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Abstract

Logistic regression has been widely used in classification tasks for many years.
Its optimization in case of linear separable data has received extensive study
due to the problem of a monoton likelihood. This paper presents a new
approach, called bounded logistic regression (BLR), by solving the logistic
regression as a convex optimization problem with constraints. The paper
tests the accuracy of BLR by evaluating nine well-known datasets and com-
pares it to the closely related support vector machine approach (SVM).

1.1 Introduction

Logistic regression makes optimal decisions regarding class labels and at the
same time efficiently estimates a posteriori probabilities. It is particularly
suitable for a large number of data samples with a relatively low number of
features. If the dimension of the feature space is higher than the number of
samples, the data is separable and the problem of monotone likelihood occurs,
as Albert and Anderson [1] and Santner and Duffy [2] have shown. In this
case the standard logistic regression strives towards the global optimum at
infinity, which provides no practical solution.

To overcome this problem, a modification of the logistic regression by
introducing a regularization term is possible, leading to a unique minimum.
Its optimization with the Newton-Raphson procedure is standard and often
faster compared to the Gradient Descent procedure. In addition, we do not
have to choose a fixed steplength and so we are not confronted with the
typical problems of the gradient descent. However, the Newton procedure
is only reliable for good starting values near the minimum and if the data
points are not separable. Otherwise, the process achieves huge steplengths



and cannot be solved precisely. Therefore in the separable case, the logistic
regression with regularization is not suitable in combination with the Newton-
Raphson optimization. Related to this idea of regularization, there exist
several works e.g. Lin et. al [3], who discuss a Trust Region optimization
method and Kim et. al [4], who discuss an Interior Point method. The
main question besides the kind of the regularization term is the choice of the
regularization parameter, which computation is mostly laborious.

A possible alternative, especially for low sample size with high feature
space dimension, is using the support vector machine approach (SVM, Vap-
nik [5]). In contrast to the logistic regression, the SVM does not provide a
posteriori probabilities for the class memberships of the data points. The
calculation of these probabilities is possible by extending the SVM to a Rel-
evance Vector Machine (RVM, Tipping [6]).

The following paper presents a new approach to the logistic regression
called bounded logistic regression (BLR) as an alternative to the SVM and
without any regularization term, being applicable for both separable and non
separable data. In section 1.2 we will describe the theoretical background in
detail. We will derive the reformulated optimization problem for the logistic
regression with additional constraints, before solving it with a customized
Newton procedure. Section 1.3 will demonstrate the accuracy of our algo-
rithm by a evaluation of nine well-known datasets from the UCI Machine
Learning Repository and a comparison to classification results achieved by
the SVM. Finally we will give an outlook to further analyses of the approach.

1.2 Theory

This section provides an efficient algorithm for learning the parameters of a
logistic regression model also in case the data a linearly separable. Section
1.2.1 introduces the basic model, for which section 1.2.2 provides the standard
solution based on a Newton iteration scheme.

1.2.1 Logistic regression

We assume to have a training set (xn, Cn), n = 1, ..., N of N labeled samples
with vectors xn of observations and classes Cn ∈ {1, ..., K}. For classifica-
tion we use a vector φn = φn(xn) ∈ IRM of M features derived from the
observations. The a posteriori probability of a test feature vector φ ∈ IRM

is assumed to follow the discriminative multiclass logistic regression model

P (Ck|φ,w) =
exp(wT

kφ)∑
j exp(wT

j φ)
(1.1)



with the extended vectors

φT = [1,φT] ∈ IRM+1 , wT
k = [wk0,w

T
k ] ∈ IRM+1 (1.2)

for the features φ and the class related parameters wk containing a bias
wk0 and the weight vector wk. The complete parameter vector is wT =
[wT

1 , ...,w
T
K ] ∈ IRK(M+1) collecting the individual parameter vectors.

The model only contains (K−1)(M + 1) independent parameters, as the
ratio may be reduced e. g. by exp(wT

1 φ) without changing the posteriors,
leading to P (Ck|φ,w) = 1/(1 +

∑K
j=2 exp((wj −w1)

Tφ). However, because
of its symmetric properties, we prefer (1.1), taking into account that M + 1
parameters are not identifiable.

The task is to derive optimal parameters w from the training data.

1.2.2 Basic iteration scheme

The classical procedure is based on a minimizing the negative logarithm of
the complete probability

Q(w) = − log
∏
n

P (Cn|φn,w) = −
∑
k

∑
n

tnk log
exp(wT

kφn)∑
l exp(wT

l φn)
(1.3)

with respect to w. The indicator vector tn = [tnk] = eCn is the Cn-th unit
vector. The iteration process needs the gradient and the Hessian

∇Q(w)
K(M+1)×1

=
∑
n

(tn − pn(w))⊗φn (1.4)

∇2Q(w)
K(M+1)×K(M+1)

= −
∑
n

(
Diag(pn(w))− pn(w)pn(w)T

)
⊗φnφ

T
n ,(1.5)

where the vector pn(w) = [P (Ck|φn,w)] contains the posterior probabilities
for the n-th feature vector belonging to class Ck, given the parameters w.

The Hessian is negative semi-definite. It has a rank deficiency of M + 1,
as the left factor of the Kronecker product has rank K−1 and eigenvector 1K ,
reflecting that M + 1 parameters are not identifiable. Therefore the iteration
scheme could be simply w(i+1) = w(i) − [∇2Q(w(i))]

+∇Q(w(i)).
As already discussed in Albert and Anderson [1] the problem has no

unique solution in case the data is separable, thus also in the important
case that the feature space is larger than the number of training samples.
Moreover, the optima sit at infinity. This can easily seen with an example
in a one-dimensional feature space with two separable classes: (1) There is
an interval (a, b) of finite length for the point x0 of separation. (2) Setting



(a) Sigmoid function (b) Derivative of the sigmoid func-
tion

Figure 1.1: The relation between the sigmoid function and the Gaussian can
be shown by derivation of the sigmoid function to achieve an approximate
Gaussian.

w1 = 0 any w2 = limλ→∞(λ[w20, w21]
T) with x0 = −w20/w21 ∈ (a, b) is a

solution.
In case of separability, classical Newton-Raphson schemes do not con-

verge. Even so, in order to use this optimization method by reason of fast
convergence we will solve the logistic regression as a convex optimization
problem with constraints, illustrated in the following.

1.2.3 The optimization problem with constraints

We have observed slow convergence and overflows, due to large weights |wk|’s,
also in case of overlapping classes. Therefore we propose to limit the length of
the individual weight vectorswk, which is equivalent to limiting the sharpness
posterior at the boundaries. That is reasonable, because the weights tends to
an unlimited precision if there is no barrier. Like Rennie[7] already mentioned
even the regularization with L2-norm assumes unlimited precision, so we have
to choose an appropriate barrier to limit the weights. Assuming the feature
values φnm have an uncertainty σ of a Gaussian, then the sharpness can be
related to the uncertainty measured by π√

3wmax
.

Figure 1.1 shows the relation between the sigmoid function and the Gaus-
sian. The derivative of P (C|φ, wmax) with respect to φ is

∂P (C|φ, wmax)
∂φ

= w
exp

(
−wT

maxφ+ w0

)
(1 + exp (−wT

maxφ+ w0))
2 . (1.6)



So the σ of the Gaussian is

σ =

√∫
φ2∂P (C|φ, wmax)

∂φ
dφ =

π√
3wmax

, (1.7)

which can be reordered to get the sharpness barrier r = π√
3σ .

Therefore we propose to solve the following convex minimization problem
with K constraints on the weights for learning the parameters w:

minimize Q (w) , (1.8)

subject to hk(w) = |wk|2 =
M∑
m=1

w2
km ≤ r2 k = 1, . . . , K. (1.9)

We choose the Interior-point method for solving the problem, because it
has been proven to be useful for each kind of optimization. The following
remarks are based on the work of Antoniou and Lu [8] as well as Pang and
Mangasarian [9].

First of all we convert the inequalities (1.9) into equalities

hk − sk = −
(
|wk|2 − r2

)
− sk = 0 (1.10)

with hk = h (wk), by introducing slack variables {sk} leading to the nonneg-
ativities

sk ≥ 0. (1.11)

We can incorporate the contraints into the objective function using a
logarithmic barrier function:

minimize Qτ (w, s) = Q (w)− τ
∑
k

log sk, (1.12)

subject to h− s = 0 . (1.13)

The barrier parameter τ ≥ 0 is the weight for the penalization of small
slack variables. Smaller values for the slack variables reflect smaller distances
to the barrier. Figure 1.2 shows a profile of the height of the penalization by
the use of the barrier term τ log (−|wk|2 + r2) in a two-dimensional feature
space under variation of τ . Feasible points for the optimization problem lie
within a cylinder with radius r, since the barrier term prevents a solution
out of its border.

For τ → 0 the problem (1.12), (1.13) converges to the solution of the
original problem (1.8), (1.9). We establish the Lagrangian for (1.12) and
(1.13):

Lτ (w, s,λ) = Q (w)− τ
∑
k

log sk −
∑
k

λk (hk − sk) . (1.14)



Figure 1.2: The barrier term τ log(−|wk|2 + r2) limits the size of |wk|. For
large τ the barrier is soft, for values of τ approaching 0 the barrier becomes
harder. The plot shows the barrier for r = 3 for values τ = 1.0, 0.3, 0.1, 0.03.

The Karush-Kuhn-Tucker conditions are given by

∇wLτ = ∇Q (w)−∇T
whλ = 0 , (1.15)

∇sLτ = −τ1K + SΛ1K = 0 , (1.16)

∇λLτ = h− s = 0 , (1.17)

where ∇T
wh is the (M + 1)K × K Jacobian of the constraints h, S is the

K ×K-dimensional diagonal matrix of the slack variables , Λ is the K ×K-
dimensional diagonal matrix of the lagrange multipliers and 1K is a K-vector
with all entries equal to one.

Starting from a point
{
w(i), s(i),λ(i)

}
with i = 0 on the convex function

(1.14) we can reach the minimum in I iterations by updating the point at
each iteration:

w(i+1) = w(i) + α(i)∆w(i), (1.18)

s(i+1) = s(i) + α(i)∆s(i), (1.19)

λ(i+1) = λ(i) + α(i)∆λ(i). (1.20)

We determine α(i) in a line search and choose the Newton-direction for{
∆w(i),∆s(i),∆λ(i)

}
. Referring to Antoniou and Lu [8] and Pang and Man-

gasarian [9], the update for the parameters of the decision surfaces is

∆w(i) = N−1
(i)

[
∇Q(i) − τ∇Th(i)S−1

(i) 1K +∇Th(i)S−1
(i) Λ(i)

(
s(i) − h(i)

)]
(1.21)

with the updates for the slack variables and lagrange multipliers:

∆s(i) = −∇h(i)S−1
(i)∇Q(i) + τ −∇h(i)N−1

(i)∇
Th(i)S−1

(i) 1K

−
(
IMK×MK −∇h(i)N−1

(i)∇
Th(i)S−1

(i) Λ(i)

) (
s(i) − h(i)

)
(1.22)

∆λ(i) = S−1
(i) Λ(i)

((
s(i) − h(i)

)
−∇h(i)∆w(i)

)
+ τS−1

(i) 1K − λ(i). (1.23)



For solving the equations we need the inverse of

N(i) = ∇2Q(i) −
∑
K

λ(i)k∇2h(i)k +∇Th(i)S−1
(i) Λ(i)∇h(i). (1.24)

The inversion is computational very intensive, so we use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method to approximate N(i) at every it-
eration (i). Because we do not explicitly calculate the Hessian from the
second derivatives, this approach is a so-called quasi-Newton method. For
further information concerning the theory see [10]. We derive the approxi-

mated matrix N̂(i+1) with the help of (1.21) by

N̂
−1

(i+1) = N̂
−1

(i) +

(
∆w(i)∆wT

(i)

)(
∆wT

(i)y(i) + yT
(i)N̂

−1

(i) y(i)

)
(∆wT

(i)y(i))2
(1.25)

−
N̂
−1

(i) y(i)∆wT
(i) + ∆w(i)y

T
(i)N̂

−1

(i)

∆wT
(i)y(i)

(1.26)

and

y(i) =
[
−∇Q(i+1) − τ∇Th(i+1)S−1

(i+1)1K +∇Th(i+1)S−1
(i+1)Λ(i+1)

(
s(i+1) − h(i+1)

)]
−
[
−∇Q(i) − τ∇Th(i)S−1

(i) 1K +∇Th(i)S−1
(i) Λ(i)

(
s(i) − h(i)

)]
(1.27)

as the difference of the parenthetic term in (1.21) between iteration (i) and

(i + 1). We update N̂
−1

(i) with an initial choice of N̂0 = 0.01 · IMK×MK until
convergence.

Regarding Antoniou and Lu [8] and Pang and Mangasarian [9] for convex
optimization problems, which are not quadratic or linear, further reduction
of the aforementioned steplength α(i) may be necessary to guarantee conver-
gence. The choice of α(i) is determined through a L2-merit function

Qτ,β (w, s) = Q (w)− τ
∑
K

log sk +
β

2
‖s− h‖2 , β ≥ 0 (1.28)

ensuring that the steplength along the Newton direction is shortened suffi-
ciently.

The merit function is differentiable with respect to w and s. Minimizing
(1.28) with large enough β reduces the objective function (1.12) and sets the
point closer to the feasible region due to the term β

2
‖s− h‖2.



The parameter β is set to zero as long as {∆w,∆s} is a descent direction
for the merit function. This is true if

a(i) =

[
∇wQτ,β

(
w(i), s(i)

)
∇sQτ,β

(
w(i), s(i)

) ]T [
∆w(i)

∆s(i)

]
(1.29)

= −ξT
(i)N

−1
(i) ξ(i) + τ1T

KN−1
(i)

(
s(i) − h(i)

)
+ ξT

(i)S
−1
(i)∇

Th(i)S−1
(i) Λ(i)

(
s(i) − h(i)

)
− β

∥∥s(i) − h(i)

∥∥2
< 0 (1.30)

with ξ(i) = ∇Q(i) − τ∇Th(i)S−1
(i) 1K . If this is not the case, β has to as-

sume a value, which ensures that (1.30) is negative. In practice, one usually
computes βmin and then chooses β = 10βmin

The steplength α can be calculated with exact line search using (1.28)
and β determined as described above. The search intervall is [ε, αmax] with

αmax = 0.95

[
max

1≤k≤K

(
−

∆s(i)k

s(i)k

,−
∆λ(i)k

λ(i)k

)]−1

(1.31)

sufficing s(i) + αmax∆s(i) > 0 and λ(i) + αmax∆λ(i) > 0.
For the choice of τ – regardless of the data – a transformation of every

datapoint to zero mean and unit variance, e.g. with a principal component
analysis, is necessary. Because the problem (1.12) subject to (1.13) converges
to the solution of the original problem for τ → 0, we reduce the barrier
parameter in each iteration. We choose the starting value of τ0 = 1 and
reduce τ in every iteration by 90 %.

1.3 Experiments and results

1.3.1 Data and implementations

We choose eight well-known datasets from the UCI (University of Califor-
nia at Irvine) Repository of machine learning databases [11], which makes
also available several classification problems from the StatLog collection [12].
From the UCI Repository we use iris, wine, glass, vowel, Wisconsin
breast cancer and Pima Indian diabetes and from the StatLog collec-
tion we choose the datasets vehicle silhouette [13] and image segmen-
tation. Additionally, we use the colon dataset, a high dimensional dataset
with low sample size data, already discussed in Alon et. al [14]. The datasets
with their characteristics are collected in table 1.1. We transform all training
points to zero mean and unit variance with principal component analysis and
use the computed projection matrix P , the mean and the maximum value to



transform the test points in the same way. The colon dataset is reduced to
its centroid and transformed into a range of [−1, 1]. In order to determine
the classification rate, we conduct a ten-fold crossvalidation and train with
nine subsets and test with the one remaining subset. We randomly assign
the datapoints to the subsets and report the best and the average crossvali-
dation rate and their standarddeviation. The experiments have been realized
on a Intel Dual Core 3.0 GHz CPU with 8 GB RAM and a 64 bit Windows
platform. For comparison we use our BLR approach with linear discrimi-

dataset # datapoints # features # classes
iris 150 4 3
wine 178 13 3
glass 214 13 6
vowel 528 10 11
vehicle 846 18 4
segment 2310 19 7
wisconsin 683 10 2
Pima 768 9 2
colon 62 2000 2

Table 1.1: Problem characteristics

nants and several SVM approaches, whose classification rates are available
in the literature. These are in particular: Leave-One-Out Machine (LOOM,
Weston [15]), designed output code with SVM (DOC, Crammer and Singer
[16]), one-against-all (OAA), one-against-one (OAO) and directed acyclic
graph SVM (DAG) with evaluation rates reported in Hsu and Lin [17]. All
these approaches use linear kernels. LOOM and DOC are multiclass SVM
approaches, while the other approaches are binary classification methods.
We also use one support vector machine approach to Decision Trees called
Global Tree Optimization SVM (GTO) and a standard SVM implementa-
tion with rates reported in Bennett and Winther [18], a SVM implementation
with classification results reported in Opper and Winther [19] and a SVM
implementation used in Zhang et. al [20].

1.3.2 Results and discussion

Table 1.2 presents the comparison of BLR and SVM. For each dataset, we
compute the best and the average classification rate and their standardde-
viation of randomly chosen ten-fold crossvalidation sets hundred times and
report the best rate. For comparision we choose the best classification rate



BLR SVM
dataset best average σrate algorithm best rate reference
iris 97.3 93.3 1.7 OAO, DAG, 97.3 Hsu and Lin [17]

LOOM
wine 99.6 98.7 0.3 OAO, DOC 99.4 Hsu and Lin [17]
glass 92.1 88.6 1.2 OAO 66.4 Hsu and Lin [17]
vowel 64.2 62.0 0.9 OAO 83.0 Hsu and Lin [17]
vehicle 80.7 79.6 0.5 DAG 80.9 Hsu and Lin [17]
segment 91.9 91.3 0.6 OAO 96.0 Hsu and Lin [17]
Wisconsin 97.2 96.7 0.2 SVM 97.0 Opper and Winther [19]
Pima 78.5 77.3 2.0 SVM 77.6 Bennett and Blue [18]
colon 78.8 67.9 3.9 SVM 78.1 Zhang et. al [20]

Table 1.2: A comparison of classification rates between BLR and different
SVM approaches (best rates bold-faced)

of SVM, which is reported in the literature. In all references the best cross-
validation rate is reported, so we also compare the best achieved result.

In case of low feature dimension we choose the Hessian and not the ap-
proximation with the BFGS algorithm for optimization. We choose an ap-
propriate uncertainty for the data, which prevents overfitting but also gives
a sufficient discrimination, because their is no such information about the
data. Since the normalization of the features also influence σ, this value is
transformed with σ̃ = PσIN×NPT with P as the projection matrix computed
from the training data. The restricting of the sharpness of the weights is
done with σ̃. It is necessary to determine the σ before the normalization to
preserve the isotropic character of the uncertainty of the data.

The results in table 1.2 show that the BLR performs well with the datasets
and can handle separable and non separable datasets. The classification
rates are often as well as for the several SVM implementations. Lim and
Loh [21] compared error rates of 33 classification algorithms, especially de-
cision trees, statistical and neural network algorithms and evaluated among
other the datasets Wisconsin breast cancer, Pima Indian diabetes,
StatLog image segmentation and StatLog vehicle silhouette due to
a ten-fold crossvalidation. Lim and Loh [21] report classification rates be-
tween [91.5, 97.2] for the Wisconson breast cancer dataset, rates be-
tween [69.0, 77.9] for the Pima Indian diabetes dataset and rates between
[51.3, 85.5] for the StatLog vehicle silhouette dataset. We achieved
the best result for the first two dataset and the third best result for the last
dataset.



The table also shows that the BLR is a stable algorithm, because the
standarddeviation is mostly slow.

1.4 Conclusions

We suggested a new approach to the logistic regression, which handles both
separable and non separable data. By introducing a barrier for the sharp-
ness of the weights we could avoid overfitting by preventing the boundaries
assuming unlimited precision. In case of known precision σ for the feature
values we can bound the values for the weights and achieve an exact regular-
ization, because the weights will never become more precise than the feature
values. In the separable case the weights will converge against the barrier.

The proposed approach showed good performance on standard datasets
from the UCI Repository compared to nine well-known SVM implementa-
tions. A future work is to compare the L2-regularized logistic regression
with assumed Gaussian prior, mentioned in Rennie([7]) and our approach by
the usage of uncertain data e.g. features from images. We will further ob-
tain a fast implementation and to test the effiency of the BLR approach and
analyse the influence of the number of datapoints, classes and features and
the data character to it and compare it to the SVM and the L2-regularized
logistic regression. We will also extend the BLR by the usage of different
kernels.
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