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ABSTRACT
This paper presents a superpixel-based classifier for landcover
mapping of hyperspectral image data. The approach relies on
the sparse representation of each pixel by a weighted linear
combination of the training data. Spatial information is incor-
porated by using a coarse patch-based neighborhood around
each pixel as well as data-adapted superpixels. The classifica-
tion is done via a hierarchical conditional random field, which
utilizes the sparse-representation output and models spatial
and hierarchical structures in the hyperspectral image. The
experiments show that the proposed approach results in supe-
rior accuracies in comparison to sparse-representation based
classifiers that solely use a patch-based neighborhood.

Index Terms— Sparse coding, sparse representation, su-
perpixel, hyperspectral, random field

1. INTRODUCTION

Hyperspectral imagery provides detailed and spectrally con-
tinuous spatial information on the land surface, while it is well
known that increasing data dimensionality and high redun-
dancy between features might cause problems during image
analysis. Thus, different state-of-the-art classification meth-
ods have emerged over the past years, including support vec-
tor machines (SVM), ensemble based learning or classifiers
based on multinomial logistic regression ([1], [2]). Recently,
also sparse-representation based classifier, which use sparse
coding strategies, have been introduced in the context of hy-
perspectral image classification. It could be shown that they
achieve similar results as the state-of-the-art classifiers ([3],
[4], [5]). Sparse coding strategies reconstruct a sample of in-
terest as a sparse weighted linear combination of a few basis
vectors chosen from a so-called dictionary. A dictionary is
constructed either as the whole set of training vectors ([4],
[6]) or by learning an adequate subset from the training vec-
tors (e.g. [7], [8]).

One of the most important developments for sparse
representation-based classifier for hyperspectral image clas-
sification is the incorporation of spatial information. This is
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either done via dictionary learning or via the sparse coding
procedure, i.e. the estimation of the sparse parameter vector
within the linear combination used for sparse representation.
Many proposed approaches assume that remote sensing im-
ages are smooth, i.e. neighbored pixels tend to have similar
spectral characteristic, and thus, exploit the spatial correla-
tion within the sparse coding procedure ([5], [6]). However,
such approaches only assumes a rectangular, i.e. patch-based,
homogeneous neighborhood with similar spectral features.
Therefore, actual class transitions, i.e. boundaries between
classes within the image and regions of the same class, which
show different spectral properties, cannot be considered. In
order to mitigate the influence of this problem, e.g. [9] and
[10] introduced different weights for all neighboring pixels
depending on their similarity to the pixel of interest.

Instead of using a patch-based neighborhood, a more
adapted neighborhood in terms of superpixels can be used.
Superpixels, i.e. compact image segments composed of sim-
ilar pixels, have recently emerged for remote sensing image
analysis ([11], [12]) and show promising results regarding
the classification accuracy. Since they group pixels of similar
information they reduce the redundancy in the image and
thus the size of the input for processing steps. While the
patch-based joint sparsity model of [6] classifies each pixel
separately, the superpixel-based approach classifies all pixels
within a superpixel simultaneously. This makes the approach
more efficient, but can also lead to misclassifications if the
segmentation is not appropriate or the spectral features are
not represented well by the training data. Moreover, since
the sparse representation is performed only once per super-
pixel, generally, misclassifications affects a number of pixels
depending on the superpixel size.

In this paper, the output of the superpixel-based sparse
representation and the patch-based sparse representation are
combined into a hierarchical conditional random field (CRF,
[13, 14]). The combination proves to be beneficial because
it considers information of a variety of neighbored pixels
while at the same time being aware of object boundaries.
The CRF enforces a smooth labeling by favoring neighbor-
ing pixel as well as neighboring superpixels to get the same
class label. Moreover, a hierarchy is introduced in order con-
nect the patch-based classification and the superpixel-based



classification and the pixels in it are pushed to get the same
labels.

The following section describes the used methods com-
prising the sparse representation of images and the construc-
tion and optimization of the CRF. Sec. 3 comprises experi-
ments to show performance of the proposed approach.

2. METHODS

The proposed classification procedure can be divided into 3
steps. In the first step a superpixel segmentation is obtained
using the SLIC algorithm [15]. In the second step, the seg-
mented image and the original image are both sparsely repre-
sented using the joint sparsity model of [6]. The class-wise
reconstruction errors serve as input in the hierarchical CRF
which provides the final labeling. The graph structure of the
CRF is constructed by connecting neighbored pixels and su-
perpixels and each superpixel with all pixels in it.

2.1. Sparse Coding

In terms of basic sparse coding a (M × 1)-dimensional test
sample x can be represented by a linear combination of a few
training samples collected in a (M ×D)-dimensional dictio-
nary D, so that x = D1α1+ . . .+DKαK = Dα, whereas α
consists of the class-wise sparse parameter vectors Pαk with
k ∈ {1, . . . ,K}, which are multiplied with the class-wise
sub-dictionaries Dk. The optimization problem is given by

α̂ = argmin ‖Dα− x‖b (1)
subject to ‖α̂‖0 < W,

yielding a sparse parameter vector α̂, whereas W is the num-
ber of nonzero elements and b specifies the used norm.

In order to incorporate neighbored pixels the reconstruc-
tion step is extended to a joint sparsity model so that the pixel
of interest and their neighbors X = [x1, . . . ,xN ] are recon-
structed with the same dictionary elements, however, allow-
ing for different weights A = [α1, . . . ,αN ]. The set of all
pixels within the patch or the superpixel is given by N and
the number of elements is N . The optimization problem is
than given by

Â = argmin ‖DA− X‖F (2)

subject to ‖Â‖row,0 < K,

where ‖Â‖row,0 is the number of nonzero rows and F is the
Frobenius norm. E.g. the problem can be solved with SOMP
[6, 16].

The class-wise reconstruction error of the test sample x is
derived by

r(k,x) = ‖x− Dkα̂k‖2. (3)

Ideally the test sample x belonging to class k can be recon-
structed best by using only dictionary elements from Dk. The

mean reconstruction error

r(k,X ) =
1

N

∑
i∈N
‖xi − Dkα̂ki ‖2. (4)

Both serve as input in the CRF.

2.2. Conditional Random Field

Given an image I that contains J pixel and S superpixel, the
task is to classify each superpixel X s with s ∈ {1, . . . , S}. A
hierarchical CRF is employed in order to model prior knowl-
edge about the neighborhood relations of the pixels and su-
perpixels within the image and between the layers, whereas
one layer contains the pixel and one layer contains the su-
perpixel. Within the CRF graph a superpixel is connected to
all its neighors and to all pixels which lie in the superpixel.
Additionally, each pixel is connected to its neighbors. The
best patch-based classification P y and superpixel-based clas-
sification Sy based on the image data X is estimated by the
argument of the minimum of the energy

E(P y, Sy) =
∑
j

r(P yj ,xj) + δ
∑
s

r(Sys,X s) (5)

− β
∑

{j,l}∈PQ

cos(xj ,xl)δ
(
P yj ,

P yl
)

− β
∑

{s,t}∈SQ

cos(xs,xt)δ
(
Sys,

Syt
)

− γ
∑

{s,j}∈LQ

cos(xs,xj)δ
(
Sys,
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)
,

where the first two terms are the unary terms and the rest
are the binary terms, δ is the Kronecker delta function, xs
is the mean feature of all pixels in the s-th superpixel, SQ
is the set of all neighboring superpixels, PQ is the set of all
neighboring pixels and LQ is the set of the neighboring pixels
and superpixels between the layers, i.e. the incidence relation
between pixels and superpixels. The weighting parameters
are given by δ, β and γ, which can be determined via cross-
validation.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Data sets

The considered datasets are UNIVERSITY OF PAVIA and IN-
DIAN PINES. The UNIVERSITY OF PAVIA dataset was ac-
quired by ROSIS and covers 610 × 340 pixels, with a spatial
resolution of 1.3 m. Some bands have been removed due to
noise, the remaining 103 bands have been used in the clas-
sification. The classification is aiming on nine land cover
classes. The INDIAN PINES dataset was acquired by AVIRIS
and covers 145×145 pixels, with a spatial resolution of 20 m
and 224 bands. The reference data consist 16 classes. The



training data is randomly selected and comprises about 10%
of the labeled data (see Tab. 1). Each channel of the images
were normalized to zero mean and standard deviation of 1.
Moreover, each pixel were normalized to have a unit length
of 1.

3.2. Experimental setup

Each image is sparsely represented using the methods pre-
sented in Sec. 2.1 and classified via a hierarchical conditional
random field (see Sec. 2.2). The superpixels are derived using
the SLIC approach of [15]. Different size of the patch-based
neighboorhood and superpixels are analysed by means of the
classification accuracy. The optimization of the energy in the
CRF is done via graph-cut [17]. The CRF parameters β and
γ are empirically determined via crossvalidation, whereas the
parameter δ is set to zero showing better results than using
both unary terms. In all experiments the maximum number of
used dictionary elements is fixed to W = 5. The experiments
compare the support vector machines with composite kernel
(SVMCK, [18]), SOMP with patch-based neighborhood [6]
and the combined patch-based and superpixel-based SOMP
with hierarchical CRF (CSOMP-CRF).

3.3. Results and discussion

Table 1 shows the average results of all runs with the best
parameter settings. It indicates that the superpixel-based ap-
proaches achieve higher average accuracies than the patch-
based SOMP, kernel-based SOMP and SVMCK. The com-
bined approach with CRF achieves also a better overall accu-
racy and Kappa coefficient than the patch-based SOMP and
SVMCK and competitive results to the kernel SOMP. Fig. 1
demonstrates the influence of the patchsize Zp × Zp and the
roughly size of the superpixels Zsp × Zsp. It can be seen that
small superpixel sizes of Zsp = 3 to Zsp = 7 achieve the
best results. Small patchsizes for the SOMP provide noisy re-
sults and too large patchsizes provide indistinct classification
results, both indicated by low accuracies. Thus, the patchsize
and the superpixel size have to be chosen adequately depend-
ing on the image structure.

The results for the UNIVERSITY OF PAVIA dataset show
similar findings as for the INDIAN PINES dataset. Using the
best parameter setting an overall accuracy of 87.04%, an av-
erage accuracy of 89.09% and a Kappa coefficient of 0.897
could be obtained. This is significantly better than for SOMP,
showing an overall accuracy of 79.00%, an average accuracy
of 86.04% and a Kappa coefficient of 0.728, and kernel-based
SOMP, showing an overall accuracy of 85.67%, an average
accuracy of 85.83% and a Kappa coefficient of 0.815.

Table 1. Size of training and test data, classwise accura-
cies, overall accuracy (oa), average accuracy (aa) and Kappa
coefficient (κ) of INDIAN PINES dataset using support vec-
tor machines with composite kernel (SVMCK), simultane-
ous orthogonal matching pursuit (SOMP), kernel simultane-
ous orthogonal matching pursuit (KSOMP) and the combined
patch-based and superpixel-based SOMP with hierarchical
CRF (CSOMP-CRF).

# train # test SVMCK SOMP KSOMP CSOMP-CRF
A Alfalfa 6 48 95.83 85.42 97.92 88.10

A Corn-notill 144 1290 96.67 94.88 97.21 94.74

A Corn-min 84 750 90.93 94.93 96.67 94.63

A Corn 24 210 85.71 91.43 93.33 95.92
A Grass/Pasture 50 447 93.74 89.49 95.75 94.60

A Grass/Trees 75 672 97.32 98.51 99.55 97.51

A Grass-mowed 3 23 69.57 91.30 60.78 98.76
A Hay 49 440 98.41 99.55 100.00 99.45

A Oats 2 18 55.56 0.00 0.00 47.62

A Soybeans-notill 97 871 93.80 89.44 94.60 95.51
A Soybeans-min 247 2221 94.37 97.34 99.28 98.63

A Soybeans-clean 62 552 93.66 88.22 95.65 95.65
A Wheat 22 190 99.47 100.00 100.00 99.62

A Woods 130 1164 99.14 99.14 99.83 100.00
A Building-Grass 38 342 87.43 99.12 91.81 98.83

A Stone 10 85 100.00 96.47 91.76 99.16
Overall 1043 9323 94.86 95.28 97.33 97.06
Average 90.73 88.45 88.39 93.67
κ 0.941 0.946 0.970 0.966

4. CONCLUSION

The paper presented a sparse-representation based classifier
which combines a patch-based classification and a superpixel-
based classification in a hierarchical conditional random
field. The experimental results underline that the approach
achieve better results than sparse-representation based classi-
fier which solely use patch-based spatial information.
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