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Abstract

Logistic Regression has become a commonly used
classifier, not only due to its probabilistic output and
its direct usage in multi-class cases. We use a sparse
Kernel Logistic Regression approach — the Import Vec-
tor Machines — for land cover classification. We im-
prove our segmentation results applying a Discrimina-
tive Random Field framework on the probabilistic clas-
sification output. We consider the performance regard-
ing to the classification accuracy and the complexity
and compare it to the Gaussian Maximum Likelihood
classification and the Support Vector Machines.

1. Introduction

Land cover classification is perhaps the widest used
application in remote sensing. Most studies use well
known statistical methods like the Gaussian Maxi-
mum Likelihood classification (MLC). However, these
“early” methods are often limited in the context of en-
hanced Earth-Observation systems and increased avail-
ability of diverse remote sensing datasets. Besides
that, more stringent performance requirements like ac-
curacy, speed (e.g. near-real time applications) and
cost demand more sophisticated classification concepts
(e. g. [15,5]).

As a result, the user can choose between several
widely accepted algorithms such as decision trees, neu-
ral networks and Support Vector Machines (e. g. [15, 5])
Particularly Support Vector Machines (SVM, [20]) have
emerged over the past decade and have been success-
fully introduced in context of remote sensing. However,
probabilistic discriminative models (e. g. [12, 19]) like
Logistic Regression (e. g. [7, 22, 10]) are also used since
the probabilities themselves are often of interest.

Another development in remote sensing image anal-
ysis is that of segment-based or object-based ap-
proaches, where adjacent pixels with similar properties
are aggregated into image segments. After image seg-

mentation, additional information such as the segments’
mean value and texture as well as neighborhood rela-
tionships can be derived and included into the classifi-
cation process. Shackelford and Davis [17] for example
combined information from pixel- and segment-levels
to separate classes that are spectrally similar at pixel
level. However, the definition of adequate segmenta-
tion level might be critical ([21]) and Song et al. [18]
for example demonstrated how an inadequate segmen-
tation affects the classification accuracy.

Using a Discriminative Random Field [12] is an al-
ternative approach to model the spatial interactions be-
tween pixels. We apply it in a probabilistic discrimi-
native framework following the concept of Conditional
Random Fields proposed by Lafferty et al. [13]. We
model the probabilistic output with the Import Vector
Machine (IVM, [23]) — a sparse Kernel Logistic Re-
gression approach. Since both Kernel Logistic Regres-
sion (e. g. [14, 9, 3, 16]) and the [VMs already achieve
high accuracies for machine learning datasets [23], such
as speaker identification [8] and cancer diagnosis [11],
they see also interesting in context of remote sensing
imagery.

In the first chapter we give an overview about the Lo-
gistic Regression, its extension to Kernel Logistic Re-
gression and to the IVMs. Afterwards we introduce the
Discriminative Random Field and incorporate the prob-
abilistic output of the IVMs. In our experiments we
evaluate the proposed algorithm on a set of two Landsat
images, using different amount of training points. Con-
cerning the similarity of SVMs and IVMs we compare
the performance of both algorithms in terms of accu-
racy and complexity to each other and to the Gaussian
Maximum Likelihood classification.

We clarify the questions how good the IVM performs
in comparison to the mentioned algorithms and if the
usage of a Discriminative Random Field can improve
the classification accuracy.



2. Logistic Regression

We assume to have a training set (,,yn), n =
1,..., N of N labeled samples with vectors x,, of ob-
servations and class labels vy, € C = {1,...,K}.
The observations are collected in a matrix X =
[€1,...,2N]

In the two-class case the posterior probability p,, of
a feature vector x,, is assumed to follow the Logistic
Regression model
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P(Yn|Xn; W) (1)

with the extended feature vector x| = [1,z)] € RM
and the extended parameters w' = [wpo,w'] € RM
containing the bias wy( and the weight vector w.

The objective function Qyp(w) of the standard lo-
gistic regression model is given by the negative log-

likelihood function

QO(W) = _% Z [tn Ingn + (1 - tn) IOg(l _pn)] .
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The binary target vector ¢ € {0,1} of length N codes
the labels with ¢,, = 0 for ¢; and ¢,, = 1 for .
The Newton-Raphson iteration scheme for the mini-
mization of (2) is given by

wl) = wl=) - HT'VE 3)

with the gradient VE = X (p —t) and the Hessian
H = X"RX. The (N x N)-dimensional diagonal ma-
trix R has the elements r,,, = p, (1 — p,,), which can
be obtained from (1).

We can reformulate the Newton-Raphson iteration
scheme in (3) and obtain the iterated reweighted least
squares solution
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to obtain adjusted parameters in each iteration ¢. We
also introduce a regularization parameter A\ to prevent
overfitting, especially in the case of separable or nearly
separable data.

3. Kernel Logistic Regression and Import
Vector Machines

To use the linear classifier for solving a non-linear
problem we introduce kernels to map the original obser-
vations from the input space into a higher-dimensional

kernel space. This approach has already been success-
fully applied to several applications like object recogni-
tion or speech recognition (e. g. [16, 8, 11]).

3.1 Kernel Logistic Regression

We introduce kernels and transform the features X €
RM to a higher dimensional feature space 7 making use
of the kernel trick [1]. The kernel function K is given
by

K (Xn, Xm) = &7 (%) & (Xim) - (6)

Following the Representer Theorem the parameters
W lie within the span of the feature vectors ®:

W=> ond,=2"a (7

The vector « contains the parameters which define the
linear decision boundaries in kernel space.
With (6) and (7), (4) and (5) become
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3.2 Import Vector Machines

The problem with Kernel Logistic Regression is that
all training samples are included to train the classifier,
which is computationally expensive in datasets with
many training samples. Similar to the widely used
SVMs only a few feature vectors are necessary to de-
fine the decision boundaries. These feature vectors are
called import vectors. Using only these vectors we ob-
tain a sparse solution of the Kernel Logistic Regression
— the Import Vector Machines [23].

Following Zhu and Hastie [23] we only choose a
subset S out of the training set 7Twith S = |$| samples
and yield for (8) and (9)
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with an (N x S)-dimensional kernel matrix Kg, an
(S x S)-dimensional regularization matrix K and the
probabilities p = m.

Zhu and Hastie [23] describes the detailed algorithm
composed of the simultaneous selection of the subset
S and the regularization parameter \, the optimization

procedure and the convergence criterion.



3.3 Extension to the Multi-class Case

We can generalize the two class model to the multi-
class model. Then the objective function is

Q= —gzs:ts log p, + §;akKRak (12)

with the probabilities P = [py, . .., ps| obtained by

exp(a)ks.s)
> exp(a]Tk&s) ’

The kernel matrix K consists of the columns kg ;. The
binary target vector t,, of length K uses the 1-of-K cod-
ing scheme so that all components but ¢, are 0 if the
feature ¢,, is from class ;. The complete parameter
matrix is A = [a, ..., ak] collecting the individual
parameter vectors.

In the Newton-Raphson procedure in (10) and (11)
we have to use one R} and one z for each class. In
consequence of the over-determined system we need to
apply the pseudo-inverse instead of the normal inverse.

4 Discriminative Random Field

Following Kumar et al. [12] we combine a logistic
classifier — in our case the IVMs — with a smoothing
over the image label field and obtain a Discriminative
Random Field. We use the following simplified model

P(ylX) =
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where x,, is the observed feature vector from the nth
site, I being the set of all sites and J being the Kro-
necker delta function. For each site there is one label
yn € C = {1,...,K}. The normalization constant is
Z and the interaction parameter is 5. The first term in
(14) models the association of the site n with C,, defined
by the probabilistic output of the IVM. The second term
describes the interaction potential as a Potts model over
a 2D lattice penalizing every dissimilar pair of labels
and therefore heterogeneous regions. We choose a sim-
plified model with a data-independent term, which can
be seen as a special case of Conditional Random Field.
The set of neighbors of y,, is given by A;,.

5. Experimental Setup and Results

In our experiments we consider the performance of
the IVMs regarding to the classification accuracy and

the complexity and compare it to the Gaussian Max-
imum Likelihood classification and the SVMs, which
both are standard in land cover classification.

5.1 Dataset

The study site is dominated by agriculture and char-
acterized by typical spatial patterns and temporal varia-
tion caused by differences in the crop phenology, with
cereals and sugar beets being the main crops. The data
set contains two Landsat 5 TM images from April 3 and
May 28, 2005 (i. e. 12 bands in total). The classifica-
tion is aiming on eight land cover classes, focused on
ARABLE CROPS, CEREALS, FOREST, GRASSLAND,
ORCHARDS, RAPESEED, ROOT CROPS, and URBAN.
A map from a detailed field survey was available for
generating the training and test sample sets.

5.2 Methods

We transform the features into kernel space with a
radial basis function

Xn — Xm 2
K(Xnaxm) = €Xp <_|20_2|) (15)

and determine the kernel parameter o through cross-
validation.

To investigate the possible influence of the number
of training samples on the performance of the classifier,
training sets with different size N were generated, con-
taining 50 and 200, respectively.

In the IVMs approach we use N samples and split
off 1/5 of them for the tuning set to determine the reg-
ularization parameter A. We start with A = exp(0) and
decrease with a factor of exp(1).

To achieve an optimal segmentation result with the
Discriminative Random Field we test possible 5 > 0
and choose the one yielding the lowest training error.
We perform the optimization with loopy-belief propa-
gation (e. g. [2]) using an own implementation.

The SVM classification is based on imageSVM [6],
a freely available IDL/ENVI implementation. im-
ageSVM is based on the LIBSVM approach by Chang
and Lin [4] for the training. A Gaussian radial basis
function kernel is used and the kernel parameter is de-
termined via 3-fold cross validation.

5.3 Results and Discussion

Comparing the results achieved by three different al-
gorithms (Table 1) it can be assessed, that the SVM
and IVM perform equally and outperform the Gaussian
Maximum Likelihood classifier in terms of accuracy.



MLC SVM VM DRF
# training acc K acc K # support | acc K # import acc K
points per class points points
50 75.19 | 0.68 | 79.50 | 0.74 298 79.10 | 0.74 21 84.90 | 0.80
200 80.49 | 0.75 | 81.94 | 0.77 902 82.30 | 0.77 22 86.83 | 0.83

Table 1. Classification results with MLC, SVM, IVM and DRF. The best result is in bold print.

Class name MLC | SVM | IVM DRF
ARABLE CROPS | 62.62 | 71.02 | 65.81 | 63.18
CEREALS 70.24 | 73.27 | 73.78 | 80.89
FOREST 94.44 | 95.46 | 95.78 | 97.57
GRASSLAND 71.84 | 69.23 | 68.02 | 74.94
ORCHARDS 44.53 | 56.54 | 59.05 | 63.96
RAPESEED 76.35 | 76.25 | 75.96 | 82.17
ROOT CROPS 75.13 | 68.47 | 70.77 | 76.37
URBAN 80.17 | 84.90 | 84.44 | 90.94

Table 2. Accuracies with 200 training
points per class. Best result in bold print.

Using a higher number of training samples for the
Gaussian Maximum Likelihood classifier, the total ac-
curacy is increased by 5.3 % compared to the classifica-
tion results achieved with 50 samples per class. In con-
trast to this the impact of the number of training samples
on the total accuracy is less dominant for the SVMs and
IVMs.

The results show the positive impact of the Discrim-
inative Random Field on the overall accuracy. The to-
tal accuracy is significantly improved by Discriminative
Random Field and increased by 5.8 % and 4.5 %, re-
spectively. The positive impact of the Discriminative
Random Field on the classification accuracy is under-
lined by a visual assessment of the classification re-
sults (Figure 1). Noise within the pixel-based results
is clearly reduced and field plots appear generally more
homogeneous. However, in images with complex, non-
smooth structures, small regions can be eliminated and
the accuracy might be decreased.

Table 2 shows, that the IVM with Discriminative
Random Field has in 7 of 8 classes a higher accuracy
than the other algorithms. Only the accuracy of Arable
crops is higher for the SVM.

The computational cost of the SVMs is O(N?Ng),
where N is the number of support points. The compu-
tational cost of the IVMs is O(N?N?) with Ny as the
number of import points. Table 1 shows that the number
of import vectors is considerably less the than number
of support vectors, particularly for the large sample set.
This is in accordance with Zhu and Hastie [23], which

have demonstrated that the number import vectors tends
not to increase with the number of used training sam-
ples, whereas the amount of support vectors usually in-
crease with the number of training points. Seen from the
computational aspect the IVMs can have a less compu-
tational amount for training and testing than the SVMs.

6. Conclusion

We apply the Import Vector Machines with a Dis-
criminative Random Field to the image classification in
remote sensing. We tested the algorithm on a land cover
classification task with a Landsat image and compared
it on the one hand to the Gaussian Maximum Likelihood
classifier and on the other hand to the SVMs regarding
to the achieved accuracy and the complexity.

The IVMs show similar results to the SVMs and both
outperform the Gaussian Maximum Likelihood classifi-
cation in terms of accuracy.

In comparison to the SVMs the IVM has the advan-
tage of probabilistic outputs, often has a lower complex-
ity and can directly applied to the multi-class case. They
probabilistic output can be incorporated into a Discrim-
inative Random Field, which increases the classification
accuracy significantly.

Within future research we will focus on an auto-
matically determination of the regularization parame-
ter. A fixed regularization parameter further decreases
the number of used import vectors and so fastens the al-
gorithm. First results with a data-driven regularization
parameter shows promising results.
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