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Abstract—Self-taught learning (STL) has become a promis-
ing paradigm to exploit unlabeled data for classification. The
most commonly used approach to self-taught learning is sparse
representation, in which it is assumed that each sample can
be represented by a weighted linear combination of elements
of a unlabeled dictionary. This paper proposes discriminative
archetypal self-taught learning for the application of landcover
classification, in which unlabeled discriminative archetypal sam-
ples are selected to build a powerful dictionary. Our main
contribution is to present an approach which utilizes reversible
jump Markov chain Monte Carlo method to jointly determine
the best set of archetypes and the number of elements to
build the dictionary. Experiments are conducted using synthetic
data, a multi-spectral Landsat 7 image of a study area in
the Ukraine and the Zurich benchmark data set comprising
20 multispectral Quickbird images. Our results confirm that
the proposed approach can learn discriminative features for
classification and show better classification results compared to
self-taught learning with the original feature representation and
compared to randomly initialized archetypal dictionaries.

I. INTRODUCTION

Landcover classification is one of the major topics within
the remote sensing community. In this context, multiple
paradigms has been introduced covering supervised, semi-
supervised or transfer learning. Semi-supervised learning has
become popular, because it exploits unlabeled data to improve
over supervised classification models [1]. However, semisuper-
vised learning is limited to the assumption that both labeled
and unlabeled data follow the same distribution. In contrast
to this, self-taught learning (STL, [2]) utilizes both labeled
and unlabeled data without the requirement that both sets
have to share the same distribution. This makes the approach
suitable for classification tasks using satellite remote sensing
data, where generally massive amounts of unlabeled data with
unknown distribution exists.

The most common approach to STL is sparse representation,
in which each sample is approximated by a weighted linear
combination of a few elements of a dictionary. The dictionary
is learned from unlabeled data and thus, the choice of the
elements is crucial for the classification result. One major
difference in dictionary learning is either to select repre-
sentative samples from a large set such as cluster centers

obtained by k-means [3] or archetypes [4], or to learn an
adapted dictionary with methods like K-SVD [5]. The latter
one may result in a better reconstruction of samples, however,
the learned dictionary elements are no real data samples
anymore and therefore, not interpretable. In many applications,
such as unmixing or classification with limited user-interaction
interpretable elements are required (e.g., [6], [7], [8]), so that
a selection of suitable elements is preferable.

STL has become famous in the context of unsupervised
feature learning for classification tasks. Specifically, the ob-
tained sparse coefficient vector is used as higher-level feature
representation, which serves as input into a classifier. In
contrast to unmixing tasks, where a high reconstruction ability
is necessary, dictionary elements for classification should lead
to a high discrimination power of the new feature represen-
tation. For example, [4] show that STL in combination with
archetypal dictionaries lead to higher classfication accuracies
than using the original feature representation. However, finding
the best set of archetypes is still an open research question and
strongly related to topics in the deep learning community [9]
or for unmixing remote sensing data [10]. Approaches such as
e.g. N-FINDR [11] are commonly used, but may return a local
optimum and thus, a sub-optimal result with low classification
accuracies. Another possible solution would be to design
overcomplete dictionaries with a large amount of archetypes.
However, this is not appropriate for STL, since generally
the number of training samples is low and an overcomplete
dictionary would lead to a too diverse, inappropriate feature
representation.

In this paper, we propose an approach which utilizes re-
versible jump Markov chain Monte Carlo (rjMCMC, [12])
method to identify a suitable set of discriminative archetypes.
As criteria to evaluate the set of archetypes during optimiza-
tion, we use the reconstruction error of sparse representation
with the current archetypal dictionary and the logistic regres-
sion error function value of the new feature representation
to ensure a high discrimination power. We show in our
experiments that the extracted archetypal dictionaries provide
discriminative features for classification.



II. SELF-TAUGHT LEARNING

The self-taught learning procedure uses labeled training data
and unlabeled data, which can belong to arbitrary classes
and need not to follow the same distribution as the labeled
data. The training set is given by

(
lxn,

lyn
)
, n = 1, . . . , N

of N labeled samples with M -dimensional feature vectors
lxn ∈ IRM and class labels lyn ∈ C = {1, . . . , c, . . . , C}.
The unlabeled data set is denoted by uxp, p = 1, . . . , P and
the test data is given by txq , q = 1, . . . , Q. It must be noted
that the test data, used for evaluation purposes, follows the
same distribution as the labeled training data.

A. Sparse Representation
In terms of sparse coding a training sample lxn is repre-

sented by a weighted linear combination of a few elements
taken from a (M × T )-dimensional dictionary D, so that

lxn = D lαn + γ (1)

with ‖γ‖2 being the reconstruction error (see Fig. 1). The
dictionary D = [dt] is embodied by unlabeled data samples
such that {dt} ∈ {uxp}, where generally T ≤ P with T
as the number of dictionary elements. The coefficient vector
comprising the weights is given by lαn. The optimization
problem for the determination of optimal lα̂ is given by

lα̂n = argmin
αn

‖D lαn − lxn‖2, (2)

subject to ‖lαn‖0> Z, lαn ≥ 0 (3)

where the first term is the reconstruction error and the second
term is the L0-norm enforcing sparsity. We further introduce a
non-negativity constraint. We solve the equation with orthog-
onal matching pursuit in combination with non-negative least
squares optimization.

A classifier model is trained with
[
lα̂n

]
being the new

higher-level feature representations of
[
lxn

]
with respect to

the dictionary D. In the same way, higher-level features are
extracted for test samples txq , which are classified by the
learned model.

[xn]

=

D [αn]

+ γ

M ×N M × T

T ×N

Fig. 1. Self-taught learning with sparse representation: Each sample xn is
represented by a weighted linear combination of a few elements taken from
a (M × T )-dimensional dictionary D, which contains only unlabeled data.
Learned weights are used as new data representation for classification.

III. ARCHETYPAL DICTIONARY LEARNING

The dictionary is constructed by archetypal analysis, which
was introduced by [13] as a variant of principal component
analysis (PCA). PCA achieves a sparse data approximation by
decomposing a data matrix to X ≈ WH , where X = [xn],
W is a set of basis vectors and H are the coefficients for
data reconstruction. The signs in W and H are arbitrary and
thus, the basis vectors have no interpretable physical meaning.
Archetypal analysis therefore restricts the basis vectors in W
to lie within the column space of X , i.e.the basis vectors are
real data points or positive combinations of real data points.
This, on the one hand, leads to an improved interpretability
of the low rank approximations. On the other hand, the
algorithmic complexity to find the basis vectors scales quadrat-
ically with the size of the data. As a consequence, archetypal
analysis is not suitable for typically large hyperspectral data
sets. Therefore, [14] introduced a greedy approach called
simplex volume maximization (SiVM), which restricts the
basis vectors to data points lying on the approximation of
the convex hull of the data matrix. This means that each data
point can be expressed as a linear combination of the most
extreme data points, the archetypes. The basic idea of this
approach is to successively collect archetypes by choosing
this sample as archetype, which is farthest away from all
former selected ones. This is equivalent to maximizing the
volume, which is spanned by the archetypes. SiVM was first
applied for unsupervised classification of hyperspectral data
in [8] using the coefficients as higher-level features to express
similarities to archetypes. In this paper, for the construction of
archetypal dictionaries only unlabeled data samples are used,
which are collected in the same image which is meant to be
classified. Assuming the test data follows the same distribution
as the labeled data, in this way, the test data lies within
the convex hull of the extracted archetypes. Generally, sparse
representation with archetypal dictionaries is performed with
an additional sum-to-one constraint. However, in recent and
former experiments (e.g., [15]) we could observe that using
this constraint led to a decrease in accuracy. Therefore, we
only use non-negativity constraint.

The disadvantage of archetypal analysis is that the final
set of T archetypes D depends on the starting point, and
as a result, there is no unique solution to the final set.
Especially, if the number of archetypes in the dictionary is low,
various solutions lead to significantly different accuracies. To
overcome this problem, we propose an optimization procedure
to find the best set of archetypes from a large set of pre-
selected ones, called the initial set. In more detail, our task is
to find the set of archetypes D which minimizes the energy

U(D) = − log (e) + ‖γ‖2 , (4)

where we couple the sparse representation reconstruction error
γ which is obtained by using the current set of archetypes
as dictionary D, and the logistic regression error function
value e using the feature representation obtained by this sparse



Fig. 2. Toy example data set.

representation. The value of e is obtained using the cross-
validation error of the training data. This way we achieve a set
of archetypes that fulfill both requirements, leading to a good
reconstruction, which makes the resulting set interpretable,
and having good discriminative properties. The energy U
is a complex function with rough landscape and unknown
dimensionality due to the unknown number of archetypes.
Therefore, we optimize with rjMCMC coupled with simulated
annealing to find the global optimum. Introducing the temper-
ature parameter K, the optimizer is given by

D̂ = argmin
D

U (D)

Kk
, lim

k→∞
Kk = 0 . (5)

While MCMC is dedicated to sample from probably unnor-
malized densities, simulated annealing allows to make a point
estimate of its global optimum. Using simulated annealing we
create a Markov chain, such that the samples explore the whole
state space in the beginning and gradually concentrate around
the global optimum of the energy function U . In this way
we avoid trapping into local optima, as it is usually the case
for greedy algorithms. We use the so called birth an death
algorithm [16] to sample from the space of possible sets of
archetypes, which turns out to be a special type of Green’s
rjMCMC sampler [17].

IV. EXPERIMENTAL SETUP AND RESULTS

A. Data Sets

In our experiments we use one synthetic data set and two
real world data sets to show the performance of our proposed
approach.

1) Toy Example: The synthetic data set consists of non-
linearly separable four corner shaped clusters of 2 classes1

serving as training and test data, and a mixture of Gaussian
distributed unlabeled data (see Fig. 2). The data set is ran-
domly sampled in each run, where 100 runs are conducted in
our experiments.

2) Ukraine Data Set: We use a Landsat 7 image acquired
in November, 2010, covering a study area in western Ukraine

1http://www.junuxx.net/datasets.zip

Fig. 3. Map of the study area in western Ukraine.

(see Fig. 3). The thermal and panchromatic band were removed
resulting in six spectral bands ranging from blue to shortwave-
infrared. Training and reference data were acquired during an
extensive field campaign in 2012 [18] resulting in 357 test
data samples and 62808 training samples, from which we
use a fraction for our experiments. We randomly sampled 10
different training sets, while keeping the test set fixed, and
report the average accuracies. Both training and test set are
spatially disjoint. We are aiming at five land cover classes,
namely CROPLAND, PASTURE, FALLOW, FOREST and URBAN.

Fig. 4. Zurich data set, images # 1 and # 2.

3) Zurich Data Set: As second real world data set we use
the Zurich data set [20]2, consisting of 20 multispectral VHR
images acquired over the city of Zurich by the Quickbird satel-
lite. Two of the images are illustrated in Fig. 4. The images
have 4 spectral bands (R-G-B-NIR) and a spatial resolution
of approximately 0.61m/pixel. The classification task aims at
8 land cover classes (ROADS, BUILDINGS, TREES, GRASS,
BARE SOIL, WATER, RAILS, POOLS). For our experiments
we performed a leave-one-out estimation, i.e. we trained the
classifier on 19 images and tested on the remaining image. We
use a subset of training samples of approximately 350 samples
for each run.

2https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset



B. Experimental Setup

For the Ukraine and Zurich data sets, the archetypal dic-
tionary was learned from all unlabeled data samples in the
image. Since our data set contains outliers, which may be
chosen as archetype, we compute the local outlier factor [19]
for each point and its ten nearest neighbors and remove all
samples, which value is too high. Our data is pre-processed
using global contrast normalization [9]:

x′b =
xb − x̄b

max
(
ε,
√
λ+ σb

) , (6)

where x′b is the normalized pixel, xb is the non-normalized
pixel, x̄b is the mean over all pixels in image band b, σb is
the standard deviation of all pixels in image band b and λ is
a positive regularization parameter, set to λ = 100, in order
to bias the standard deviation estimation. The denominator is
constrained to be at least ε = 10−4.

In our parameter settings we fixed the number of non-zero
elements for sparse representation to W = 5. For rjMCMC,
we use a geometric temperature schedule, using α = 0.9999
and a start temperature T0 = 0.2. The latter was determined
empirically, such that the average acceptance rate at beginning
was around 70%. Please note, that the optimization procedure
is guarantied to find the global optimum, as long as we
cool down the system logarithmically, which is not feasible
in practice. By choosing a slow geometric cooling scheme
we try to find a balance between speed and stable results.
The initial set of archetypes for our proposed approach is
accumulated by using each training sample as initialization
for SiVM, whereas finally redundant archetypes are removed.
In more detail, using an arbitrary training sample as initial
point, the first archetype is defined as the sample with the
largest distance to the initial point. For each initialization,
ten archetypes are selected. For evaluation, we compare the
classification accuracy obtained by using the original features
(OriFeat), the accuracy obtained by randomly initialized
archetypes (ATrandInit) and the accuracy obtained by our
proposed approach (ATbest). In all cases, we use a logistic
regression classifier. For ATrandInit we use the same
number of archetypes as estimated by our approach. We report
overall accuracy, average accuracy and kappa coefficient.

C. Results

1) Toy Example: Fig. 5 shows the overall accuracy of
the compared approaches. Our approach ATbest obtained
the highest accuracy with the lowest standard deviation. The
classification accuracy obtained by using the original features
(OriFeat) yielded the worst result, since the features are
not linearly separable and the global optimum of logistic
regression classifier is reached if approximately all samples
are assigned to one class. ATrandInit shows the highest
standard deviation, which underlines the fact that the set
of archetypes highly influences the classification accuracy.
However, information from unlabeled data can help to find
a better data representation.

Fig. 5. Overall accuracies of toy example data set.

2) Ukraine Data Set: Fig. 6 shows the obtained classifica-
tion results for the Ukraine data set when using 20 and 30
training samples per class, respectively. The results show that
the obtained results using our approach with the new feature
representation (ATbest) is slightly better than using logistic
regression with the original feature representation (OriFeat).
The worst result was obtained by ATrandInit, underlining
the fact that the accuracy highly depends on the initialization.
However, we observed that the training data and test data did
not accurately follow the same underlying distribution, which
results in a drop in accuracy. ATbest achieved the lowest
standard deviation, especially for the overall accuracy, and
thus, our proposed approach turned out to be more stable
than OriFeat and ATrandInit. The average number of
used dictionary elements is 10 with a standard deviation of
approximately 2 elements. Although the standard deviation is
low, the number of used dictionary elements obtained by our
approach is in the range of 7 and 14.

(a) Overall accuracy (b) Average accuracy

Fig. 7. Accuracies for the Zurich data set.

3) Zurich Data Set: The Zurich data set underlines similar
findings as the previous data set, as presented in Fig. 7. In
this case, standard deviations are not reported since not all
classes are present in all images and thus, the results differ
vastly. In contrast to the Ukraine data set, also ATrandInit
achieve better results than OriFeat. The plots show that
our proposed method is able to find discriminative archetypal
dictionaries by choosing suitable dictionary elements and their
number. The average number of used dictionary elements is
22 with a standard deviation of approximately 6 elements, i.e.
that although the images are similar the best number of used
dictionary elements differ and should be determined during the
optimization procedure to ensure a good classification result.



(a) Overall accuracy using 20
training samples per class

(b) Average accuracy using 20
training samples per class

(c) Overall accuracy using 30
training samples per class

(d) Average accuracy using 30
training samples per class

Fig. 6. Overall and average classification accuracy for the Ukraine data set.

V. CONCLUSION

We presented an approach to learn discriminative archetypal
dictionaries from unlabeled data used for self-taught learning.
This approach is an extension to the work presented in [4] and
is able to provide a new discriminative feature representation,
which can be more suitable for classification than using
the original feature representation. To find the best set of
archetypes we utilize reversible jump Markov Chain Monte
Carlo method to jointly determine the elements and the number
of elements to build the dictionary. Our results underlined a
gain in accuracy, especially if the number of training samples
is small. The presented approach is promising and expandable
since e.g., additional structured sparsity like group sparsity
priors can be introduced in order to further increase the
accuracy. Our future research will focus on learning structured
priors for archetypal dictionaries, which can be seen as an
further extension to selected the most suitable archetypes for
classification purposes. We are convinced that our findings are
also useful in other research communities such as these ones
focusing on unmixing.
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