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ABSTRACT:

The paper describes an approach for the automatical reconstruction of homogeneous straight stairs from point cloud data by using a
generative model and Markov Chain Monte Carlo techniques for estimating the parameters. Parameters for a generative model for
stairs are presented. The six parameters of this 2D model are determined with a maximum-a-posteriori estimation approach. For all
parameters prior probability distributions are chosen. Two types of likelihood functions are introduced. It is shown that four of the
parameters under certain conditions can be determined via MCMC. Some results are presented.

1 INTRODUCTION

Task and Motivation Our interest is the semi-automatic acqui-
sition of 3D-data on the transition between building facades and
the digital elevation model, the so called building collar. The goal
of this research is to increase automation for simplifying and eas-
ing the work of the human operator gradually when generating
3D city models. The models to be handled become more and
more detailed and require the gradual inclusion of building parts
like windows, balconies, doors or stairs.

In this paper we concentrate on stairs being an important link
between the building and its surroundings. Stairs on one hand
show a rich structure, e. g. may consist of several parts linked
by platforms or even may split or merge, which requires a deep
modelling and on the other hand contain simple enough parts, like
straight flights of stairs, which can be expected to be detected and
reconstructed fully automatically.

We present methods for the detection and reconstruction from
point clouds. In a first step we restrict to 2D-stair-profiles in order
to explore the feasibility of Monte Carlo techniques for this type
of problem. In future we will extend the model to handle 3D
points of stairs and other objects in the building collar.

Approach for solution Generative models allow to explicitly
represent the internal structure of complex objects together with
the uncertainty of the model itself as well as the uncertain ob-
servation process. They allow to generate simulated data and to
evaluate given data with respect to the model. Our stair model is a
parametric one, with mixed parameters, thus a mixture of discrete
and continuous parameters.

We use maximum-a-posteriori estimation to solve the problem of
finding optimal stair parameters. The a-priori-information of the
parameters may initially be non-informative, but may be infor-
mative as soon as experimental evidence is available.

To find the maxima of the a-posteriori-distribution we use Markov
Chain Monte Carlo (MCMC) techniques. Explicitly we use the
Metropolis-Algorithm and the principle of Simulated Annealing.

Organization of paper The next section gives an overview about
related work taken into account for our research. The general
setup of the maximum a posteriori (MAP) estimation is described

in Section 3. We give an overview of the parameters of the gener-
ative model and describe the distributions for the a-priori-information
in detail for each parameter. We show which type of observations
we used and how the likelihood function of our MAP-estimation
is constructed. We describe the main aspects of the MCMC tech-
nique, our target distribution, the Metropolis Algorithm, the Up-
dating Order, principles of Simulated Annealing and the proposal
distributions. We also explain some details necessary to under-
stand the implementation. In Section 5 we present the actual re-
sults of our approach with 2D data and give a conclusion in the
end.

2 RELATED WORK

The approach of modelling objects with a generative model and
the determination of model parameters with MCMC techniques
was first described by Radford M. Neal in 1993 e.g. in (Neal,
1993).

An approach for architectural models is described in (Dick et al.,
2004). Dick, Torr and Cipolla describe the modelling of architec-
ture from images. Their model consists of walls and primitives.
They give prior distributions for walls and primitives and a like-
lihood distribution. The final determination of the parameters is
done by reversible jump MCMC (rjMCMC).

Mayer and Reznik (Mayer and Reznik, 2005), (Mayer and Reznik,
2006) describe the detection of windows in building facades with
implicit shape models, plane sweeping and rjMCMC technique.

Brenner and Ripperda (Brenner and Ripperda, 2006), (Ripperda
and Brenner, 2006) introduce an approach to describe building fa-
cades with the help of a facade grammar. A facade is represented
by a derivation tree which is generated by rjMCMC.

Literature about MCMC methods can be found in (Gilks et al.,
1996) and (Andrieu et al., 2003). A theoretical overview about
Markov Chains is given in (Brémaud, 1999).

3 MAP-ESTIMATION FOR DETERMINING THE
PARAMETERS OF THE GENERATIVE MODEL FOR

STAIRS

In this section we establish a posterior distribution for the deter-
mination of the optimal parameters.



3.1 General Setup

The posterior distribution

p(x|d) = ηp(d|x) p(x) (1)

represents the probability of the stair parameters in x given the
measured 3D point data in d.

The parameter η = 1/p(d) normalizes the density function but
is not needed in the following because we only need to deter-
mine a maximum. Modeling requires knowledge about the a pri-
ori probability density p(x) of the unknown parameters and the
likelihood p(x|d) reflecting the observation process.

We will describe the parameters x and their prior p(x) and the
observation d together with the likelihood in more detail.

Maximizing the a posteriori distribution (1) (MAP- estimation) is
equivalent to minimizing the self information I(x|d) = − ln p(x|d)
being the negativ logarithm of the corresponding probability:

I(x|d) = I(d|x) + I(x)− ln η (2)

This expression is often numerically easier to handle. Minimiz-
ing I(x|d) is actually equivalent to minimizing the description
length of x given d.

In order to open a choice of an optimiziation technique we use
both, the probabilistic and the information theoretic representa-
tion.

3.2 Parameters and a-priori probabilities

3.2.1 Parameters A model for straight stairs in 3D is shown
in figure 1. For a 3D model 9 parameters are needed. In the
following we describe the parameters of a 2D model, where only
6 parameters are sufficient.

Figure 1: Generative model for a straight stair in 3D with 8 pa-
rameters: the number S of stairs, the 3D-position [X, Y, Z] of the
reference point, the tread depth t and the riser height h, the step
width w and the azimuth α.

The profile of a straight homogeneous stair can be modeled using
the following parameters xi:

• The number x1
.
= Sb ∈ IN of steps before the reference

point and the number x2
.
= Se ∈ IN of steps after the refer-

ence point. We use two parameters here because we want to
be able to determine the beginning and the end of the stairs
independently just referring to the reference point.

• The 2D-coordinates x3:4
.
= [Y, Z]T ∈ IR2 of the reference

point of the stairs. In 3D we will have an additional coordi-
nate X .

• The tread depth and the slope x5:6
.
= [t, h]T ∈ IR+2, which

is assumed to be the same for all steps. The two parameters
t and h are assumed to be positive numbers. The direction
of the stairs is always assumed to be in the upward direc-
tion. The slope h corresponds to the quotient of riser height
and tread depth. It is the tangens of the gradient angle of
the stairs. So the step height in our model results from the
product of the tread depth and this slope.

• The ratio x7 = ε of outliers can also be seen as a parameter.

3D-steps in addition require a parameter for the step width. Ad-
ditionally we have a parameter α for the azimuth to allow for
stairs to go in four principle directions referring to the facade. A
stair can lead directly to the facade or one can walk parallel to the
facade, respectively upstairs or downstairs.

3.2.2 A-priori Information For each of the parameter groups
we might have prior information. This is useful in case the data
are weak. Otherwise it should not have a signifcant influence on
the estimate, thus will be overwritten by the data.

Though we have six parameters we only use U = 5 priors be-
cause only for the sum S of the steps Sa and Se information is
available. In this simple model of a projection of a homogeneous
stair we may assume all U = 5 prior parameters to be indepen-
dent, thus

p(x) =

UY
u=1

p(xu) (3)

In all cases we might distinguish three degrees:

1. No prior. Then the a-priori-probabilities are flat and we do
not have a factor p(xu).

2. Weak prior, e. g. a mean value, a tolerance or a mean value
and a variance.

3. Strong information, e. g. from reference data. Then in gen-
eral we have some irregular distribution.

At the moment we use weak priors only.

Priors for the number of steps We model a prior for the pa-
rameter S = Sa + Sb, the sum of the two parameters described
above, because the values for Sa and Sb are not unique for a par-
ticular stair. In case we only know the mean, a reasonable choice
for the distribution is an exponential distribution:

P (S) =
1

µS
e−S/µS I(S) =

ln µS

µS
S (4)

Thus the prior information increases linearly with S. Stairs with
less steps are preferred.

Prior for the position of the stairs The 2-vector specifying
the position of the stairs requires a definition of the coordinate
system.

In our application it appears to be useful to relate the stairs to the
building. Therefore the origin of the stairs should refer to a point
next to the facade. In case the stair direction is perpendicular to
the facade the position of the origin will be close to the facade and
approximately in the height of the surrounding terrain. However,
the accuracy of this assumption is low.



In general assuming a mean and a standard deviation for each of
the coordinates appears to be sufficient. This leads to the a-priori-
model

p(Y, Z) = g(Y ; µX , σ2
X) g(Z; µZ , σ2

Z) (5)

with

g(x; µx, σ2
x) =

1√
2πσx

e−
1
2

“
x−µx

σx

”2

(6)

The prior information prefers stairs close to the mean [µY , µZ ].

Prior for the tread depth and the riser height In a first ap-
proximation we assume the tread depth and the rise height to be
normally distributed.

Figure 2: Contour lines of smoothed histogram of tread t (hori-
zontal) and rise h (vertical): the two parameters of a step appear
to be uncorrelated and may be approximated by a normal distri-
bution. Contourlines taken from 117 samples.

Prior for the percentage of outliers The outlier rate ε is quite
dependent on the observation process. In a first instance we fix
this value.

Parameters of the prior distributions The parameters of the
prior distributions are mostly taken from (Schmittwilken et al.,
2007).

number S of the stairs:

µS = 5.7

σS = 1.7

slope h:
µh = 0.60

σh = 0.08

tread depth t:
µd = 30.8

σd = 2.7

For the reference point there is no data available because its posi-
tion depends on the coordinate system and is somehow arbitrary.
We choose zero as expectation value. Furthermore we take quite
high standard deviations because the starting positions may be far
away from the real values of the parameters.

µY = 0

σY = 200

µZ = 0

σZ = 100

Of course these priors may be improved or adapted if necessary
or in case more information is available.

3.3 Observations and Likelihood Function

3.3.1 Observations The initial observations are points qi, i =
1, ..., I , derived by photogrammetric matching or by LIDAR. These
data are characterized by two parameters:

1. Geometric accuracy of the points, represented by a covari-
ance matrix.

2. The density of points.

Density and accuracy in general may depend on various param-
eters, e. g. distance of the sensor to the object, angle between
surface and viewing direction, surface texture.

3.3.2 Likelihood function In order to derive a reasonable like-
lihood function we assume the following: The accuracy of the
points is the same for all points and represented by σ2I2. The
density of the points does not vary too much. Reasons for vari-
ations may be manifold, like occlusions, large angles between
normal and viewing direction, low texture. However, we require
that the first and last step contain enough points so that support is
not by points outside the stairs alone. We therefore take the num-
ber of points on the first and last step as observations and relate it
to some robust average, say the median. These assumptions may
be incorporated into the likelihood function.

We can derive the likelihood function

p(d|x) = p(n1|x)p(nS |x)

IY
i=1

p(qi|x) (7)

1. p(qi|x) only depends on the distance ei of a point qi to the
stairs. We assume each step to consist of a vertical and a
horizontal segment with length h and t resp. The likelihood
is mixture of Gaussians with mean 0 and standard deviation
σG = σ for the good points and σB >> σG for the bad
points

p(qi|x) = p(ei|x) = (1− ε)g(ei|0, σ2
G) + εg(ei|0, σB)

(8)
In case we have knowledge about an anisotropic distribution
of the measured point coordinates qi we may introduce this,
then the likelihood for each point in addition to its covari-
ance matrix depends on the direction of the normal.

The points which do not lie on the surface are classified
as bad points. They are either outlier of the measurement
process or do not belong to the stairs at all, e. g. to the
house wall or the ground. For control purposes it is useful
to link this standard deviation to the measuring accuracy σ
by σB = fBσG. For our tests we specified fB = 80.

The outlier rate ε is quite dependent on the observation pro-
cess. Initially we fix this value.

The structure of the likelihood function can be seen in figure
3.

2. n1 and nS are the numbers of points on the first and the last
step. This requires to identify the step s each point i belongs
to in order to obtain the numbers ns, and especially n1 and
nS . Only if the number of points on the first and the last step
is high enough, can we assume these two steps to be the two
ends of the stairs. This number should be related to a robust
estimate of the number of points per step, e. g. the median of
the number of steps and should be larger than this reference
value. Thus we need a likelihood function depending on



Figure 3: Likelihood function and negative log-likelihood func-
tion for point observations: σ1 = 1, σ2 = 20, ε = 0.5

n1/med(ns) and nS/med(ns), which is skew, supporting
the values of this ratio that are larger than 1 and punishing
values that are lower than 1.

This can be achieved with the the following distribution (cf.
figure 4)

p

„
ni

med(ns)
|x
«

=
3b

π

x10

b12 + x12
i = 1, S (9)

The parameter b is to be so chosen that low ratios yields low
support and the probability that the ratio is larger than 1 is
high. In case b ≈ 0.815 the ratio ni/med(ns) is larger than
1 with probability 75 %. The probability that half this ratio
is smaller than 1/2 is only 1.4 %, that it is larger than 2 is
still 39 %.

3.4 Maximum-a-posteriori Estimation

The a-posteriori-distribution (1) is quite irregular, because, start-
ing from the optimum, shifting the position [Y, Z] of the stairs by
one step [t, h] leads to a local optimum. Also, decreasing or in-
creasing the number of stairs leads to a local optimum. Therefore
simple gradient descent techniques will not be able to yield the
global optimum.

There are various methods which may cope with this situation.
Two of them appear to be promising and have been investigated:

• Simulated annealing is a Monte Carlo technique which tries
to find an optimum score under very general conditions by
generating random samples of the parameter vector, eval-
uating the score using the optimization function, accepting
it in case the new score is better and with slowly decreas-
ing probability accepting parameter vectors which a worse
score. As the annealing schedule guaranteeing a global op-
timum is very slow, one may decrease the acceptance prob-
ability faster, facing the risk of getting trapped in a local
minimum or of refining the sampling scheme.

Figure 4: Likelihood function for relative number ni/med(ns)
points for first and last step. Low numbers yield low support.

• Markov Chain Monte Carlo techniques aim at a faster sam-
pling scheme, by making the new sample dependent on the
previous one using a intermediate distribution. Under cer-
tain conditions, the distribution of the chosen samples fol-
lows the target distribution, in our case the posterior distri-
bution.

We use both techniques for finding the maximum of the a-posteriori
density (1).

4 NUMERICAL OPTIMIZATION OF
A-POSTERIORI-DISTRIBUTION

4.1 Target Distribution / Scoring Function

The target distribution is composed by the multipication of the
respective priors and the likelihood term.

With respect to Bayes’ theorem the target distribution, i.e. the a
posteriori density is of the form:

π(x)
.
= p(x|d) =

IY
i=1

p(di|x) ·
6Y

k=1

p(xk) · η (10)

The distribution for information terms accordingly:

I(x) = I(d|x) +

6X
i=1

I(xi)− lbη (11)

The data d are given, and the parameters x are to be found. So
the task is to find a maximum in π(x) or a minimum in I by
fitting the parameters x.

In the following we use the distribution for probabilities:

π(x) = ηe−I(x|d) ·
6Y

i=1

eI(xi) (12)



The factor η is not relevant here. We have to maximize this
target function. To do this we use Markov Chain Monte Carlo
(MCMC).

4.2 Starting Values

To start the Markov Chain process for all dimensions starting val-
ues have to be defined. Though the starting values do not have
influence on the samples after the burn-in it is recommended to
choose reasonable values to achieve faster convergence.

The starting values can be determined with respect to building
codes or norms like ISO. For the translation one can use zero for
all three dimensions.

4.3 Proposal Distributions / Jumping Distributions

The jumping distributions or proposal distributions q(.|Xt) de-
fine transition probabilities of the Markov chain for the transition
from a state Xt to a new state Xt+1. The distribution q has to be
chosen so that the Markov chain has rapid convergence and rapid
mixing.

Here we have chosen a normal distribution N(Xt, S) for most
of the parameters, because we assume that the parameters are
somehow normally distributed in the search range. This is a very
rough assumption.

The variances have to be fitted to the expected dimension of the
parameters. If the possible variance of a parameter is bigger, the
variance of the proposal distribution must be bigger too.

Alteration of proposal distributions To find a maximum op-
timally one can adjust the variance of the proposal distributions.
We start with a higher variance and during the run decrease the
proposal distribution. So one can make bigger steps in the be-
ginning to get near the maximum and make smaller steps in the
end to get the maximum more exact in a smaller number of steps.
The variance can be changed for every step during a run of the
Markov Chain, before another run etc.

4.4 Metropolis-Algorithm

How the rejection method of the MCMC process works is de-
scribed in the following:

• The Markov chain is initialized by a starting value.

• A point Y is sampled from the proposal distribution.

• A value U is sampled from a random uniform(0,1) variable.

• A factor α is generated with respect to the actual and the
former state of the Markov chain and the proposal distribu-
tions.

• If U ≤ α
Y is accepted as Xt + 1
else
the Markov Chain does not change: Xt+1 = Xt.

• The last 4 steps are repeated.

In our case X and Y are 6D-points of the 6D-distribution π(x).
Each point stands for a combination of the 6 parameters of the
stairs.

In the following the variables α, X and Y correspond to those
described above. The factor α can be determined in different

ways. The standard formula is used in the Metropolis-Hastings
algorithm:

α(X, Y ) = min
„

1,
π(Y )q(X|Y )

π(X)q(Y |X)

«
(13)

We use a more simple form (Metropolis-Algorithm):

α(X, Y ) = min
„

1,
π(Y )

π(X)

«
(14)

Here does not appear any proposal distribution in the formula.
Because of the symmetry of the normal distributions it is assumed
that q(X|Y ) = q(Y |X).

We implemented this algorithm by use of ln π(x), see below.

4.4.1 Blocking / Updating Order

Update -en bloc- One can update the dimensions of the mul-
tivariate Markov chain in one step en bloc. One tests or rejects
a totally new candidate with all components generated new in an
update step. So eventually some dimensions have values which
converge better to the scoring function while others have values
which converge worse.

If one has many parameters the process in this way will converge
and mix very slowly. So it could be necessary to update the com-
ponents one-by-one.

Single-Component Update With the single-component-update
one updates each component of the multidimensional Markov
Chain in a single step. One only changes one dimension in an
update step. With this one step one moves along the direction of
the coordinate axes of this dimension. So one can test and reject
a candidate with respect to a single dimension.

Our approach Because of the low number of parameters we
decided to use Update -en bloc-. Single-Component Update did
not lead to a significant enhancement of the MCMC- process. We
decided to estimate different groups of parameters separately. In
a first run the two parameters for the position [Y, Z] and the slope
are determined. In a second run we correct the slope and find the
value for the tread depth. The number of steps is determined in a
special process (cf. below). To improve the position results one
could make a third run to improve the two position parameters.
This step has not been tested up to now.

4.4.2 Simulated Annealing To determine the maximum of
our scoring function we use a principle of Simulated Annealing.
This means that the acceptance rate is decreased by calculating
another α before the comparison with U .

The following is the standard approach for Simulated Annealing
with Metropolis-Hastings-Algorithm :

α(X, Y ) = min

 
1,

π(Y )
1

Ti q(X|Y )

π(X)
1

Ti q(Y |X)

!
(15)

Practically this was implemented with the Logarithm of π which
also makes the calculation here easier.

Hereby Ti is decreasing with a cooling schedule. It converges to
zero. Ti can be determined with two parameters, e.g. C and T0

cf. (Andrieu et al., 2003), p. 20:

Ti = (C ln(i + T0))
−1 (16)

To achieve that T1 = 1 we set C = 1/ ln(1 + T0). So we
start with standard Metropolis-Algorithm and increase the rejec-
tion rate during the run.



4.5 Details for the Implementation

Metropolis-Algorithm The calculation of the algorithm was
not done by using the values of π but by using those of log(π).
This was necessary because of numerical problems.

The α was determined with

ln α = ln π(Y )− ln π(X)

With the use of Simulated Annealing:

ln α =
1

Ti
(ln π(Y )− ln π(X))

In the actual configuration the range of the values of the scoring
function varies strongly. The Metropolis-Algorithm rejects every
result which leads to a lower value for the target distribution than
the result before. So the Markov Chain often does not move. This
could in future be improved by adjusting the values of π which
means to change the model so that π is better adjusted to the
distribution U . Therefore in the actual configuration simulated
annealing has no influence on the results.

At the moment the estimation of the number of stairs with MCMC
is not realized yet. We use another method by classifying the
tread and riser edges by the number of 3D points near them. It is
in progress to integrate the likelihood term described above into
the approach.

Parameters

Starting Values, cf. Section 4.2

• number of steps: 10; 5 below and 5 above the reference
point

• reference point:
»

0
0

–
cm

• tread depth: 29 cm

• slope: 17/29

Proposal Distributions, cf. Section 4.3 normal distributions
N(Xt, σ

2), standard deviations given in the table:

• reference point X resp. Z coordinate: from σstart = 10 to
σend = 2 cm

• tread depth: σstart = 1.5 to σend = 0.3 cm

• slope: σstart = 0.03 to σend = 0.01

The standard deviation is exponentially decreased during a run.

Number of steps in the runs We use 80 steps in the first run
(reference point and slope) and 30 steps in the second run (slope
and tread depth)

5 RESULTS

We generated test data in the 2-dimensional Y Z plain. For every
step tread and riser here are represented by edges. Next to every
tread and riser about ten points were generated regularly along the
edge and randomly (normal distribution) differing from it. The
profile before and after the steps was also generated. Every point
here was roughly positioned dependent from the two points next
to it in direction of the stairs and exactly positioned randomly.

Figure 5: Test data randomly generated from a generative model
with specified parameters noised with a normal distribution with
σ = 0.25cm. Different scales for the two dimensions.

Test Data We tested two examples of generated stairs, one with
a good approximation, one with a bad approximation.

Good example, parameters, given below, close to the starting val-
ues (400 2D points):

• number of steps: 14; 7 below and 7 above the reference
point

• reference point:
»
−10
−10

–
cm

• tread depth: 30 cm

• slope: 19/30

Bad example, parameters, given below, afar from the starting val-
ues (400 2D points):

• number of steps: 4; 2 below and 2 above the reference point

• reference point:
»
−50
70

–
cm

• tread depth: 26 cm

• slope: 14/26

We also tested real data. The 3D points were generated with a
stereophotogrammetric approach with support of a software from
TU Berlin (Heinrichs/Rodehorst). The 3D points were manually
rotated and projected into the Y Z-plain. A scale was determined
by manual measurements as well. For the projection only points
in the area of the stairs itself and not those in the area right or left
aside were taken into account.

Real example, parameters determined manually, given below (300
2D points):

• number of steps: 3

• reference point:
»

0
−0.5

–
cm

• tread depth: 29.7 cm

• slope: 15.1/29.7



Figure 6: Real data: 3D points determined with software from
TU Berlin, projected into the Y Z-plain. 300 randomly chosen
points of originally more than 1200 points were used here. The
example contains no outliers because there were no objects stand-
ing on the stairs. The platforms below and above the stairs are
not represented here because there were no matches found by the
software.

Results The MAP Estimation as described above was made 30
times.

We get good results for the first example, here average and the
standard deviation.

• reference point
»
−10.75
−9.73

–
±
»

0.82
0.65

–
cm

• tread depth: 30.10± 0.14 cm

• slope: 19.01/30± 0.17/30

For the second example the estimation does not work well. The
reason is the bad approximation for both tread depth and slope.
So the model converges during the first run to an approximation
which is quite good only for some steps of the stairs. If the ref-
erence point is not on one of these steps, it cannot be determined
correctly. A solution for this probably is the change of the ref-
erence point to one of the good approximated steps. This could
not be tested yet. A bad approximation for the translation is no
problem here.

We also get good results for the real data. The starting values are
a good approximation here.

• reference point
»

0.61
−0.36

–
± 0.430.39 cm

• tread depth: 29.88± 0.26 cm

• slope: 15.15/29.7± 0.17/29.7

The difference between the starting value for the slope and its real
value (2cm) does not cause any problems here.

6 CONCLUSION

The paper is an investigation into the reconstruction of stairs from
2D point clouds with a generative model and MCMC techniques.
We construct a generative model with 6 parameters for 2D recon-
struction which can be extended to a 9 parameter model for 3D
reconstruction.

We use a MAP estimation to find the optimal parameters. The a-
posteriori distribution is used as scoring function for the MCMC
algorithm. Four of the six parameters of the 2D model are deter-
mined with the help of the first likelihood function. The determi-
nation of these four parameters is tested.

If the approximation for tread depth and slope is not too bad we
get quite exact results for the stair parameters. Admittedly the
scope here rather is not precision, but reliability. The reliability
has yet to be analysed more precisely. If the distance between
the starting values for tread depth and slope is too high improve-
ments are necessary. An approach could be to change the po-
sition of the reference point or another rejection criteria during
the MCMC process which accepts more results which lead to a
lower value for the scoring function. For the test data the prior
probability distributions have almost no influence on the results.
So more tests with weak data consisting of just a few points are
recommended to examine the priors.

The second likelihood function to determine the number of stairs
in a third run should be no problem. The approach can be ex-
tended to 3D if the step width is taken into account as parameter.
For this parameter a special likelihood function is needed because
the likelihood used at the moment is not sensitive if the width is
too high.

We have not yet tested to find the parameters with other common
methods. Therefore we cannot say if the MCMC approach is
really necessary and if it is better than other approaches. This
will be future work.

In the future there are many approaches possible to determine
different kinds of stairs with special models. For those detections
more criteria are needed to find an optimum.
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