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DIGITAL TOPOLOGY 

AZRIEL ROSENFELD 

Digital pictures are rectangular arrays of nonnegative numbers. The analysis of a digital 
picture usually involves "segmenting" it into parts and measuring various properties of and 
relationships among the parts. In particular, one often wants to separate out the connected 
components of a picture subset to determine the adjacency relationships among those compo- 
nents, to track and encode their borders, or to "thin" them down to "skeletons" that have no 
interiors, without changing their connectedness properties. There are standard algorithms for 
doing all of these tasks; but to prove that they work, one needs to establish some basic 
topological properties of digital picture subsets. This paper provides an introduction to the study 
of such properties, which we call digital topology. 

1. Introduction. Digital image processing or picture processing [I] is a rapidly growing 
discipline with broad applications in business (document reading), industry (automated 
assembly and inspection), medicine (radiology, hematology, etc.), and the environmental scien- 
ces (meteorology, geology, land-use management, etc.), among many other fields [2]. Most of 
this work involves picture analysis: given a picture, to construct a description of it in terms of 
the objects it contains or the regions of which it is composed and their properties and 
relationships. For example, a printed page is made up of characters on a background; a blood 
smear on a microscope slide contains blood cells on a background; a chest x-ray shows the 
heart, lungs, ribs, etc.; a satellite TV image of terrain is composed of terrain types; and so on. 
The process of decomposing a picture into regions, or into objects and background, is called 
segmentation. 

A picture is input to the computer by sampling its brightness values at a discrete grid 
of points, and digitizing or quantizing these values to a finite number of binary places. The result 
of this process is called a digitalpicture; it is a rectangular array of discrete values. The elements 
of this array are called pixels (short for "picture elements"), or sometimes simply points, and the 
value of a pixel is called its gray level. Segmentation is basically a process of assigning the pixels 
to classes; one simple way of doing this, called "thresholding," classifies the pixels according to 
whether or not their gray levels exceed a given threshold value t .  Methods of segmenting digital 
pictures will not be reviewed here; for an introduction to this subject see, e.g., [I, Chapter 81. 

Once a picture has been segmented into subsets, it can be described in terms of properties of 
these subsets and relationships among them. Some of these properties depend on the gray levels 
of the points that belong to a subset, but others are "geometrical" properties which depend only 
on the positions of these points. Especially basic are topological properties of the subsets, 
involving such concepts as adjacency and connectedness, but not size or shape. 

Topological properties of digital picture subsets are useful for a number of reasons. After a 
subset has been singled out, e.g., by thresholding, one usually wants to further segment it into 
connected regions, since these often correspond to distinct objects (characters, blood cells, etc.). 
One may also want to track the borders of these regions, since the sequences of moves around 
the borders provide a compact encoding of region shape. Alternatively, one may want to "thin" 
the regions into "skeletons," without changing their connectedness properties, since this too 
yields a compact representation (e.g., an elongated region is represented by a set of arcs or 
curves). The adjacency or surroundedness relations among the regions can be compactly 
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(a) Photomicrograph of some 
chromosomes. 
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(c) Result of thresholding (b) at gray 
level 40; values <40 are displayed 
as blanks, values 40 as 1's. 
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(b) Array of numerical values obtained by coarsely 
sampling (a). Characters blank, 1, 2,...,9, A, 
B,. . . ,V represent gray levels 0,1,. . . ,31; the same 
characters overstruck with periods represent levels 
32, 33 ,...,63. 
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(d) Move sequences representing the borders of 	 the 
connected components of 1's in (c); see the end of 
Section 5 for the code that is used. The starting 
point for each border is at the leftmost of its 
uppermost points, and the borders are followed 
clockvise. Note that two of the components (near 
the upper left) are diagonally adjacent. 
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represented by a graph whose nodes are the regions, and in which two nodes are joined by an 
arc iff those two regions are adjacent. 

Many algorithms exist for segmenting a picture subset into its connected components, border 
following, thinning, and constructing the adjacency graph of a partition of a picture; see, e.g., [I, 
Chapter 91. To prove that these algorithms work correctly, or even (in some cases) to state them 
precisely, it is necessary to establish some of the basic topological properties of digital picture 
subsets. This paper provides an introduction to the study of such properties, which we call digital 
topology. Of course, this is nothing more than the study of some simple properties of finite sets of 
lattice points; but it should be of interest because of the widespread practical use of these ideas 
in digital image processing. 

Section 2 introduces the concepts of adjacency and connectedness for digital picture subsets. 
Section 3 defines digital arcs and curves, and develops some of their basic properties. Section 4 
deals with thinning, Section 5 with border following, and Section 6 with adjacency and 
surroundedness. Only sketches of the proofs are given; a more detailed treatment can be found 
in [3, Chapter 21, which in turn is based on the material in [4]-[7]. 

Figure 1 shows a picture of some chromosomes, the corresponding array of coarsely sampled 
numerical values, a thresholded version of the picture containing ten connected objects, and a 
list of the move sequences representing the borders of these objects. 

2. Connectedness. We begin by formulating the concept of connectedness for subsets of a 
digital picture IT. For concreteness, we assume that IT is an array of lattice points having 
positive integer coordinates (x,y), where 1 G x G M, 1 G y G N. 

DEFINITION (x,y) are its four horizontal and vertical neighbors 2.la. The 4-neighbors of 
(x 2 1,y) and (x,y 2 1). 

DEFINITION2.lb. The &neighbors of (x,y) consist of its 4-neighbors together with its four 
diagonal neighbors (x + 1,y? 1) and (x - 1,y + 1). 

Note that if (x,y) is a border point of IT, i.e., if x = 1 or M,y = 1 or N, some of these neighbors 
do not exist. If the points P and Q of IT are neighbors, we call them (4- or 8-) adjacent. 

DEFINITION2.2. Let P,  Q  be points of IT. By a path from P to Q we mean a sequence of 
points P=P,,,P, ,...,P , = Q  such that Pi is a neighbor of Pi - , ,  1 < i < n .  

Note that this is two definitions in one, depending on whether "neighbor" means 4-neighbor or 
8-neighbor; we refer to these two types of paths as 4-path and 8-path, respectively. 

Let S be a nonempty subset of IT. To avoid special cases, we assume that S does not meet the 
border of IT. 

DEFINITION2.3. We say that P and Q are connected in S if there exists a path from P to Q 
consisting entirely of points of S.  

Again, this is two definitions in one; we speak of P and Q being 4-connected or &connected. 

PROPOSITION2.1. "Connectedness in S" is an equivalence relation. 

DEFINITION2.4. The equivalence classes defined by this relation are called the (connected) 
components of S.  If S has only one component, it is called connected. 

Let 3 be the complement of S.  

DEFINITION2.5. The unique component of $ that contains the border of IT is called the 
background of S; all other components, if any, are called holes in S.  If S has no holes, it is called 
simply connected. 

We shall see shortly that when we study connectedness in digital pictures, both 4- and 8- 
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definitions must be used-in fact, whichever one we use for S, we must use the other one for S. 
If II were a hexagonal rather than a rectangular array, there would be only one type ("6") of 
neighbor, connectedness, etc., which we could use for both S and S ;  but in practice, only 
rectangular arrays are used in digital image processing. 

Our definition of connectedness is an "arcwise" definition, rather than a definition in terms 
of open and closed sets. We can, however, define a topology on II in which the standard notion 
of connectedness reduces to our definition [8]. Let 

U(P)=U(x,y)={P), if x+y i sodd  

= { P'and its 4-neighbors), if x + y is even. 

If we take the U's as a basis for the open sets, then a set is connected in the resulting topology 
iff it is Cconnected as defined above. 

3. Arcs and curves. A commonly used method of shape analysis in digital picture processing 
involves reducing "thick" digital point sets to idealized "thin" forms-e.g., reducing elongated, 
simply connected objects to arcs, or objects that have a single hole to closed curves. We will 
discuss "thinning" processes of this sort in Section 4; but first we must introduce digital 
definitions of arcs and curves. 

DEFINITION3.1. S LIT is called an arc if it is connected, and all but two of its points (its 
"endpoints") have exactly two neighbors in S, while those two have exactly one. 

It is easily seen that an arc can be regarded as a path which neither crosses nor "touches" itself 
-i.e., its points can be numbered Q,, . . . , Qn so that Qi is a neighbor of Q iff i = j &  1. To rule out 
degenerate cases, we shall assume that an arc always has at least two points. Readily, S cannot 
be both a Carc and an 8-arc unless it is a horizontal or vertical straight line segment. 

PROPOSITION3.1. An arc is simp[y connected. 

REMARK.This proposition is not true if we use Cconnectedness for both the arc and its 
complement, since the 4-arc 

has a 4-hole. The proposition can be proved by induction on the number of points in the arc, 
using the fact that, if we delete an endpoint from an arc, the result is still an arc (if it has more 
than one point); the details, which involve an enumeration of cases, will not be given here. 

DEFINITION3.2. S SIT is called a curve if it is connected, and each of its points has exactly 
two neighbors in S.  

Readily, we can number the points of a curve Q,, . . . , Qn so that Qi is a neighbor of Q iff i=j + 1 
(modulo n). To rule out degenerate cases, we will assume that a Ccurve always has at least eight 
points; and an 8-curve, four points. Note that no S can be both a Ccurve and an 8-curve. 

PROPOSITION3.2. A curve has at most one hole. 

This follows from Proposition 3.1 and the fact that deleting any point from a curve makes it an 
arc. Note that it, too, is false if we use Cconnectedness for both S and $; for example the 

P P P  
P P P  
P P  P 

P P P  

has two Choles. Indeed, as we shall next see, if we use opposite types of connectedness for S and 
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3, then a curve has exactly one hole; but if we use 8-connectedness for both, then the 8-curve 

has no 8-holes. 

THEOREM3.3. A curve has exactly one hole. 

This is the Jordan Curve Theorem for digital curves. The proof is similar to a standard proof of 
the theorem for polygons. Let S be a curve, and P 4 S;  we say that P = (x,y) is "inside" S if the 
half-line H, = {(z,y)(x <z  < M) crosses S an odd number of times, and "outside" S otherwise. 
("Crosses" must be properly defined, since H, may meet S in runs of consecutive points; such a 
run is a crossing if S enters the run from the row above H and exits to the row below H, or vice 
versa.) It can then be shown that neighboring points of Sare either both inside or both outside 
S;  hence points in the same component of S are either all inside or all outside. The theorem 
follows from this and the fact that the inside and outside of a curve are both nonempty. 

We can also prove 

PROPOSITION a curve S is adjacent (in the sense of p s  connectedness) to 3.4. Every point of 
both components of 3. 
This follows readily from the fact that if we delete any point from S, it becomes an arc, which is 
simply connected. 

4. Thinning. The goal of thinning is to remove points from a set S without changing the 
connectedness properties of either S or S. The class of points which can be safely removed is 
characterized by the following proposition, in which N(P) denotes the set of 8-neighbors of P. 

PROPOSITION4.1. The following properties of the point P of S are all equivalent: 
(a) 	S n N(P) has the same number of components (in the S sense) as Sn [N(P)u { P )] 
(b) Sn N(P) has the same number of components (in the Ssense) as [ gn N(P)]u { P ) 
(c) 	Sn N(P) has just one component adjacent to P ("component" and "adjacent" in the S 

sense) 
(d) Sn N(P) has just one component adjacent to P ("component" and "adjacent" in the S 

sense) 
(e) 	S- { P ) has the same number of components (in the S sense) as S, and SU { P ) has the 

same number of components (in the Ssense) as 3. 

DEFINITION4.1. A point having the properties of Proposition 4.1 is called simple. 

Evidently, an isolated point of S (having no neighbors in S)  and an interior point of S (having all 
eight neighbors in S )  cannot be simple; while an end point of S (having exactly one neighbor in 
S )  is always simple. The proof of the last part of the proposition is not trivial; it requires use of 
Proposition 3.4. 

It follows from Proposition 4.1 that if S is simply connected, and P E S is not an isolated, 
interior, or simple point, then S- { P )  is not connected, but consists of components that are 
simply connected. Using this observation, we can show, using induction on the number of points 
in S, that if S is simply connected and has more than two points it must have at least two simple 
points. In fact, we can show that if S has only two simple points, they must both be ends, and 
that if S has an interior point it has a simple point that is not an end. 

These remarks provide a basis for defining a crude thinning process for simply connected sets 
S. We repeatedly delete from S simple points that are not ends; each such deletion leaves S 
simply connected. When no further deletion is possible, S can no longer have interior points and 
so is (relatively) "thin." Note that the result depends on the order in which the points are 
deleted. We can also establish the following neat characterization of arcs: 
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THEOREM4.2. S is an arc iff it is simply connected and has exactly two simple points. 

Analogous remarks can be made about connected S's that have only one hole; by Proposi- 
tion 4.1, if P E S  is not isolated, interior, or simple, then S- { P )  is either simply connected or 
not connected. This allows us to prove 

THEOREM4.3. S is a curve iff it is connected, has exactly one hole, and has no simple points. 

It follows that a connected S having just one hole can be thnned to a curve by repeatedly 
deleting its simple points. As a further corollary, we obtain a converse to the digital Jordan 
Curve Theorem: 

COROLLARY4.4. Let S be connected, let Shave exactly two components, and let every point of S 
be adjacent (in the Ssense) to both of these components; then S is a curve. 

The hypothesis that S is connected is unnecessary, as we shall see in Section 6. 

5. Border following. A set S CII can be represented by specifying its borders; each border 
can be specified by defining a starting point and a sequence of moves from neighbor to 
neighbor. This representation, which is often quite compact, is very commonly used in image 
processing. In this section we define the border representation and give an algorithm for 
constructing it. We sketch a proof that this algorithm is valid, based on the results of Section 4. 

DEFINITION5.1. The border of SGIl is the set of points of S that have Cneighbors in $. 

One could also define a "thicker" border consisting of points that have 8-neighbors in S;  but the 
4-neighbor definition is the one usually used. 

The border of S consists, in general, of many parts, since S may have many components, 
each of which has many holes. In order to define border following, we must single out one of 
these parts at a time: 

DEFINITION5.2. Let C be a component of S and D a component of % The D-border of C is 
the set of points of C that have Cneighbors in D. We denote this border by C,. 

We now describe an algorithm that successively visits all the points of the D-border of C. We 
assume that C is Cconnected and D 8-connected; that C has more than one point; and that we 
are given an initial pair of Cneighboring points PoE C, QoE D, which we assume to be 
distinctively marked. The algorithm, which we call BF,, specifies how to find a new point pair 
(Pi+ ,,Q,+ ,), given the current pair (P,,Qi). 

BF, operates as follows: Let the 8-neighbors of Pi, in clockwise order starting with Q,, be 
R,, = Q,, R,, . . . ,Rig. Let Ro be the first of the R's that is in C and is a Cneighbor of Pi (i.e., j is 
odd); such an Ro must exist, since C is Cconnected and has more than one point. If Rij-, is in 
D, take Ro as Pi+ and Rij-, as Q,+ ,; otherwise, take Rid-, as Pi+, and Rij-, as Qi+,. If, for 
some i > 0, Pi is Poand one of R,,, . . . ,Rij is Qo, stop. 

To illustrate the operation of BF,, we give a simple example. Let C be the set of P's shown 
below; the blanks are in 3,  while P *  is in S but not in C. Let Pobe the P on the third row, and 
let Qo be the blank on its left. Then the successive steps of BF, are as follows: 

Input: 
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Step 1. 

P* Here Ro3 = PI, Ro2= Q,. 


R02 P 

Qo Po 


P P 


Step 2. 

R ~ 2R13 P* Here RI7 = P2, R,, = Q2. Note that 

QI P I  R15 R14= P* is in S, but is ignored. 


R16 

P P 

Step 3. 

P* Here R2, = P3, R2, = Q3 (= Q2). Note 
P that P2=Po, but the algorithm 

P, Q2 does not stop since Qo is not 

P P one of R2,, R2,, R23. 


Step 4. 

P* Here R37 = P4, R3, = Q4. 
P 


P Q3 R32 

P P3 R33 

R36 R35 R34 


Step 5. 

P* Here R4, = P,, R, = Q5 
P 


R44 P 

R43 P4 P 

4 2  Q4 

Step 6. 

P* Here P, = Po and Q5= Q,, so the 

P algorithm stops. 


Qs P 5  


P P 


It is easily seen that the successive Pi's chosen by BF4 are Cconnected to each other in S 
(though they may not be Cneighbors); the successive Qi's are 8-connected to each other in $; 
and Pi is Cadjacent to Qi. Thus the Pi's are all in C, the Qi's all in D, and the Pi's are all on the 
D-border of C. The proof that the Pi's constitute the entire D-border can be outlined as follows: 
Readily, the operation of BF4 is unaffected if all points of except those in D (and in the 
background component) are transferred from $ to S ;  hence it suffices to prove the assertion for 
C's that have at most one hole. For simply connected C's, we can use induction on the number 
of points in C; by Section 4, C has simple points, and readily if BF4 works when a simple point 
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is deleted, it still works when the point is present. For C's with one hole, we can first show that 
BF4 works if C is a curve and then use a similar induction argument based on Theorem 4.3. 

The algorithm ("BF,") for the case where C is 8-connected and D Cconnected is very similar. 
Here we simply let RU be the first of the R's that is in C, and take Pi+,=Rg, Qi+, =Rij- ,. Thus 
Pi+,is an 8-neighbor of Pi, and Qi+, is 4-connected in S to Q. Incidentally, our choice of 
clockwise order for the R's implies that borders are followed keeping C on the right; thus the 
outer border of C is followed clockwise, and its hole borders counterclockwise. (On the meaning 
of "outer border" and "hole border," see Proposition 6.2.) 

Since the successive Pi's chosen by BF4 or BF, are 8-neighbors of each other, we can specify 
the D-border of C by giving the position of the starting point Potogether with a string of 3-bit 
numbers (0,. . . ,7) representing the moves from one Pi to the next. For example, we can use the 
code 

to represent these moves (mnemonic: code i corresponds to a move in direction 45i0). This 
representation is called a chain code. 

To reconstruct C from its borders, we need to know the pair of points (Po, Qo) and the chain 
code for each border CD. It is then straightforward to mark the points of C,, as well as a band 
of points in D adjacent to CD, for each D. When this has been done, it is easy to "color in" the 
interior of C. Note that if we had not marked the points in D that adjoin C, it would not be easy 
to decide which side of the D-border of C is interior to C. 

6. The adjacency tree. Given SLIT, the components of S and Spartition IT into connected 
regions. A useful way of (partially) describing a partition of II is in terms of its adjacency graph, 
which specifies the regions and their adjacencies. When the partition consists of the components 
of a set and its complement, we can show that its adjacency graph is a tree. It can also be shown 
that if a component of S and a component of Sare adjacent, one of them surrounds the other; 
thus, under the relationship "surrounds," the tree becomes a directed tree. In this section we 
define these concepts more precisely and sketch the proofs of these assertions (which, inciden- 
tally, are true only when we use opposite types of connectedness for S and $). 

DEFINITION6.1. Let S = {S,,. . . ,S,,) be a partition of IT. The adjacency graph 9 of this 
partition is the graph whose node set is S ,  and in which two nodes Si,S,. are joined by an arc iff 
the sets Si and S,. are adjacent (i.e., some point of Si is a neighbor of some point of S,.). 

When S consists of the connected components of S and S, we shall denote its adjacency graph 
by 8,. In this case it does not matter whether we use Cneighbors or 8-neighbors to define the 
adjacency relationship, since if a component of S and a component of $ are 8-adjacent, they 
must also be Cadjacent. 

THEOREM6.1. 8, is a tree. 

Sketch of proof: We must show that 9, does not contain a cycle. Let T be a component of S 
and U, V components of Sthat are adjacent to T (or vice versa); then any path from U to V, in 
the sense of the connectedness of S, must meet T, since otherwise the regions encountered by 
the path, together with T, would constitute a cycle. If we knew that U and V had to be in 
different components of T, then no path between them could lie entirely in T. Suppose they 
were in the same component W of T; since they are both adjacent to T, they would both have to 
meet WT,the T-border of W .  But since B F  works, we know that WT is connected (in the S 
sense); and evidently WT g, since points of T that are adjacent to the component T of S 
cannot be in S .  Thus U and V cannot both meet WT,since they are different components of $; 
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hence they cannot be in the same component of T, so that T separates them, which proves that 
4,has no cycles. 

DEFINITION6.2. Let A, B be any subsets of TI. We say that A surrounds B if any 4-path from 
B to the border of TI meets A. 

PROPOSITION6.2. Let C, D be adjacent components of S,  $ respectively; then either C 
surrounds D or D surrounds C .  Moreover, exactly one component of Ssurroundr each component of 
S (and vice versa, for non-background components of g). 

Sketch of proof: As seen in the proof of Theorem 6.1, two D's cannot be in the same 
component of C;hence at most one D can be in the background component, so that all others 
are in holes and so are surrounded by C .  On the other hand, there does exist a Do not 
surrounded by C (e.g., the point just to the right of a rightmost point of C is in such a Do). On 
any 4-path from C to the border of TI, let Pi be the last point of C; then Pi+,  is in some D, but is 
not surrounded by C,  hence is in Do, so that Do surrounds C. These observations also give us 

THEOREM6.3. Under the relation "surrounds," 4, can be regarded as a directed tree, with the 
background component of S as root. 

We can also prove the promised stronger version of Corollary 4.4. Let U, V be components of 
S and W, Z components of 3; then U,  V cannot both be adjacent to both W and Z ,  since this 
would imply that '3, contained the cycle U, W, V, Z .  Thus if i!f has two components, and every 
point of S is adjacent to both of them, S cannot have two components, and so is connected. This 
proves 

PROPOSITION6.4. If S has two components, and every point of S is adjacent to both of them, S is 
a curve. 

7. Concluding remarks. Many other topics could have been included in this paper; the study 
of geometrical properties of digital picture subsets ("digital geometry") has a rapidly growing 
literature. Some additional references on digital topology are [9], on homotopy; [lo], on 
dimension; [ll], on genus; [12]-[14], on shrinking, and [IS]-[16], on thinning; as well as [17], 
which provides an alternative approach to some of the basic results. Other areas of digital 
geometry deal with natural metrics on digital pictures [18]; with perimeter and diameter 
measurement [19]-[21] and the isoperimetric inequality [22]; and with geodesics [23]. There is 
also considerable literature on convexity (e.g., [24]-[25]: When can a digital object be the 
digitization of a convex object?) and straightness (e.g., [26]: When can a chain code be 
the digitization of a straight line?). It is hoped that this paper will help bring this work to 
the attention of mathematicians. 

The support of the National Science Foundation under Grant MCS-76-23763 is gratefully acknowledged, as is 
the help of Ms. Kathryn Riley in preparing this paper. 
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FINDING HOW MANY ROOTS A POLYNOMIAL HAS IN (0 , l )  OR (0, co) 

JOHN W. PRATT 

1. Introduction and Summary. A real polynomial is given, perhaps of high degree. We are 
interested in its roots either in (0, 1) or (0, oo). We suspect there is either none or one. Is there an 
easier way to prove it than Sturm's theorem if Descartes's rule does not suffice? This paper gives 
one, involving little more than simple addition. 

The question was motivated by "internal rates of return" or "equivalent annual interest 
rates." Let co,c,, . . . ,c, be a given sequence of positive and negative cash flows, representing the 
anticipated after-tax returns at times 0, 1,. ..,n of a project under consideration, or the dif- 
ferences between those of two projects to be compared. At interest rate r, the total accumulated 
value of the 9 at time n would be Z 9 ( l +  r)"-j. The corresponding value in present dollars, or 
"present value," is ZqxJ ,  where x =  l / ( l  + r )  is the one-period "discount factor"; it has 
advantages of vividness, comparability across horizons n, and for our purposes, of coefficients 
which are directly at hand. As the appropriate rate r is often debatable, special interest attaches 
to rates at which the present or equivalently accumulated value is 0, called "internal rates of 

The author received his Ph.D. from Stanford (in Statistics) with S. Karlin. After being a Research Associate in 
Statistics at the University of Chicago, he joined the faculty at Harvard, where he is now a professor in the 
Graduate School of Business Administration. His research interests are in decision theory, statistics, and 
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