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Zusammenfassung
We evaluate the performance of Import Vector Machines (IVM),

a sparse Kernel Logistic Regression approach, for the classification of
hyperspectral data. The IVM classifier is applied on two different data
sets, using different number of training samples. The performance of
IVM to Support Vector Machines (SVM) is compared in terms of accu-
racy and sparsity. Moreover, the impact of the training sample set on
the accuracy and stability of IVM was investigated. The results under-
line that the IVM perform similar when compared to the popular SVM
in terms of accuracy. Moreover, the number of import vectors from the
IVM is significantly lower when compared to the number of support
vectors from the SVM. Thus, the classification process of the IVM is
faster. These findings are independent from the study site, the number
of training samples and specific classes. Consequently, the proposed
IVM approach is a promising classification method for hyperspectral
imagery.

1 Introduction
Hyperspectral imaging, also known as imaging spectroscopy is used since mo-
re than two decades for monitoring the Earth [12]. The spectrally continuous
data range from visible to the short-wave infrared region of the electromagne-
tic spectrum and thus, enables a detailed separation of similar surface mate-
rials. Therefore hyperspectral imagery is used for classification problems that
require a precise differentiation in spectral feature space, e. g., for mapping
geological units [7, 34], classifying urban structures [2, 31], and in context
of forest and agricultural applications [19, 29]. Hyperspectral applications
become even more attractive, regarding the increased availability of hyper-
spectral imagery through future space-borne missions, such as the German
EnMAP (Environmental Mapping and Analysis Program) [13] and the Itali-
an PRISMA (Hyperspectral Precursor of the Application Mission).

Nevertheless, the special properties of hyperspectral imagery demand mo-
re sophisticated image (pre)processing and analysis [25, 24]. Conventional

1



methods, such as the maximum likelihood classifier, can be limited when ap-
plied to hyperspectral imagery, due to the high-dimensional feature space and
a finite number of training samples. Consequently, the classification accuracy
often decreases, with an increasing number of bands (i. e., the well-known
Hughes phenomena). Thus, usually alternative classifier methods are applied
on hyperspectral imagery, such as spectral angle mapper, neural networks,
multiple classifier systems and Support Vector Machines (SVM). However,
among the various developments in the field of pattern recognition, SVM
are perhaps the most popular approach in recent hyperspectral applications
[24]. SVM can outperform other methods in terms of the classifcation accu-
racy [23, 33] and still exhibit further modification and improvement, e. g.,
in context of modifying the kernel functions [3] and semi-supervised learning
[9, 20].

SVM discriminates two classes by fitting an optimal separating hyperpla-
ne to the training samples of two classes within the multidimensional feature
space. The approach aims to maximize the margin between the hyperplane
and the closest training samples, the so-called support vectors [32]. In line-
ar non-separable cases, the data are transformed by a kernel function into
a higher-dimensional feature space. The newly distributed samples enable
the fitting of a linear hyperplane, which appears non-linear in the original
feature space. As a matter of fact SVM can describe complex classes with
multi-modal distributions in the feature space. Moreover, they seem adequate
when classifying high dimensional data with small training sets [23].

Contrary to classifiers that directly provide a class label (e. g., decisi-
on trees) or a probability measurement (e. g., Gaussian maximum likelihood
classifier) for each pixel in the input image, the primary output image of SVM
contain the distance of each pixel to the hyperplane of the binary classificati-
on problem. This information is used to determine the final class membership.
Whereas other classifiers can directly solve multi-class problem, the binary
nature of SVM requires an adequate multi-class strategy. Although different
multi-class strategies exist [17], most applications use the one-against-one
strategy, which divide a K-class problem into K(K-1)/2 binary classificati-
on problems. However, probabilities could be of interest and discriminative
probabilistic methods like Relevance Vector Machines (RVM) [30]) were ap-
plied to hyperspectral [10] and multispectral data [11]. The results show
that the RVM-based classification accuracies on multispectral imagery [11]
and in part on hyperspectral data [10] are insignificantly lower than the ac-
curacy achieved by SVM. Moreover, RVM are sparser when compared to
SVM (i. e., many of the parameters are zero) and thus, enable a faster tes-
ting/classification process. The samples assigned to nonzero parameters are
used as relevance vectors and support vectors, respectively. However, due to
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the computational complexity during the optimization process, the training
time of RVM is longer [10].

Logistic Regression is an alternative, probabilistic discriminative classi-
fication model that was used, for example, in context of classification and
feature selection of hyperspectral imagery [8, 36]. The approach can be ex-
tended to Kernel Logistic Regression, e. g.,[16, 14, 5, 28] and further to the
concept of Import Vector Machines (IVM) [37]. Like the well-known Gaus-
sian maximum likelihood classifier and contrary to SVM, for example, IVM
are a multi-class concept that directly provides probability outputs. Further-
more it is a discriminative model like the SVM, which often shows superior
performance over generative models like Gaussian Maximum Likelihood. In
addition, Zhu and Hastie [37] already shows that the IVM are much spar-
ser than the SVM and therefore much faster during the classification process.
Behind these facts, IVM seem interesting to evaluate the potential in context
of classifying hyperspectral data. Our main objectives are:

• to evaluate the performance of IVM compared to SVM in terms of
accuracy;

• to evaluate the performance of IVM compared to SVM in terms of
sparsity; and

• to investigate the impact of the training sample set on the accuracy
and stability of IVM in terms of the classification result.

To investigating these objectives, our study is aiming on the classifica-
tion of two different hyperspectral data sets, i. e., an urban area from the
city of Pavia, Italy, and agricultural areas from Indiana, USA, using two
classifiers (i. e., IVM and SVM). In addition, the size of the training sets is
varied, to investigate the possible impact of the number of training samples
(i) on the classification accuracy and stability of the classifier and (ii) on the
computational complexity.

Our paper is organized as follows. Section 2 introduces the Logistic Re-
gression and Kernel Logistic Regression, which is the basis algorithm of the
IVM. Moreover, the concept of SVM is briefly introduced. Section 3 explains
the conceptual and algorithmic framework of IVM. The experimental setup
and results are presented in Section 4 and discussed in Section 5. We conclude
in Section 6.
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2 Background
In this section we first introduce the Logistic Regression, the basis of the
IVM model. Starting from the Logistic Regression, we incorporate kernels
and sparsity and end up with a Sparse Kernel Logistic Regression model in
Section 3, called IVM. We also briefly introduce the Support Vector Machine
model.

2.1 Logistic Regression

We assume to have a training set (xn, yn), n = 1, . . . , N of N labeled samples
with vectors xn of observations and class labels yn ∈ C = {1, . . . , K}. The
observations are collected in a matrix X = [x1, . . . ,xN ].

In the two-class case the posterior probability pn of a feature vector xn
is assumed to follow the Logistic Regression model

p(yn|xn; w) =
1

1 + exp(−wTxn)
(1)

with the extended feature vector xT
n = [1,xT

n ] ∈ IRM and the extended para-
meters wT = [wk0,ω

T] ∈ IRM containing the bias wk0 and the weight vector
ω.

The objective function Q0(w) of the standard logistic regression model is
given by the negative log-likelihood function

Q0(w) = − 1

N

∑
N

[tn log pn + (1− tn) log (1− pn)] . (2)

The binary target vector t ∈ {0, 1} of length N codes the labels with tn = 0
for C1 and tn = 1 for C2.

The Newton-Raphson iteration scheme for the minimization of (2) is given
by

w(i) = w(i−1) − H−1∇E (3)

with the gradient∇E = X (p− t) and the Hessian H = XTRX . The (N ×N)-
dimensional diagonal matrix R has the elements rnn = pn (1− pn), which can
be obtained from (1).

We can reformulate the Newton-Raphson iteration scheme in (3) and
obtain the iterated re-weighted least squares solution

w(i) =

(
1

N
XTRX + λI

)−1

XTRz, (4)

z =
1

N

(
Xw(i−1) + R−1 (p− t)

)
(5)
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to obtain adjusted parameters in each iteration i. We also introduce a regula-
rization parameter λ to prevent overfitting, especially in the case of separable
or nearly separable data.

2.2 Kernel Logistic Regression

To use the linear classifier for solving a non-linear problem we introduce
kernels to map the original observations from the input space into a higher-
dimensional kernel space.

We introduce kernels and transform the features Φ ∈ IRM to a higher
dimensional feature space F making use of the kernel trick [1]. The kernel
function K is given by

K (xn,xm) = φT (xn)φ (xm) . (6)

Following the Representer Theorem the parameters W lie within the span
of the feature vectors Φ:

W =
∑
n

αnφn = ΦTα. (7)

The vector α contains the parameters which define the linear decision boun-
daries in kernel space.

With (6) and (7), (4) and (5) become

α(i) =

(
1

N
KTRK + λK

)−1

KTRz, (8)

z =
1

N

(
Kα(i−1) + R−1 (p− t)

)
. (9)

2.3 Support Vector Machines

The concept of the Support Vector Machine model is similar to that of the
Kernel Logistic Regression. The algorithm finds an optimal nonlinear decision
boundary in the original feature space by estimating a hyperplane in the
transformed feature space. The objective function, which we minimize is given
by

QSVM =
1

N

∑
N

[1− ynf(xn)]+ +
λ

2
‖f‖2 (10)

with
f(xn) =

∑
N

αnK (X ,xn). (11)
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SVM are a binary classifier, with the decision rule given by the sign of
f(xn). Because of the type of the objective function some parameters can be
zero, i. e.the model is sparse.

2.4 Relevance Vector Machines

The Relevance Vector Machines use the same model as the Kernel Logistic
Regression given in Section 2.2. Consequently it can provide probabilistic
output and can directly apply to multi-class problems.

The difference between both models is, that the RVM uses an ARD (Au-
tomatic Relevance Determination) prior over the model parameters as the
regularization term, whereas the prior includes several regularization para-
meters, also called hyperparameters, which are determined during the opti-
mization process. The difference between an ARD prior and a Gaussian prior
used in the Kernel Logistic Regression is, that each parameter αn has its own
hyperparameter and not only one shared parameter λ.

The main disadvantage of the RVM is the long training time. However,
because the hyperparameters are optimized simultaneously with the model
parameters a cross-validation is not required. The optimization procedure is
an Expectation Maximization (EM)-like learning method and can therefore
suffer from local minima, whereas the optimization procedure of the SVM is
guaranteed to find a global optimum and the greedy selection procedure in
the IVM shows a good behavior to find the global optimum as demonstrated
in our experiments.

3 Import Vector Machine
The Kernel Logistic Regression includes all training samples X to train the
classifier, which is computationally expensive in data sets with many training
samples. Similar to the SVM only a few feature vectors are necessary to define
the decision boundaries. These feature vectors are called import vectors XS.
Using only these vectors we obtain a sparse solution of the Kernel Logistic
Regression – the Import Vector Machines [37].

3.1 IVM Algorithm

Following Zhu and Hastie [37] we only choose a subset S out of the training
set T with S = |S| samples and yield for (8) and (9)

α(i) =

(
1

N
KT

SRKS + λKR

)−1

KT
SR z̃ (12)
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z̃ =
1

N

(
KSα

(i−1) + R−1 (p− t)
)

(13)

with an (N × S)-dimensional kernel matrix KS = K (X ,XS), a (S × S)-
dimensional regularization matrix KR = K (XS,XS) and the probabilities
pn = 1/(1+exp(−kS,nα)) with kS,n as the n-th row of the kernel matrix KS.

The algorithm of the IVM is explained in Algorithm 1.

Input: S = {}, T = {x1, . . . ,xN}, i = 1, λ, σ
repeat

Compute z̃ from the current set S;
foreach xn ∈ T do

Let Sn = S ∪ xn;
Compute α(i)

n with Sn in a one-step iteration;
Compute Q(i)

n ;
end
Find xbest ∪ S = argminQ(i)

n ;
Update S = S ∪ xbest and T = T \ xbest;
Recompute α, p and Q(i);

until Q converges ;
Algorithm 1: Import Vector Machines [37]: The algorithm starts with
an empty subset S of import vectors. From the current set S, z̃ (13)
is computed. In the next step each point from the training set T is
tested to be in the subset S. From the subset the parameters α(i) (12)
are estimated in a one-step iteration, that means the parameters are
only updated once. Then for each possible subset Sn = xn ∪ S the
error function Q(i)

n is evaluated, which depends on the probabilities of
all given training points. The tested point xbest ∪ S yielding the lowest
error is moved from set T to subset S. The iteration stops as soon as any
convergence criterion is satisfied.

The convergence criterion is proposed by the ratio ε = |Q(i)−Q(i−∆i)|/|Q(i)|
with a small integer ∆i = 3 and chosen to be ε = 0.001.

To save computational cost we do not test every sample to be in the subset
S in each iteration but only a representative part of them. We select these
tested samples randomly, because they do not tend to lie near the boundary
but spread over the whole feature space. Figure 1 underlines this aspect by
comparing IVM with SVM using the Ripley [26] toy example.

Both the IVM and the SVM are discriminative models with a similar
objective function. The advantages of the Support Vector Machines are the
sparsity and the fast training because of the simple decision rule. On the other
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(a) Support Vectors (b) Import Vectors

Abbildung 1: Decision boundaries of SVM and IVM. The bold points are the sup-
port vectors and the import vectors respectively.

hand all Logistic Regression models have a probabilistic output, which can
be used for example as input in a graphical model [27]. The optimization can
be done with the Newton-Raphson procedure, which can be very slow if the
feature dimension is very high. The IVM are sparse because of their greedy
selection algorithm and is therefore computationally and memory effective.

3.2 Choice of the Kernel and Regularization Parameter

For the algorithm both the kernel parameter σ and the regularization para-
meter λ are assumed to be fixed.

Different from the determination by a grid search by testing all combi-
nations of the both parameters, Zhu and Hastie proposed a simultaneous
selection of the regularization parameter λ and the subset S. First a small
tuning set is split off from the training set. The algorithm starts with a high
regularization parameter and decreases the parameter each time the algo-
rithm converges until a stopping criterion is reached, e. g., a lower bound for
the regularization parameter. In each iteration the error on the tuning set is
reported, so that the regularization parameter with the lowest error rate is
chosen to be the optimal one.

The kernel parameter is determined by a n-fold cross-validation.
So the IVM need only 2Nσ runs instead of NλNσ for the Support Vector

Machines yielding an optimal kernel and regularization parameter, whereby
Nσ is the number of needed runs for the determination of σ and Nλ the
number of needed run for the determination of λ depending on the choice of
the type of cross-validation.
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3.3 Extension to the Multi-class Case

We can generalize the two class model to the multi-class model. Then the
objective function is

Q = − 1

N

∑
N

tTn logpn +
λ

2

∑
k

αT
kKRαk (14)

with the probabilities P = [p1, . . . , pN ] obtained by

pnk =
exp(kS,nαk)∑
j exp(kS,nαj)

. (15)

The binary target vector tn of length K uses the 1-of-K coding scheme so
that all components but tnk are 0 if the point xn is from class Ck.

In the Newton-Raphson procedure in (12) and (13) we have to use one
Rk and one z̃ for each class. In consequence of the over-determined system
we need to apply the pseudo-inverse (·)+ instead of the normal inverse (·)−1.

4 Experimental Setup and Results

4.1 Data sets

Two hyperspectral data sets from study sites with different environmental
setting were used in this study. Both data sets have been used in a multitude
of studies, e. g., [18, 24, 35] and thus, regarded as kind of benchmark data
sets for comparison with new approaches.

The first image was acquired by ROSIS-3 sensor in 2003. The spatial
resolution of the image is 1.3 meter per pixel. The data cover the range from
0.43 m to 0.86 m of the electromagnetic spectrum. However, some bands have
been removed due to noise and finally 102 channels have been used in the
classification. The image strip, with 1096×492 pixels in size, lies around the
center of Pavia. The classification is aiming on 9 land cover classes, ranging
from 2152 and 103551 samples in size (Table 1).

The second data set was acquired by the AVIRIS instrument in 1992. The
study site lies in a predominately agricultural region in NW Indiana, USA.
AVIRIS operates from the visible to the short-wave infrared region of the
electromagnetic spectrum, ranging from 0.4 m to 2.4 m. The data set covers
145×145 pixels, with a spatial resolution of 20 m per pixel. The experiments
are aiming on the classification of 14 classes, ranging from 54 to 2466 samples
in size (Table 2).
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Tabelle 1: Pavia data set. Number of training and test samples.

class # training samples # test samples
Asphalt 678 6907
Bare Soil 820 5729
Bitumen 808 6479
Meadows 797 2108
Bricks 485 1667
Shadow 195 1970
Tiles 223 2899
Trees 785 5723
Water 745 64533

Total 5536 98015

4.2 Experimental Setup

For both images ground truth information was used for generating training
and validation sets, using an equalized random sampling. In doing so, it is
guaranteed that all classes are equally included in the training sets, given that
a sufficient number of samples is available for each class. Training sets with
different size were generated to assess the possible impact of the number
of training samples on the performance of IVM, containing, e. g., 25, 50,
and 100 training samples per class, respectively (from now on referred to
as tr#25, tr#50, and tr#100). The same training sample sets were used for
both methods, IVM and SVM. In addition, an independent test set was used
that was fixed in all experiments.

In the presented study the performance of IVM is compared to SVM.
SVM are perhaps the most popular approach in more recent applications
and seems particularly advantageous when classifying high-dimensional data
sets. Thus, the method is regarded as a kind of benchmark classifier for
comparison with new approaches.

For both methods and each training set size (e. g., tr#50) the training
and classification was performed 50 times to reduce the impact of the random
generation of the training sample sets. The final results were averaged and
standard deviations were derived.

Accuracy assessment was performed giving kappa and confusion matrices
that were used to derive the producers and users accuracies. In addition, the
sparsity of IVM and SVM was compared.

For the SVM and the IVM we transform the features into kernel space
with a radial basis function kernel. The kernel parameters are determined by
a 3-fold cross-validation. The SVM classification is performed in MATLAB,
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Tabelle 2: Indian Pines data set. Number of training and test samples.

class # training samples # test samples
Alalfa 27 27
Corn-notil 717 717
Corn-min 417 417
Corn 117 117
Grass-pasture 248 249
Pasture-trees 373 374
Hay 244 245
Soy-notil 484 484
Soy-mid 1234 1234
Soy-clean 307 307
Wheat 106 106
Woods 647 647
Bldg-grass 190 190
Stone 47 48

Total 5158 5162

using the LIBSVM approach by Chang and Lin [6]. The IVM algorithm is
based on our own implementation.

In our experiments we do not consider the RVM in detail, because first
results have shown that RVM generate relatively instable results and require
a long training time. We use a multi-class implementation in MATLAB 1. In
some cases of the 50 iteration (e. g., using tr#25, tr#50) the RVM can achieve
the same accuracies as the SVM and the IVM on the Pavia data. However,
other accuracies are significantly lower, resulting in a high standard deviation
and lower average accuracy. In addition the training time is significantly
increasing with an increasing number of samples. Similar findings can be
reported for the Indian Pines data set. Especially for tr#10 and tr#25 the
results are instable. Thus, RVM are not further considered in our studies.

4.3 Results for Pavia

The classifications in this paper were conducted with IVM and SVM, using
training sets with different number of samples. The results demonstrate that
the IVM perform at least equally well than the SVM in terms of accuracy, ir-
respectively from the number of training samples. The IVM achieved average
kappa coefficients between 0.93 and 0.95, a regular SVM on the other hand

1available under http://mi.eng.cam.ac.uk/~at315/MVRVM
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Abbildung 2: Pavia data set. Average kappa coefficient, using SVM and IVM with
different number of training samples per class.

achieved average accuracies between 0.92 and 0.95 (Figure 2). The standard
deviation of kappa varies between 0.003 and 0.01 for both methods.

Figure 3 shows the ground truth and a classification result with tr#150
of the IVM algorithm.

The analysis of the producer and user accuracies confirms the aforemen-
tioned findings. With the exception of bricks (e. g., SVM and tr#500), the
results demonstrate that neither IVM nor SVM outperform the other method
in terms of accuracy (Table 3). Whereas in some cases the IVM achieve hig-
her user and producer accuracies (e. g., asphalt, using tr#25), other classes
are classified more accurately by the SVM (e. g., bricks using tr#25) or both
methods generate comparable results (e. g., bare soil). Irrespectively of the
method, the experimental results show a positive effect of additional training
samples and the class accuracies are increased (e. g., bricks and trees).

Comparing the number of used support vectors and import vectors, re-
spectively, the results confirm that the number of support vectors clearly
increases with an increasing number of training samples (Figure 4). Whereas
the SVM training with the sample set tr#25 results on average in 101 support
vectors, approximately 518 are used when the training is performed with the
large sample set tr#500. The number of import vectors on the other hand,
does not clearly increase with the number of training samples and varies
approximately between 81 and 86.
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Abbildung 3: Pavia data (left), ground truth (middle) and classification result
(right), using IVM and tr#150.

4.4 Results for Indian Pines

As for the Pavia data set, results achieved with the IVM show comparable
accuracies than those from the regular SVM for all five training sample sets.
The kappa coefficient varies between 0.59 and 0.82, using IVM, while the
results that are achieved with the SVM vary between 0.58 and 0.82 (Figure
5). The 50 classifications that were generated for each training set size (e. g.,
tr#10) show only a few variations and the standard deviation for kappa varies
between 0.01 and 0.04 for both methods.

Figure 3 shows the ground truth and a classification result with tr#150
of the IVM algorithm.

The results demonstrate the usually dependency of the overall and class
accuracies on the number of available training samples. Whereas a small
training sample set generates relatively low class accuracies, which are some-
times remain below 60% (e. g., corn-notil, soy-clean), the producer as well as
user accuracies are clearly increased by a larger number of training samples.
However, the analysis of the producer and user accuracies also confirms the
previous findings that IVM and SVM perform comparable in terms of the
class accuracies (Table 4).
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classes 25 training points per class 500 training points per class
User acc. [%] Prod. acc. [%] User acc. [%] Prod. acc. [%]
SVM IVM SVM IVM SVM IVM SVM IVM

Asphalt 85.4 88.6 93.2 94.5 88.7 89.2 95.7 96.3
Bare Soil 93.2 93.2 93.9 94.7 95.2 94.7 94.3 96.5
Bitumen 89.1 92.8 81.4 80.3 87.5 96.6 95.3 86.0
Meadows 70.2 71.5 92.0 91.9 80.0 77.9 95.1 94.8
Bricks 55.4 54.6 76.5 75.1 84.9 63.0 83.0 81.1
Shadow 99.9 99.6 100.0 99.9 100.0 99.5 100.0 99.9
Tiles 97.2 95.2 99.1 98.1 98.4 98.8 99.8 97.9
Trees 96.4 97.3 86.5 86.1 98.5 98.4 91.6 90.0
Water 100.0 100.0 98.5 99.4 100.0 100.0 98.3 99.4

Tabelle 3: Pavia data set. Average user’s and producer’s accuracies, using 25 trai-
ning and 500 training samples per class.

As before, the number of support vectors strongly depends on the size
of the training sample set and varies between 115 and 926. Also the number
of import vectors used by the IVM increases with the number of training
samples. However, the number is significantly lower when compared to the
number of support vectors and varies on average between 52 and 164 (Figure
7).

5 Discussion
The potential of IVM for classifying hyperspectral imagery was discussed.
The proposed method was shown to be generally positive for experimental
results and usually perform at least equally well. This general trend exists
independent from the study site, the number of training samples and spe-
cific classes, as shown by the kappa coefficient and the producers and users
accuracies.

Experimental results showed some impact of training sample size. Whe-
reas the Pavia data set was classified very accurately by a small number of
training samples, and thus, accuracies only slightly increased by additional
training samples, the accuracies of the second data set significantly depends
on the number of available training samples.

This is in accordance with results in previous studies dealing with SVM.
Although the method performs efficiently with small training sets, even when
classifying high dimensional imagery, the accuracy is affected by the number
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Abbildung 4: Pavia data. Number of training points per class versus average number
of import vectors and support vectors.

of features (i.e., the Hughes phenomenon) and available training samples
[22, 34]. Therefore, the use of an adequate number of training samples is
recommended, also in context of SVM and IVM.

However, the number of support vectors significantly increases with the
number of available training samples and clearly exceeds the number of im-
port vectors in all cases. In contrast to this, the number of import vectors
remains almost constant on the Pavia data set and show a small increase on
the second data set. Consequently, the computation time of the IVM during
the classification is much faster when compared to SVM, because the number
of mathematical operations to perform depends on the number of support
and import vectors.

Moreover, IVM directly provide probability outputs, which can be used
for further processing like Discriminative Random Fields [27, 15], and can
apply for multi-class problems without specific multi-class strategies.

Despite these advantages, the matter of computational complexity du-
ring the IVM training process might be the main drawback of the approach.
The proposed IVM technique is based on the Newton-Raphson optimization
scheme, and thus, results in a longer training time when compared to SVM.
However, this fact should be discussed against the background of possible me-
thods to reduce computation times, e. g., due to GPU implementations and
incremental learning strategies, which was recently discussed in the context
of SVM [4, 21].
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Abbildung 5: Indian Pines data. Average kappa coefficient, using SVM and IVM
with different number of training points per class.

Abbildung 6: Indian Pines datas (left), ground truth (middle) and classification
result (right), using IVM and tr#150.

6 Conclusion and Outlook
We tested and evaluated the performance of IVM in the context of classifying
hyperspectral imagery. Regarding the three research questions stated in the
Section I, it can be assessed that the proposed IVM method performs similar
when compared to SVM in terms of accuracy. This finding is independent
from the study site, the number of training samples and specific classes. As
expected, the classification accuracies are enhanced by additional training
samples, and thus, the use of large training sample set can be advantages in
terms of accuracy.

However, our experimental results underline the strong dependency of the
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classes 10 training points per class 150 training points per class
User acc. [%] Prod. acc. [%] User acc. [%] Prod. acc. [%]
SVM IVM SVM IVM SVM IVM SVM IVM

Alalfa 40.3 45.0 88.6 89.8 92.1 93.7 89.6 85.6
corn-notil 58.1 60.4 45.6 53.0 81.4 80.9 78.2 79.4
corn-min 42.6 44.3 54.7 52.7 70.2 70.1 81.6 81.6
corn 26.9 30.9 70.8 69.3 59.1 63.0 92.7 85.7
grass-pasture 72.8 72.8 83.0 78.3 90.5 91.1 94.2 94.3
pasture-trees 86.3 86.8 87.4 90.3 94.9 94.8 97.3 97.9
hay 99.2 98.7 87.4 89.9 99.7 99.1 98.8 99.0
soy-notil 52.1 48.1 61.2 62.2 77.5 73.5 82.5 84.7
soy-mid 69.8 68.9 48.3 46.8 88.5 89.3 72.6 71.2
soy-clean 43.9 52.3 50.0 57.0 78.1 78.9 92.0 91.7
wheat 80.8 79.2 98.1 98.4 99.1 99.8 99.1 99.1
woods 93.8 93.0 80.0 77.5 96.6 96.2 90.3 91.3
bldg-grass 42.9 42.4 48.0 51.2 66.3 68.2 83.4 82.8
stone 92.9 87.8 93.3 92.6 95.9 93.5 97.2 96.0

Tabelle 4: Indian Pines data. Average user’s and producer’s accuracies, using 25
training and 500 training samples per class.

number of support vectors on the number of available training samples. In
contrast to this, the number of import vectors is significantly lower when
compared to the number of support vectors. Moreover, the number of import
vectors shows only a slight increase, with an increasing number of training
samples.

Overall, the proposed IVM approach appears worthwhile and efficient
implementation strategies and further modifications should be investigated.
Particularly for hyperspectral data sets, which require a sufficient large num-
ber of training samples to ensure an adequate accuracy, IVM constitute a
feasible approach and an useful alternative for classification. Another im-
portant advantage of the IVM, is the provision of a probabilistic output.
These probabilities can be used, for example, as indicator for classificati-
on uncertainty and input in Markov Random Fields. Thus, a more detailed
analysis of the IVM outputs is foreseen.
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