions.

After defining the surface parameterization and deter-

mining the modeling of their pairwise relations we next dis-

cuss our proposed reconstruction method.

4. Reconstruction method

Given a triangulated point cloud, i. e. a surface mesh, we

first apply a pre-segmentation to obtain surface segments.

Then we need to optimize the model w. r. t. the joint prob-

ability (3). We split this task into two parts, first the in-

ference of globally optimal classes and relations given the



Relation Parameter distribution Classes Prior

arbitrary — hs, vs, vv, ss ηa
orthogonal n

T

knk′ ∼ N(0, 2σ2

α) vh, vv, vs, ss (1− ηa)/2
identical (x̄Tknk′ − dk′) + (x̄Tk′nk − dk) ∼ N(0, 2σ2

δ ),
nk × nk′ ∼ N(0, σ2

αI3)
vv, hh, ss (1− ηa)/2

Table 2. Relations between neighboring surface segments. In case of orthogonal planes we fix the angle between both normal vectors,

while identical planes have to coincide in orientation and location. Relations can occur in between of certain pairs of vertical, horizontal

and slanted planes. In order to penalize using the relation arbitrary without any constraint we choose a small a-priori probability ηa.

initial surface parameters, and second the estimation of a

globally optimal parametrization using the labeling as soft

constraints. Finally we merge identical segments to larger,

semantically interpretable surface regions and compute a fi-

nal parameter estimation for these regions.

4.1. Pre­segmentation

Starting from a triangulated surface the smallest acces-

sible surface elements are triangles. When, however, the

surface is very rough, as it is often the case with visual re-

constructions, a single triangles information can be signifi-

cantly disturbed and hence its properties can be misleading.

Therefore we pre-segment the given surface using Fast

Marching Farthest Point Sampling [10], grouping triangles

based on their geodesic distance as well as their local cur-

vature [11]. Finding seed points is part of the algorithm

and does not need any additional computation. The distance

function can be a combination of displacement, difference

between normals or even radiometric features. As shown in

[15], Fast Marching can be parallelized efficiently, enabling

to process point clouds with millions of points in far less

than a second.

4.2. Initial segment parameter estimation

We estimate the parameters θ̂k for each segment Sk in-

dividually from the observed 3D points Xk, minimizing

Ωk =
∑

i

(x̂k,i − xk,i)
TΣ−1

xk,ixk,i
(x̂k,i − xk,i) (6)

subject to the functional model (5) and constraints hk be-

tween unknown parameters θk, e. g., restricting the normal

vector to unit length |nk| = 1 in case of planes.

After determining the initial parametrization we next de-

scribe our proposed global parameter optimization.

4.3. Globally optimal segment labeling

First we compute probabilistic measures for each surface

segment Sk belonging to a model ck represented by a set of

constraints Hck . In the case of planar surfaces the constraint

hck = hck(θ̂k) = 0 (7)

can be written in form of hck = H
T

ck
θ̂k with

HT

ck
=

[
0 0 1 0

]
(8)

for vertical planes and

HT

ck
=

[
1 0 0 0
0 1 0 0

]
(9)

for horizontal planes. For our experiments we obtain the

covariance of the constraints, Σhh, via variance propaga-

tion from Σaa. Alternatively we could use the models un-

certainty formulated in Tables 1 and 2.

In case the constraint (7) is fulfilled the weighted sum

Ωck = h
T

ck
Σ−1

hh,ck
hck is assumed to be χ2-distributed with

|Hck | degrees of freedom. We obtain the likelihood p(θk |
ck) from the χ2-density function p(θk | ck) = p(Ωck).
Similarly we compute probabilities P (θk, θk′ | rn) for the

relations rn between two neighboring segments k and k′.
We infer an optimal labeling ck and rn using the sum-

product algorithm maximizing the joint probability (3).

The sum-product algorithm requires the graph to be tree-

structured for guaranteeing exact inference, which is not

provided by our graph. Nevertheless empirically we deter-

mined that we find a close approximation of the optimal

labeling as well as for the marginal probabilities P (ck | θ)
and P (rn | θ).

4.4. Constraint segment parameter estimation

We similarly estimate the parameters θk from the ob-

served 3D points Xk as described Section 4.2 with the added

soft constraints formulated in Tables 1 and 2.

For each segment k we introduce class-dependent con-

straints hck for all classes ck weighted with the correspond-

ing probability P (ck | θ). For each relation n we intro-

duce relation-dependent constraints hrn for all relations rn
weighted with the corresponding probability P (rn | θ).
Therefore, we minimize the energy

Ω =
∑

k

∑

i

(x̂k,i − xk,i)
TΣ−1

xk,ixk,i
(x̂k,i − xk,i)

+
∑

k

∑

c

P (ck | θ)hT

ck
Σ−1

hh,chck

+
∑

n

∑

r

P (rn | θ)hT

rn
Σ−1

hh,rhrn . (10)

subject to the functional model (5) and constraints hk as

in Section 4.2. Here we neglect the mutual dependencies

between segments and relations.



4.5. Merging segments to regions

In order to improve the segmentation from the very be-

ginning, we merge all segments being most likely identical.

We name the elements of the new segmentation regions.

Assigning common region numbers to all segments

linked by the relation identical can be formulated as graph

coloring task. Our segments are graph nodes and links be-

tween two of them are set if they are identical. Now we

label each connected component with a unique region label.

This can be done applying a Dulmage-Mendelsohn decom-

position [3] for the adjacency matrix of the graph.

4.6. Constraint region parameter estimation

Finally, we estimate parameters for all regions from Sec-

tion 4.5. The class membership of a region and the relation

between regions is not unique. We simply apply constraints

from the most frequent class within each region and from

the most frequent relation between two regions.

5. Experiments

We demonstrate the proposed reconstruction method us-

ing our surface model with various data sets arising from

different data acquisition techniques. After describing the

generation of each data set in brief (Table 3), we illustrate

the single steps and intermediate results of our proposed re-

construction method using the example of the CHURCH data

set. Finally we present and discuss results obtained with the

other data sets.

Name Source # points # triangles

CHURCH 100 turntable images 16 277 32 192

CUBE synthetically sampled 6 000 11 996

BOX 55 turntable images 26 516 52 393

BLOCK close range laser scan 15 492 30 382

HOUSE close range laser scan 19 915 39 662

HALL terrestrial laser scan 21 730 43 084

BLOCKCITY 48 turntable images 35 651 70 382

BRICKS 72 turntable images 39 480 78 503

HILL structured light scanning 34 785 68 938

Table 3. All data sets used in our experiments.

5.1. Data sets

CUBE is a meshed point cloud generated synthetically

from 6000 points sampled on a cube. It allows to control

the amount of noise precisely and to check, whether our

reconstruction yields correct decisions when knowing the

true variance of the data points.

CHURCH, BOX, BLOCKCITY and BRICKS are images

of objects mounted on a rotating turntable and captured us-

ing a static camera. We reconstructed the camera orienta-

tion using the structure-from-motion software Bundler [14]

and reconstructed a dense point cloud using the Patch-based

Multi-view Stereo software (PMVS, [6]). We generated a

mesh using the Poisson surface reconstruction [9], rather

than computing a triangulation of the raw points. Although

Poisson surfaces tend to smooth edges, which would be un-

favorable to our purpose, we obtain useful results with an

octree depth of 7 or 8.

BLOCK and HOUSE are triangulated high-resolution

point-clouds of a small building model and a wooden block

captured using a Perceptron ScanWorks V5 laser scanner

mounted on a Romer measuring arm. This data set is char-

acterized by very small noise in the order of tens of microm-

eters.

HALL is a terrestrial laser scan acquired from 7 stand

points located around a small house. We generated a mesh

by triangulating a randomly sampled subset of points.

HILL is a triangular mesh of a historic city model of

Hamburg captured using structured light scanning.

5.2. The reconstruction method in detail

Figure 3 illustrates the intermediate steps of our re-

construction method. In this case we reconstruct a

dense, meshed point cloud via structure-from-motion from

100 turntable images (3(a)). The resulting mesh is shown

in Figure 3(b). We pre-segment the surface mesh using Fast

Marching Farthest Point Sampling. Around 60 segments

yield a good pre-segmentation, i. e., most importantly, all

edges are preserved. On the other hand the segmentation

is not too fine, but equally large and stable. We compute

locally optimal parameters for each segment (3(d)) used for

a first labeling of segments and relations (3(e)). Note the

yellow segments within the blue and cyan, i. e. vertical and

horizontal surfaces. In most cases such misclassified seg-

ments vanish after improving the labeling by incorporat-

ing binary relations between neighboring segments (3(f)).

Some segments remain classified as slanted. E. g. the front

is divided into two regions, since the original mesh is quite

uneven compared to the noise. The determined classes and

relations are used to constrain the parameter estimation and

to merge identical segments to larger, semantically moti-

vated regions shown in Figure 3(g). After optimizing the

parametrization once more, now for surface regions rather

than segments, we obtain an almost perfect, accurate recon-

struction in Figure 3(h).

5.3. Results on various data sets

Figure 4 shows reconstruction results we obtained with

various other data sets. A challenging data set is HALL

due to its windows, doors and dormers that are not pre-

served in this experiment. The low point density on the roof

does not allow reconstructing such details, in this case. The

parametrization and classification, however, yields a clean

generalization towards walls and roof, due to the prior to-

wards verticality and orthogonality.



(a) 1 out of 100 images (b) Triangulated points (c) Pre-segmentation (d) Initial parameters

(e) Segment labeling (f) Inference (g) Merged regions (h) Final reconstruction

Figure 3. Reconstruction steps demonstrated using the example of the CHURCH data set. Classes in (e) and (f) are vertical (blue), horizontal

(cyan) and slanted (yellow).

BLOCKCITY, BRICKS and HILL are not reconstructed

perfectly. The compression is still large, while preserving

the geometric structure accurately. Most of the observable

over-segmentation is caused by inaccurately built objects,

e. g., vertical wall being not exactly orthogonal to horizon-

tal planes or slightly curved surface regions. This over-

segmentation could be overcome by tuning the model un-

certainties σα and σδ for each data set individually.

6. Conclusion

We presented a novel surface model for man-made

scenes incorporating prior knowledge about geometry and

topology. It favors vertical and horizontal planes, being

pairwise orthogonal or identical, while arbitrarily oriented

planes are modeled as well. Our proposed reconstruction

method links surface parameter estimation and labeling, de-

livering a complete, coherent model. The surface model can

easily be extended with other classes and relations. All con-

trol parameters have a meaningful interpretation.

We demonstrated our approach with triangulated point

clouds from multi-view stereo and laser scans, obtaining

satisfactory results.
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