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Zusammenfassung

High-dimensional data structures occur in many fields of compu-
ter vision and machine learning. Transformation between two high-
dimensional spaces usually involves the determination of a large amount
of parameters and requires much labeled data to be given. There is
much interest in reducing dimensionality if a lower-dimensional struc-
ture is underlying the data points. We present a procedure to ena-
ble the determination of a low-dimensional, projective transformati-
on between two data sets, making use of state-of-the-art dimensional
reduction algorithms. We evaluate multiple algorithms during sever-
al experiments with different objectives. We demonstrate the use of
this procedure for applications like classification and assignments bet-
ween two given data sets. Our procedure is semi-supervised due to
the fact that all labeled and unlabeled points are used for the dimen-
sionality reduction, but only few them have to be labeled. Using test
data we evaluate the quantitative and qualitative performance of diffe-
rent algorithms with respect to the classification and assignment task.
We show that with these algorithms and our transformation approach
high-dimensional data sets can be related to each other. Finally we
can use this procedure to match real world facial images with cartoon
images from Springfield, home town of the famous Simpsons.

1 Introduction
Many classification, recognition and assignment applications deal we large
amounts of high-dimensional data as in the classification of images from
databases, in the analysis of gene expression microarrays or time series. The
data analysis can fail when no or only a few user annotation is given and the
dimensionality is very large.

Dimensionality reduction, also called subspace learning, has emerged as
a powerful technique in pattern recognition e.g for reducing computational
effort and increasing classification performance. Applications of dimension



reductive methods are widely spread in the field of computer vision, namely
concerning problems of detection, tracking, recognition, segmentation and
reconstruction [1, 14, 15, 19]. Our goal is to provide a semi-supervised assi-
gnment strategy between data points living in two different high-dimensional
spaces.

The problem of dimensionality reduction can be stated as follows: Given
a set of N data points {φn}, n = 1, . . . , N in RD, we want to find lower
dimensional data points {xn} in Rd with d� D so that xn is an appropriate
representation of φn (compare one half of Figure 1). The data points {φn}
are collected in an (d×N)-dimensional matrix Φ and {xn} in X , respectively.

Having points {xn}, {yn} from two similar data sets, a unique projective
transformation H from one space into another is to be determined. Therefore,
a small amount of labeled points Nl can be used. Figure 1 shows these points
and how both data sets can be related via the low-dimensional space.
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Abbildung 1: We apply dimensionality reduction on two similar data sets living
in two different high-dimensional spaces, exploiting the structure of all available
data. We estimate a unique, projective transformation between both reduces spaces
using only few labeled data points. This way a new test point from one data set
can be assigned to its nearest neighbor within the other set without labeling all
data but in a semi-supervised manner.

We investigate and evaluate seven popular, linear and graph-based me-
thods for dimensionality reduction in an extensive test framework. Since we
assume to have only few labeled without geometric information, yet a lar-
ge number of unlabeled data, we consider only unsupervised dimensionality
reduction algorithms.

We relate both reduced data sets to each other with a linear, (d + 1)-
dimensional transformation matrix. This projective matrix can be determi-
ned in case at least d+ 2 common data points are available.



Using the dimensional reduction followed by a projective transformation
we can relate every new test point to its nearest neighbor within the other
data set using Euclidean distances, without the need of a complete set of
labels and a full D-dimensional transformation matrix. The quality of these
assignments is investigated depending on the dimensionality reduction algo-
rithm and several parameters.

Our contribution is to show that using such algorithms and the presented
transformation approach we can relate high-dimensional data sets to each
other with a minimal amount of labeled data. This can be used for the
assignment of data points from different spaces as well as for the classification
of images.

In Section 2 we give an overview of the related work with special focus
on spectral methods. Section 3 briefly illustrates representative linear and
graph-based state-of-the-art spectral methods, which we analyze during our
experiments. In Section 4 we explain how to relate two data sets using a pro-
jective transformation. Section 5 compares seven spectral methods in order
to find preferably robust and low-dimensional structures in a semi-supervised
manner. We evaluate the algorithms on gray-scale and colored images from
the Aberdeen database, real photos from the FERET database and Simp-
sons cartoon images. In the last section we discuss our results and provide
an outlook to future work.

2 Related work
The field of computer vision offers numerous feature selection algorithms
and extraction methods. Spectral methods constitute a group specialized in
reducing the dimensionality of data. We distinguish between two major types
of algorithms:

1. Linear methods including Principal Component Analysis (PCA) [12],
and Multidimensional Scaling (MDS) [6] and

2. Nonlinear methods including graph-based methods, e.g [3, 16, 21, 25,
27], and kernel methods, e.g [10, 23]. In contrast to linear methods the
nonlinear methods perform better on complex nonlinear data structures
as they occur in real world data sets.

In the last years further algorithms closely related to the latter have been
developed focusing on acceleration, e.g [7, 28], and qualitative improvement
[4, 8, 29].

Typical data sets used in the aforementioned methods are pictures of an
object subject to changing illumination, angle, translation or other varying



characteristics. The data points defined by the vectorized pixel intensities
of each image vary smoothly so that they define a manifold lying within a
high-dimensional space.

For example, Roweis and Saul [22] demonstrate the Isomap algorithm
employing it on face images with varying illumination conditions and angles,
on hand images with natural hand movements and also on handwritten digits.

These originally unsupervised algorithms for dimensionality reduction can
also be used in a semi-supervised manner if additional information exists, e.g
must- and cannot-links between some data points. Several such methods have
been proposed, including similarity adapting approaches, e.g [5, 9], or search
based methods with user-provided constraints or labels, e.g [2, 26]. Given
additional data these methods yield more reliable results than completely
unsupervised approaches and even allow for user interaction.

We apply unsupervised dimensionality reducing algorithms on both la-
beled and unlabeled data and use labeled points to estimate the projective
transformation between two low dimensional spaces. In this sense our ap-
proach can be seen as being semi-supervised.

3 Spectral Methods for Dimensionality Reduc-
tion

Spectral methods are a class of techniques used for dimensionality reduction.
The reduction is done by detecting a low-dimensional structure in a higher-
dimensional space by decomposing a specially constructed matrix, which is
mostly a weighted graph of the initial data. Spectral methods are convex and
therefore optimize an objective function globally.

In contrast to manifold learning, where some representation for the under-
lying manifold f : f(φ) = 0 is estimated, dimensionality reduction only con-
siders the estimation of lower-dimensional data points {xn} from the input
data points {φn}. Consequently a transformation back into high-dimensional
space is non-trivial and beyond the scope of our work. We stay with the out-
put points and assign nearest neighbors after transforming one set of points
into the other space.

3.1 Linear Methods

Generally, linear methods retrieve a structure of the lower dimensional data
points {xn} lying close to a linear affine subspace of the high-dimensional
space. The methods yield d-dimensional data points xn, which are a linear



combination of the original D-dimensional data points φn:

xn = r∗1φn,1 + r∗2φn,2 + . . .+ r∗Mφn,M = R∗φn (1)

with R∗ being the (d×D)-dimensional matrix for the linear transformation
with the star indicating the reduced dimensionality in contrast to R being a
square matrix. For the combined point matrices we obtain X = R∗Φ.

We consider two state-of-the-art subspace methods: Principal Component
Analysis (PCA) [12], and Metric Multidimensional Scaling (MDS) [6]. Since
many years they are used widely in the field of pattern recognition.

PCA reduces the dimensionality by preserving the global covariance struc-
ture of all data points. We can compute the lower dimensional data points
with (1) by mapping them onto the M basis vectors r with the largest ei-
genvalues s: R∗ = [r1, r2, . . . , rM ]T. The latter are derived from the eigen
decomposition of the covariance matrix Σφ,φ = RS2RT.

MDS reduces the dimensionality by preserving the inner products between
the data points by decomposing the Gram matrix K : Knm = φn ·φm, having
the same eigenvalues as the covariance matrix of the PCA up to a constant
in the classical setup. Therefore, the output of classical MDS is identical to
that of the PCA. Modern MDS algorithms use iterative methods, so that the
points are better arranged.

The main drawback of both methods is that they retain large distances
and do not consider the local distribution of the neighborhood around data
points. Therefore important structures can be lost as can be seen in the Swiss
roll data set [25].

3.2 Graph-based Methods

If the structure underlying the data is not affine, linear methods can fail.
Graph-based methods can find this structure even if the data is lying within
or close to a low dimensional manifold. The key aspect of these algorithms
is to preserve local topological and geometrical properties.

These methods can by divided into three parts:

1. Construct a graph G with nodes representing the data points Φ and
edges defining relations between them. Each node is connected to all
data points within a local ε-neighborhood or to its k-nearest neighbors.

2. A matrix W is derived from the graph G by choosing weights, e.g
wnm = 0 if there is no connection between points n and m and wnm = 1
or some distance measure wnm = d(φn,φm) if there is one.



3. In the last step a matrix including the weights W is decomposed. The
way of how to use W mainly makes up the difference between the
algorithms.

We consider five representative state-of-the-art graph-based methods: Iso-
metric Mapping (Isomap) [25], Locally Linear Embedding (LLE) [21, 22],
Laplacian Eigenmaps [3], Diffusion Maps [16] and Local Tangent Space Ali-
gnment (LTSA) [29].

Isomap preserves pairwise distances between data points {φn} along the
estimated manifold f : f(φ) = 0. In principle the Isomap algorithm equals
MDS, whereby the Euclidean distances are replaced by geodesic distances
along the manifold. Due to the different distance measure Isomap is superior
to linear methods in case of complex and non-linear structures. Although,
Isomap may suffer from holes within the data structure and so called short-
circuiting, e.g misleading connections to topologically separated points.

LLE preserves local linear structure of nearby data points. It builds up a
weighted graph from k-nearest neighbors. After decomposing the matrix

M = (I −W )T(I −W ) (2)

with I being the identity matrix the largest eigenvector is discarded and the
remaining ones yield the lower-dimensional data points. The neighborhood
of every point is assumed to be planar. Despite of its good performance in a
wide variety of applications LLE tends to cluster dense regions of the data
and can hardly handle holes.

Laplacian Eigenmaps as well as Diffusion Maps preserve so called
proximity relations: Nearby input data points {φn} are projected to nearby
output data points {xn}. They minimize the gradient norm in a least squares
sense by decomposing the matrix

L = I − D− 1
2WD− 1

2 . (3)

Using the d + 1 largest eigenvectors of the matrix yield the M -dimensional
data points, whereby the largest eigenvector is discarded. The diagonal ma-
trix D has elements Dnn =

∑
m W nm. The matrix L is also called Graph

Laplacian.
For Diffusion Maps the weight matrix W is constructed using the diffusion

kernel:
Wmn = exp(−|φn − φm|2/σ2) (4)



with σ being a scale parameter, affecting the number of points having high
weights in the graph. In contrast to all other graph-based methods the Diffu-
sion Maps do not provide a parameter k defining the number of neighboring
points. Another parameter is α controlling the graph normalization. Note
that α = 0 leads to L being the Graph Laplacian and α = 1 yields the
Laplace-Beltrami operator. We choose the latter for our experiments with a
fixed scale parameter σ = 10.

Both algorithms suffer from similar drawbacks like LLE.

LTSA preserves the geometry within the tangent space at each data point.
The method computes a graph from the k-nearest neighbors and approxima-
tes the local tangent space of each neighborhood. The local tangent space
is aligned and embedded in a global coordinate system. As we can conclude
from our experiments described in Section 5 LTSA as well as LLE cause high
computational costs due to there complexity.

4 Transformations between Different Subspaces
Given two sets of data points written with homogeneous coordinate vectors
xT
n = [xT

n , 1],yT
n = [yT

n , 1] a linear, projective transformation H : yn = Hxn

is to be determined. In terms of the combined coordinate matrices X and Y
the homogeneous representation is Y = HX.

Since the (d+1)-dimensional matrix H is homogeneous there are (d+1)2−1
parameters to be determined. Each labeled pair of data points eliminates
d parameters being the number of its Euklidean coordinates. Therefore, we
need at least Nl = ((d+1)2−1)/(d+1) = d+2 labeled points for determining
a unique transformation H. We can multiply with the pseudo inverse of Y
and obtain H = YX+.

Figure 2 illustrates how the transformation can be determined in low-
dimensional space with only d+ 2 links.

5 Experiments
As depicted in Figure 3 we use several pairwise similar data sets in out
experiments, including

Aberdeen contains 695 pairs of facial images from the Psychological Image
Collection at Stirling1, each pair containing a colored and a gray scale

1http://pics.psych.stir.ac.uk/



Abbildung 2: Assignment of a gray-scale and a colored version of images from the
Aberdeen database. Both image spaces have been reduced to only two dimensions.
The straight lines show how both low-dimensional spaces can be related with only
Nl = d+ 2 = 4 labeled points.

version. Goal of this first experiment is to assign one similar colored
image to given gray-scale images.

Digits are 1900 handwritten digits [24] and 2940 digital ones. We use di-
mensionality reduction methods and the estimated transformation to
classify handwritten images by finding corresponding digital versions.

Glasses contain 1626 semi-automatically created Simpsons avatars2, each
pair containing one face with and without glasses. By searching for the
nearest neighbor in the space of non-glass images we remove glasses
from these cartoon faces.

FERET/Simpsons consists of 1577 images from the Color FERET face
database [17, 18] and 789 selected Simpsons avatars. We “cartoonize”
human faces from FERET by matching them with matching characters
from Springfield, home town of the famous TV family, the Simpsons.

We reduce the dimensionality of both data sets to the same target dimen-
sion and compute the transformation between both subsets. The dimensio-
nality reduction is done using all Nl + Nt + Nu labeled, test, and unlabeled
images, while the transformation estimation relies on Nl labeled data points
only.

After determining the transformation between both low-dimensional spaces
the test images from one subspace are transformed into the other subspace.
There they are assigned to their nearest neighbors to yield an approximate
relative position to other images within the high-dimensional space. The la-
bels, i.e the unique ID, of each paired test images are compared to compute
an accuracy measure between 0 and 100 %. In case of a classification task

2http://www.simpsonsmovie.com/



(a) Aberdeen
gray/color

(b) Digits handwrit-
ten/digital

(c) With/without
glasses

(d) FE-
RET/Simpsons

Abbildung 3: Example images for all data sets used in this paper. We relate gray-
scale images with their colored versions, recognize handwritten digits by mapping
them on digitally generated counterparts, remove glasses from Simpsons avatars
and human faces with a similar carton drawing.

like the classification of handwritten digits only the classes of a test image
pair are compared, since the specific image ID is not relevant.

We compare seven state-of-the art subspace methods: PCA, MDS, Iso-
map, LLE, Laplacian Eigenmaps, Diffusion Maps and LTSA. We analyze the
influence of changing parameters like the number of labeled points, the num-
ber of used neighbors k and the target dimension. The implementations of all
graph-based algorithms are kindly provided by the authors. For the PCA we
use a fast implementation from Mark Tygert3 and the MDS implementation
is an iterative version written by Michael Lee [13].

5.1 Assignment Accuracy of Cartoon Faces with and
without Glasses

In our first experiment we choose two data sets, which equal in image content
and feature dimension. We create 1626 pairs of randomly assembled Simpsons
avatars with and without glasses. We run all experiments with an image
size of 60 × 40 pixels, different target dimensions d = {2, . . . , 80}, different
neighborhood sizes k = {5, . . . , 1600} and a varying number of labeled points
Nl.

Figure 4 shows that the accuracy for all methods but Laplacian Eigen-
maps and Diffusion Maps significantly increases with the number of labeled
data points. PCA, Isomap and MDS show the best results, whereby PCA

3http://www.mathworks.de/matlabcentral/fileexchange/
21524-principal-component-analysis



improves mostly with increasing number of labeled points and Isomap out-
performs all other methods with using the minimum number of labeled points
Nl = d + 2. LTSA also improves significantly. Isomap yields better results
at a high number of neighbors k. We observe that the accuracy increases
with increasing number of neighbors. LTSA and PCA outperform all other
methods with Nl = 100.
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Abbildung 4: Number of labeled points Nl versus assignment accuracy of cartoon
faces with and without glasses. For each algorithm the lowest error rate out of
different neighborhood sizes k and dimensionalities d is plotted. The left part of
the plot shows results with Nl depending on the dimensionality, while on the right
side Nl is fixed for varying d. Above each bar there is the number of neighbors k
(top) and the dimensionality d (below).

5.2 Assignment Accuracy of Gray-scale Images to Co-
lored Images

In this experiment we compare the assignment accuracy of the algorithms
for equal images: one set is colored, the other one is gray-scaled. Note that
the dimensionality of colored images is three time the dimensionality of gray-
scale images. We run the experiments with an image size of 60 × 40 pixels,
different target dimensions d = {2, . . . , 50}, different neighborhood sizes k =
{5, . . . , 656} and several numbers of labeled points Nl.

Figure 5 shows that all algorithms increase the assignment accuracy with
an increasing number of labeled points Nl. PCA, Isomap, MDS and LLE and
LTSA perform best, whereby Isomap shows best results with a minimum
number of labeled points Nl = d + 2. Both Diffusion Maps as well as the
closely related Laplacian Eigenmaps show low assignment rates. Isomap, LLE
and LTSA tend to achieve better results with a high number of neighbors k.
The plot also shows that the dimension for best results seems to be d = 8.
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Abbildung 5: Results for the colored and gray-scale Aberdeen faces in analogy to
Figure 4.

5.3 Classification Accuracy of Handwritten and Digital
Digits

In this experiment we use 1900 handwritten digits [24] and 2940 digitally
generated digits. Both data sets include gray-valued images of size 16 × 16.
We use our transformation procedure to solve a classification task. Some of
the handwritten and all of the digital digits are labeled with the number
shown in the image. The idea is that images with the equal labels lie within
similar regions in both subspaces. Given test images of handwritten digits
can be assigned to labeled digital digits and classified.

Figure 6 shows that the classification accuracy increases rapidly with an
increasing number of labeled pointsNl. The Laplacian Eigenmaps outperform
all other algorithms in nearly all cases. Again, Isomap needs much more
neighbors than other algorithms. It can be seen that at a certain number of
labeled points Nl the classification accuracy does not improve significantly
anymore. In this experiment, LTSA and LLE show long running times. We
quit there calculations with more than 100 neighbors after several hours.
As Figure 7 illustrates most erroneous classifications arise from similarities
between specific numbers, e.g 3, 8, 0.
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Abbildung 6: Results for the handwritten and digital digits in analogy to Figure 4.



(a) Correct assignments (b) False assignments

Abbildung 7: Example results for the assignment of handwritten and digital digits.

5.4 Assignment of Human Faces to Cartoon Avatars

The Color FERET database include colored images from many different per-
sons, angles and illuminations. We only consider images with half right and
mirrored images with half left angle to achieve a uniform view for all images.
Furthermore, we aligned the resulting 1577 images with a free software from
Huang et al. [11], set all background pixels to white, brightened up some dark
images and adjusted their contrast. Despite this preprocessing step several
images still show differences, even images of the same persons.

With the help of an online web-application we semi-automatically crea-
ted and downloaded 789 selected Simpsons avatars with different race, hair,
noses, eyes, mouths and glasses.

As in the other experiments we choose several target dimensions d, num-
ber of neighbors k and labeled points Nl. We manually labeled 80 images
and assign one Simpsons avatar to every FERET test image.

Some examples from Isomap and Laplacian Eigenmaps can be seen in
Figure 8. The qualitative results visually show good performance regarding
to sex, hair color and skin.

Abbildung 8: Example results for the assignment of FERET images and Simpsons
avatars.



6 Discussion and Outlook
We propose a method to determine a transformation between similar high-
dimensional data sets by reducing the dimensionality and estimate the trans-
formation between two subspaces using a few labeled points. The dimensio-
nality reduction is done with both labeled and unlabeled data such that our
approach can be seen as semi-supervised.

We apply our approach to the "cartoonizationöf the FERET database
and yield promising results. We could improve the results by choosing more
consisting images with more distinctive labels. As can be seen from Figu-
re 2 the location of one image within low-dimensional space clearly depends
on image characteristics like background color and contrast, i.e properties
being of no interest for the assignment. This application can be extended
to the cartoonization of unseen images by aligning them and removing the
background automatically with some segmentation algorithm, e.g GrabCut
[20].

We show, that linear methods mostly perform as well as nonlinear me-
thods if there are enough labeled data points. The nonlinear methods suffer
from the aspect that unknown parameters like the number of neighbors have
to be chosen carefully to achieve good results. However, if the parameters are
chosen well, the nonlinear methods outperform the linear ones with a mini-
mum number of labeled points Nl = d+ 2. We show that in our application
LLE and especially Isomap tend to achieve better results with a high number
of neighbors k → Nl. For the digit data set we observed LTSA and LLE not
being practicable if the number of points N is high.

In future work the presented application can be extended to more general
data sets to yield more robust assignment. The proposed framework can be
applied to further fields of machine learning dealing with high-dimensional
data.
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