
Shapelet-Based Sparse Image Representation for
Landcover Classification of Hyperspectral Data

Ribana Roscher, Björn Waske
Department of Earth Sciences, Institute of Geographical Sciences

Freie Universität Berlin

Abstract—This paper presents a novel sparse representation-
based classifier for landcover mapping of hyperspectral image
data. Each image patch is factorized into segmentation patterns,
also called shapelets, and patch-specific spectral features. The
combination of both is represented in a patch-specific spatial-
spectral dictionary, which is used for a sparse coding procedure
for the reconstruction and classification of image patches. Hereby,
each image patch is sparsely represented by a linear combination
of elements out of the dictionary. The set of shapelets is specifically
learned for each image in an unsupervised way in order to capture
the image structure. The spectral features are assumed to be the
training data. The experiments show that the proposed approach
shows superior results in comparison to sparse-representation
based classifiers that use no or only limited spatial information
and behaves competitive or better than state-of-the-art classifiers
utilizing spatial information and kernelized sparse representation-
based classifiers.

I. INTRODUCTION

Hyperspectral image classification has become a valuable
instrument for environmental monitoring and the analysis of
geoscientific data ( [1], [2]). Especially supervised classifi-
cation methods such as support vector machines (SVM, [3],
[4]), ensemble based learning ( [5], [6]) or classifiers based on
multinomial logistic regression ( [7], [8]) have been proven to
be powerful tools for classification.

A successful development regarding these classifiers is
the additional integration of spatial/contextual information in
order to take advantage of the correlation between spatially
adjacent pixels (c.f. [1]). E.g. [9] and [10] introduce SVM with
additional spatial information by means of using a composite
kernel. An alternative approach was proposed by e.g. [11] and
[12], which is based on mathematical morphology. Both ap-
proaches were combined by [13] to generalized composite ker-
nels for multinomial logistic regression. Other spectral-spatial
approaches are based on markov random fields (e.g. [14], [15])
or the classification of pre-defined regions, which are obtained
by image segmentation (e.g. [16], [17]).

Besides the aforementioned classifiers, sparse
representation-based classifiers have been recently introduced
in the context of hyperspectral image classification (e.g. [18],
[19], [20], [21]). They must not to be confused with
sparse classifiers such as SVM. Sparse representation-based
classifier have shown a more accurate or at least equally well
performance than powerful state-of-the-art classifier, among
others because they are also able to use spectral as well as
spatial information. A sparse representation assumes that
each pixel can be reconstructed by a sparsely weighted linear
combination of a few basis vectors, taken from a so-called

dictionary. The dictionary is constructed from a set of
representative samples, such as the training data, and is either
directly embodied by these samples (e.g. [20], [21]) or learned
from them (e.g. [22], [23], [24]). In the context of supervised
classification each dictionary element also provides a class
label, which is used for the classification of the reconstructed
sample of interest. Formally, the dictionary is chosen to be
overcomplete, i.e. the number of dictionary elements is larger
than the dimension of elements. For the reconstruction and
classification of RGB- and gray-valued image data, generally,
the dictionary elements are representative vectorized image
patches, which are derived from labeled training data
(e.g. [25], [26]). In this way, spectral as well as spatial
information are integrated in the dictionary. However, this
approach is inapplicable for hyperspectral data, due to the
number and dimension of dictionary elements as well as the
usually relatively limited amount of training data.

Recently, this problem has been considered and various
sparse-representation based classifiers have been proposed
which incorporate spectral and spatial information in an al-
ternative way. This is either done via dictionary learning or
via the sparse coding procedure, i.e. the estimation of the
sparse parameter vector within the linear combination used for
sparse representation. Various approaches assume that remote
sensing images are smooth, i.e. neighbored pixels tend to have
similar spectral characteristic, and thus, exploit the spatial
correlation within the sparse coding procedure. E.g. [27]
successfully applied a joint sparsity model for hyperspectral
image classification, where neighbored pixels within an image
patch are sparsely represented by a common set of dictionary
elements, however, allowing for different weights in the sparse
linear combination. The model is realized via simultaneous
orthogonal matching pursuit (SOMP, [28]), an extension of
the orthogonal matching pursuit (OMP, [29]), which is usually
used for solving the sparse coding task. In these approaches,
the dictionary is assumed to be the training data and thus, the
dictionary elements are treated independently. In contrast to
this, [20] learn the dictionary elements using the joint sparsity
assumption like [27] and so-called contextual groups, i.e. non-
overlapping image patches. The estimated sparse parameter
vectors are considered as features for a linear SVM classifier.
However, the mentioned approaches only assumes homoge-
neous regions with similar spectral features in each patch.
Therefore, actual class transitions, i.e. boundaries between
classes within the image and regions of the same class, which
show different spectral properties, cannot be considered. In
order to mitigate the influence of this problem, e.g. [19] and
[30] introduced different weights for all neighboring pixels
depending on their similarity to the pixel of interest.



This paper presents a novel sparse-representation based
classifier that explicitly introduces prior knowledge about the
spatial nature of the image. Therefore, it is more comprehen-
sive than approaches that only assume a homogeneous neigh-
borhood. The approach is used for hyperspectral image data
and based on the work of [31], who applied a similar procedure
for the recognition of objects in RGB-images. Each image
patch is factorized into segmentation patterns, also called
shapelets, and patch-specific spectral feature palettes which
describe how to color the shapelets. The shapelets, organized
in a shapelet-dictionary, are a collection of patches containing
grouping of pixels that tend to co-occur in its spectral features.
The elements of a representative spectral feature palette, in
the simplest case the training data, are organized in a spectral
dictionary. The shapelets and a well-chosen patch-specific
spectral palette, a subset of the whole spectral palette, are
combined to a patch-specific spatial-spectral dictionary, which
is used for a sparse coding procedure for the reconstruction of
the image patches. Hereby, it is assumed that each patch can
be represented by a sparsely weighted linear combination of
elements out of this patch-specific dictionary. The estimated
sparse weights and their assigned dictionary elements are then
used for classification of the patch.

The following section describes the shapelet-based sparse
representation scheme and the used methods comprising the
learning of the shapelets, the derivation of the patch-specific
spatial-spectral dictionary and the sparse coding procedure.
Sec. III comprises experiments to show performance of the
proposed approach.

II. METHODS

Given an image I that contains J overlapping patches
of size Z × Z, the task is to classify each patch X j with
j ∈ {1, . . . , J} and combine the results to a classified image.
Each patch is represented via a sparsely weighted linear com-
bination, whereas the sparse weighting vector is determined
using a sparse coding procedure (see Sec. II-B). The procedure
utilizes a set of learned shapelets S (see Sec. II-C) and a
spectral set F , which is called spectral palette according to
[31] (see Sec. II-D).

A. Shapelet-Based Classification Scheme

Fig. 1 illustrates the shapelet-based classification scheme
used in this paper. Each image patch can be represented by
a selected set of shapelets and spectral features from a patch-
specific palette. The set of shapelets, organized in a shapelet
dictionary, is learned from each image and the spectral palette
is assumed to be the training data. A patch-specific spectral
palette (a subset of the whole spectral palette) is derived for
each patch and used for the coloring of the shapelets yielding
a patch-specific spatial-spectral dictionary. Each pixel in the
patch is finally classified by a voting scheme explained in Sec.
II-F.

B. Basic Sparse Coding

In terms of basic sparse coding a (M × 1)-dimensional
test sample x can be represented by a linear combination of
a few training samples collected in a (M ×D)-dimensional
dictionary D, so that x = D1α1+. . .+DKαK = Dα, whereas

Fig. 1: Shapelet-based classification scheme illustrated by
means of a hyperspectral image. Each image patch can be
described by a set of learned shapelets with varying number
of regions (denoted with numbers), which are colored by
a patch-specific palette comprising specific spectral features.
Each patch palette is a subset of the whole spectral palette,
which is assumed to be the labeled training data (different
colors of the signatures are given by different classes).

α consists of the class-wise sparse parameter vectors αk with
k ∈ {1, . . . , k, . . . ,K}, which are multiplied with the class-
wise sub-dictionaries Dk. The optimization problem is given
by

α̂ = argmin ‖Dα− x‖b subject to ‖α̂‖0 < W, (1)

yielding a sparse weighting vector α̂, whereas W is the
number of nonzero elements and b specifies the used norm.

C. Shapelet Dictionary

This step describes the extraction of the most representa-
tive segmentation patterns (shapelets). The Z × Z shapelets
Sp ∈ S with p ∈ {1, . . . , P}, each containing Rp regions, are
specifically learned for each image. The shapelets are vector-
ized and collected in a ((Z · Z)× P )-dimensional matrix SD
called shapelet dictionary. In order to extract image-specific
segmentation patterns, firstly the SLIC superpixel segmenta-
tion approach of [32] is applied to the image. It provides a
segmentation of the image with compact segments containing
homogeneous spectral features. It is assumed that borders
between classes in the image coincide with the superpixel
borders. Given the segmented image, patches of size Z×Z are
extracted and converted to binary patches. In detail, for each
region a binary patch is created with the region’s pixels set to
1 and the remaining pixel to 0.

The most representative segmentation patterns out of the
extracted patches are found by an integer k-means clustering
[33], whereas the means are defined to be the elements of the
shapelet dictionary. Fig. 2 shows extracted shapelet dictonaries
of different size with at most 3 regions.

D. Spectral Dictionary

This step introduces the spectral palette, derived from the
training data. The training set consists of L labeled sam-



(a) Small shapelet dic-
tionary from segments
of a roughly size of
10× 10

(b) Medium shapelet
dictionary from seg-
ments of a roughly size
of 10× 10

(c) Large shapelet dic-
tionary from segments
of a roughly size of
10× 10

Fig. 2: Visualized shapelet dictionaries of different sizes
consisting of shapelets with at most 3 regions. The small
dictionary results from 50 extracted means (from clustering),
the medium sized dictionary from 100 means and the large
dictionary from 200 means. Some means were removed if they
had more than 3 regions or if they are redundant.

ples (xl, yl) ∈ L with l ∈ {1, . . . , L} with m-dimensional
spectral feature vectors xl ∈ IRM and class labels yl ∈
{1, . . . , k, . . . ,K}. The Nk training samples of class k are
denoted with xk,l. All training samples are collected in a (M×
L)-dimensional structured matrix LD =

[
LD1 . . .

LDK

]
=

[[x1,1 . . .x1,N1
] . . . [xK,1 . . .xK,NK

]], called spectral dictio-
nary, whereas LDk denotes the class-specific spectral sub-
dictionary.

E. Patch-Specific Spatial-Spectral Dictionary

In order to solve the classification task via sparse cod-
ing while using a dictionary with both spatial and spectral
information, the shapelet dictionary and the spectral dictionary
are combined to a patch-specific spatial-spectral dictionary
CDj

(
SD, LD,X j

)
for the j-th patch rather than learning a

fixed dictionary for the whole image. The basic idea for the
determination of the spatial-spectral dictionary element given a
specific shapelet is to minimize the distance to a given image
patch by using an arbitrary distance measure. This is done
by deriving a patch-specific spectral palette and “filling” the
shapelet with these elements. In this paper, the patch-specific
spectral palette contains all spectral features from at most Rp
classes (i.e. the number of regions in the p-th shapelet), which
represent the regions best. The most representing class for
a region can be found in several ways. For example, if the
training samples are spatial evenly distributed over the image,
it has shown to be powerful when the most representing class
of the region is assumed to have the label of the sample with
minimum distance. Ideally, this sample is a training sample.
Another possibility is to first classify all pixels in this region
individually, e.g. by nearest neighbor, and then choosing the
dominant class by majority vote. After finding the best fitting
elements from the patch-specific spectral palette for each pixel
in the image patch, the spatial-spectral dictionary element
is vectorized, i.e. it has a dimension of (Z · Z · M) × 1,
and collected in the dictionary. Unlike the structured spectral
dictionary introduced in Sec. II-D each element in CDj can
belong to different classes, which must be taken into account
for the classification step.

The sparse coding procedure for the reconstruction of a

patch X j is than given by

α̂j = argmin ‖CDjαj − xj‖b subject to ‖α̂j‖0 < W,
(2)

whereas xj = vec (X j) is the vectorized image patch. Please
note that this dictionary generally is not overcomplete any-
more.

F. Classification

Once the parameters for the sparse representation of the
patch xj are estimated, class-votes for each pixel in the patch
can be derived by the following procedure. Since the patches
are overlapping, one pixel provides several votes contributing
to a final classification of the whole image.

The votes for class k of the t-th pixel xj,t with t ∈
{1, . . . , (Z · Z)} in the j-th patch can be obtained by vkj,t =
1/rkj,t, where rkj,t is the reconstruction error given by

rkj,t = ‖xj,t − CDk
j,tα̂

k
j,t‖2, (3)

whereas CDk
j,t are all dictionary entries which belong to

class k. The parameters α̂kj,t are the weights assigned to the
dictionary elements CDk

j,t .

III. EXPERIMENTS

A. Data Sets

The considered data sets are two hyperspectral images
- UNIVERSITY OF PAVIA and INDIAN PINES - from study
sites with different environmental setting. The INDIAN PINES
dataset was acquired by AVIRIS and covers 145× 145 pixels,
with a spatial resolution of 20 m and 224 bands. The reference
data consist 16 classes. The training data is randomly selected
and comprises about 10% of the labeled data (see Fig. 4 and
Tab. I). The UNIVERSITY OF PAVIA dataset was acquired by
ROSIS and covers 610× 340 pixels, with a spatial resolution
of 1.3 m. Some bands have been removed due to noise, the
remaining 103 bands have been used in the classification. The
classification is aiming nine land cover classes (see Fig. 4 and
Tab. II). Each channel of the images was normalized to zero
mean and standard deviation of 1. Moreover, each pixel were
normalized to have a unit length of 1.

B. Experimental Setup

Each image is sparsely represented using the methods
presented in Sec. II-E and classified using (3). The spatial-
spectral dictionary is constructed using the inverse correlation
coefficients as distances measure showing better results than
commonly used distance measures such as L1-, L2- or Linf -
norm. The number of shapelets and the patch size is var-
ied for the INDIAN PINES dataset and their influence onto
the classification result is analyzed. In all experiments the
maximum number of used dictionary elements is fixed to
W = 3. The results of the presented approach is compared
to support vector machines with composite kernel (SVMCK,
[9]), the simultaneous orthogonal matching pursuit (SOMP,
[27]), simultaneous subspace pursuit (SSP, [27]) and the best
kernelized sparse coding algorithm presented in [21]. The
results of SVMCK, SOMP and SSP were also taken from [21].
Moreover, the presented approach is compared to the sparse



coding approach with spectral-contextual dictionary learning
(SCDL) presented by [20].

C. Results and Discussion

1) INDIAN PINES Dataset: The accuracy measures for ten
different results, achieved by the best parameter setting (see
Fig. 3), are shown in Tab. I. The training data, test data and
classification map of the run with the highest average accuracy
using the best parameter setting is shown in Fig. 4. The results
show that the proposed approach achieves better results than
SVMCK, SOMP and SSP and comparable results to SCDL
and kernel subspace pursuit with composite kernel (KSPCK).

TABLE I: Size of training and test data, classwise accura-
cies, overall accuracy (oa), average accuracy (aa) and kappa
coefficient (κ) of INDIAN PINES dataset using support vec-
tor machines with composite kernel (SVMCK), simultaneous
orthogonal matching pursuit (SOMP), simultaneous subspace
pursuit (SSP), kernel subspace pursuit with composite kernel
(KSPCK), sparse coding approach with spectral-contextual
dictionary learning (SCDL) and the shapelet-based sparse
coding approach (SSC ).

# train # test SVMCK SOMP SSP KSPCK SCDL SSC
A Alfalfa 6 48 95.83 85.42 81.25 95.83 93.75 96.53
A Corn-notill 144 1290 96.67 94.88 95.74 99.15 94.93 96.73

A Corn-min 84 750 90.93 94.93 92.80 96.93 97.39 98.11
A Corn 24 210 85.71 91.43 82.38 97.14 90.57 98.10
A Grass/Pasture 50 447 93.74 89.49 93.29 98.21 97.23 98.32
A Grass/Trees 75 672 97.32 98.51 98.81 99.11 99.17 99.80
A Grass/Pasture-mowed 3 23 69.57 91.30 82.61 100.00 100.00 94.93

A Hay-windrowed 49 440 98.41 99.55 99.77 99.97 99.95 99.81

A Oats 2 18 55.56 0.00 0.00 100.00 79.44 95.37

A Soybeans-notill 97 871 93.80 89.44 91.27 97.70 96.30 97.57

A Soybeans-min 247 2221 94.37 97.34 97.43 98.20 98.46 99.53
A Soybeans-clean 62 552 93.66 88.22 89.13 98.73 92.97 96.32

A Wheat 22 190 99.47 100.00 99.47 100.00 99.05 99.91

A Woods 130 1164 99.14 99.14 99.05 99.48 98.87 99.90
A Building-Grass-Trees 38 342 87.43 99.12 97.95 97.37 97.13 98.20

A Stone-steel Towers 10 85 100.00 96.47 92.94 95.29 96.00 95.69
Overall 1043 9323 94.86 95.28 95.34 98.47 97.81 98.53
Average 90.73 88.45 87.12 98.31 95.70 97.80
κ 0.941 0.946 0.947 0.983 0.968 0.983

Fig. 3 demonstrates the influence of the number of
shapelets and the patch size on the classification accuracies.
The results show that the highest accuracies are obtained with
a patch size of 9×9 pixel. The best overall accuracy is obtained
with 10 shapelets, the highest average accuracy with 25
shapelets and the best kappa coefficient with 10 shapelets. The
plots clearly indicate the gain of using shapelets rather than
using only one homogeneous patch, i.e. one shapelet. Espe-
cially for large patch sizes the accuracies significantly increase
with an increasing number of shapelets. However, if the patch
size is small an increased number of shapelets results in lower
accuracies. This is caused by an overfitting effect, whereas
noise is fitted by potentially non-representative shapelets. The
plots also show that even with only one homogeneous patch
the proposed framework can achieve higher accuracies than
many of the considered approaches. This underlines the fact
that it is worth to learn a specifically designed dictionary in
order to increase the classification accuracy.

2) UNIVERSITY OF PAVIA Dataset: The accuracy mea-
sures are presented in Table II and the landcover map is pre-
sented in Fig. 4. The results clearly show that the incorporation
of shapelets significantly improves the overall classification
accuracy and the kappa coefficient. The average accuracy is
competitive to the best kernel based approach, namely kernel
simultaneous subspace pursuit (KSSP), and significantly higher
than the other considered approaches. The results could be
obtained with a relatively large patch size of 13 × 13 pixel
and thus, the classification result is very smooth within large
homogeneous regions such as MEADOWS. Nevertheless, also
small regions such as SHADOWS and METAL SHEETS can be
classified well, which is mainly due to the usage of shapelets.
Besides the proposed approach also SCDL uses a large patch
size of 16 × 16 pixel, while all other approaches (SVMCK,
SOMP, SSP and KSSP) use a smaller patch size of 5×5 pixel
( [20], [21]).

TABLE II: Size of training and test data, classwise accuracies,
overall accuracy (oa), average accuracy (aa) and kappa coeffi-
cient (κ) of UNIVERSITY OF PAVIA dataset using support vec-
tor machines with composite kernel (SVMCK), simultaneous
orthogonal matching pursuit (SOMP), simultaneous subspace
pursuit (SSP), kernel subspace pursuit with composite kernel
(KSPCK), sparse coding approach with spectral-contextual
dictionary learning (SCDL) and the shapelet-based sparse
coding approach (SSC ).

# train # test SVMCK SOMP SSP KSSP SCDL SSC
A Asphalt 548 6304 79.85 59.33 69.59 89.56 81.87 92.66
A Meadows 540 18146 84.86 78.15 72.31 79.98 96.48 98.46
A Gravel 392 1815 81.87 83.53 74.10 85.45 83.36 73.88

A Trees 524 2912 96.36 96.91 95.33 98.66 95.47 95.47

A Metal sheets 265 1113 99.37 99.46 99.73 99.91 99.82 100.00
A Bare soil 532 4572 93.55 77.41 86.72 95.76 81.21 83.81

A Bitumen 375 981 90.21 98.57 90.32 97.96 74.11 99.90
A Bricks 514 3364 92.81 89.09 90.46 96.43 85.91 95.99

A Shadows 231 795 95.35 91.95 90.94 98.49 96.60 99.37
Overall 3921 40002 87.18 79.00 78.39 87.65 90.42 94.36
Average 90.47 86.04 85.50 93.58 88.31 93.21
κ 0.833 0.728 0.724 0.840 0.870 0.923

IV. CONCLUSION

The paper presents a shapelet-based sparse representation-
based approach for the classification of hyperspectral image
data. The experimental results underline that the approach
is competitive to state-of-the-art classifiers, which use spatial
information, and is superior to classification procedures which
use no or only limited spatial information. Future work could
address a more sophisticated learning of the shapelet dictionary
and spectral dictionary, such as discriminative dictionaries.
In addition the classification step can be replaced by using
a classifier such as support vector machines with the sparse
parameters vectors as features.
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(a) Overall accuracy (b) Average accuracy (c) Kappa coefficient

Fig. 3: Influence of the number of shapelets and the patch size onto the overall accuracy, average accuracy and kappa coefficient
for the INDIAN PINES dataset.
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