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ABSTRACT

This paper presents a concept for analysing the qualityjebZpatial objects. The developed method is based on the
evaluation of specific quality parameters. These parasar determined by a topological and geometrical analysis.
The quality parameters are classified into three categogesen=accepted, yellow=uncertain, red=rejected, ddipgn

on the specifications. We give confidence regions for alliupbrameters, especially for completeness, false alarm
rate and detection rate. The feasibility of the method issshby using real examples taking into account the technical
specifications.

1 INTRODUCTION

Spatial data are in increasing demand for many applicati®patial data play an important role in city planning, in ri@b
phone networks etc. The quality and reliability of the acedidata is essential for any further processing or use.

Information on the quality of data is a major concern for bathelopers and users of GIS (Chrisman, 1994). The quality
of spatial information is multidimensional and complex @ et al., 1991). The usefulness of the quality measures
depends on the application. It is not always clear to deatleoov many quality parameters can be introduced to describe
the quality of data. The number of quality parameters candog karge because quality varies spatially and temporally.
We want to develop a concept that is flexible enough for a latgeber of applications and is appropriate for controlling
different types of data.

Defining the quality measures is already a very actual topibé standardisation process. The CEN Meta data Standards
of the Commite Europeen de la Normalisation deals with thaityjudescription. The model of ISO is the most com-
plete concept (CEN, 1994). It involves the following aspeliheage positional accuracythematic accuracytemporal
accuracy consistencyandcompletenes@uptill and Morrison, 1995).

Building information, which is important for many appligas, needs to be evaluated with respect to given specdicati
(Laing and Ruff, 1998). As an example, Fig. 1 shows a secti@naerial image. In Fig. 2(a) and (b) footprints of the
buildings are shown, which result from two different datguisition schemes. There are differences between them e. g.
missing parts of buildings or differences in the neighbartheelations. It is not clear which class of quality paramete
could cover such types of differences. We therefore neecesaribe such types of differences and develop adequate
guality measures.

Figure 1:A section of an aerial image with some buildin@sDeTeMobil GmbH, Bonn, 1999
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Figure 2: The footprints of the data sets of the buildings of the imageE The figures (a) and (b) show the buildings

with their parts and the figures (c) and (d) show the outlinéhoeut the partitioning. Observe the difference in the
partitioning.

2 QUALITY MODEL

2.1 Thetask

We identify and detect the differences and the degree ofaiityi of two different descriptions of the same spatialaare
We assume two independent data sets of spatial objects.dén tw reach quality assessment of the two data sets it is
assumed one to be the reference to the other. The requireinitiie specifications for which the descriptions are going
to be used are taken into account. The two descriptions maxtoacted from any source but they have to refer to the
same coordinate system. The data sets are controlledlinitia their homogeneity and consistency, which is not our
concern.

Our quality model consists of parameters specifying thie¥ahg quality aspectstopology, geometrgndsuccess
2.2 Topology

The topology refers to thstructural difference®f two corresponding spatial objects. These are the diffsgs in parti-
tioning of the buildings, although their outlines are eglént, and in the topological relations between parts dflbugs
and building Fig 2.

For deriving parameters characterizing the topologidébtinces we determine the spatial relations of all givejecis.

We assume the spatial objects to be represented begfien adjacency graph@RAG). The classification of the topo-
logical relations is based on the model of Egenofer (Egesttarid Herring, 1991). The classification of the topological
analysis takes the method of observation and the type oégbimto account by treating the boundaries as uncertain, as
explained below. Due to the consistency checks, only theltgcal relatiortouchandoverlapand its alternativestrong
overlapandweak overlagWinter, 1996) occur. Both RAGs, one for the reference daafor the test data, represent its
set of spatial objects together with its spatial relatioNedes and edges of the RAG have attributes, e. g the number of
the holes, the number of the footprint points, or the typéheftopological relation (Ragia and Forstner, 1999).

Theregion correspondence graph (RCiS)a bipartite graph, containing all correspondences batwegions of the two
different data sets. The topological relation can bgual, strong overlap, covers, covered by, contains, ¢nathby
Attributes of the connected components of tegion correspondence grapltan be used for identifying the interior
structure of the sets of regions. This allows to check isqrhiarsets of regions or cases where regions are merged or spli
with respect to the reference data set. Vector and rasterdiois used leading to a hybrid analysis technique.

As an example in Figure 3 we can see the overlap of two setsildlihgs. The identification numberdl,2,3,4 charac-
terize the buildings of the first data set and the cpale.,f} characterizes the buildings of the second data set. Théapver
refers only to the outlines of the buildings, i. e. overlagpbuildings are already merged. On the right of the Figuree3 w
can see th®CGwith the building structure represented by the RCG. The sadpresent the building and the edges the
correspondences between buildings of the two data sets.

The degree of partitioningand thedegree of mergingharacterize the topology of the data sets, which can beeatkri
from the RCG similar to the analysis of the transition tatdediby (Fuchs et al., 1994) for evaluating the result of featu
extraction. We may distinguish: ttiegree of partitioning; if an objectO); is partitioned intop; primitives and the
degree of mergingn; if m; given objects are merged into one.
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Figure 3: The overlap of two sets of ground plans of the building striest shown in Fig. 1 is on the left and the
correspondindRCGis on the right

2.3 Geometry

2.3.1 Position The geometrical analysis of the footprints of the objectsaised on the distance function which char-
acterizes the difference area, i. e. the sliver polygon af terresponding sets of regions, or formally the symmetric
different area of the objects AandBo B = A\ BU B\ A.
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Figure 4:The zone skeleton of an artificial example and the corresipgrdistance function

The distance functiod(s) (Winter, 1996) is derived from the so called zone skeletanluding all centers of circles
which touch the boundaries of regions of different data.s@tse distance function is the radius of those circles as a
function of the arc lengths of a zone skeleton Fig. 4 (Ragth\&@mter, 1998).

The qualitative classification of the geometrical diffezes uses the distance function and depends on the userg-speci
cation namely the degree of required generalization. Twestiolds: andb with « < b are used in order to define three
parts: the red part, the yellow and the green one (cf. Fig. 5).

If the skeleton curve lies betwegna, «] then the two objects are classified as equal, the result @vdleation isgreen’.

If the skeleton curve is betweér b, b] and outside of—«, a] then the two objects have some differences and they could
be checked further, the result of the evaluatioly&low’. If the skeleton curve is outside of [-b, b] then the objeeteeh
gross differences, the result of the evaluatioindd’.

In the general case the zone skeleton may consistaré than one closed linéeading to dist of distance functions
Moreover, the zone skeleton and its distance function cemla used talentifyrn : m-relationsbetween corresponding
objects independent of their partitioning and missinggart

Fig. 6 shows a real example taken from the left part of thé@edf the aerial image in the Figure 3 with the corresponding
distance function in Fig. 7.
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Figure 5:Three artificial skeleton curves with their classification

Figure 6:0n the left there is the overlap of an aggregated building andhe right the corresponding zone skeleton
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Figure 7:The distance function of the buildings in the Fig 6

This is a case of 'yellow’ where a further analysis may be reded\e can then with the help of the distance function
Fig. 7 characterize the differences between two buildings there is a missing part, a shift, a magnification etc.

2.3.2 Height The geometrical analysis of the heights is done in a more Isimyay. Here we obtain parameters
characterizing the accuracy of the height but also possiygeematic errors, which could be introduced e. g. by eiirors
the orientation data.

Prerequisites are two data sets with heights as attrib[ageﬁ)q. The points of the objects are classified into three cate-
gories: roof-top points, in gutter footprint points and fipnts points.

The planar correspondence yielding the RCG is also usedittedeorresponding heights. The height differences can be
evaluated for all corresponding buildings and their pafiah. 1 shows the used values for making statements about the
quality. Again, two thresholds for the classification of tkesults are used in order to define three evaluation classes,
yellow and green. The thresholds depend on the specification

2.4 Success

We define three global quality parameters depending orRitié/, specifically on the acquired objects and the objects
having a correspondence in the other data set.



systematic errors (median) statistical errors (robust deviation)
low value no error no error
high value wrong orientation inaccurate

Table 1: Criteria for statistical values

The reference data set@, = {O;1},7 = 1,..., I1, I being the number of all objects in the reference datd sfthe
data set to be evaluatedds = {O;,} containingl, objects.

The set of aldisjointobjects, which have no corresponding object in the othex seettisD; = {Dy; } withk =1, ..., K,
K ; being the number of disjoint objects in data $etf, Fig. 8. Thus we formally have:

Djr = Oy \Oj” i’ e (172)

O

Figure 8:Two setg); and O, of objects and the definition of the ség andD,,

24.1 Completeness The completeness is defined as the ratio of all missing or spurious objects latien to all
acquired objects:
01N Oy

c= 2t 2l
|01 U O]

24.2 Detection rate Thedetection ratel has a commonly used definition (McKeown et al., 1997), (Naya999)
and represents the number of the objects that are detectgdnotihe reference data set in relation to the number of
reference objects:
de |01 N O,

|04

243 Falsealarmrate Thefalse alarm ratef (McKeown et al., 1997), (Nevatia, 1999) represents the rarrabthe
objects that are not detected in the reference data settiarelto the number of objects to be evaluated:

_ Dyl
I= 104

The three quality parameters are mutually dependent agloaliatio of magnitude of the three sés, O, N O, andD,

is relevant, as e. g.
1
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3 EMPIRICAL TEST
3.1 Sdection of representative test areas

We want to demonstrate the usefulness and the flexibilithisfrhethod checking its applicability on real examples. We
have at our disposal some data sets from twelve cities. Beaaithe great number of the buildings per city (e. g. more
than 10.000) a selection of representative test areas pd&es. The representativity of the chosen test areas isideci
for the evaluation of the given data sets. In order to showaver many types of these differences we select areas of
cities with quite different type of structure.The test arese chosen from:

e areas with isolated buildings,

e central city areas with simple block structures,



¢ typical old city areas with complicated building structure
e mixed building areas,

e complex building areas, e. g. industrial parks.

In this way we capture the different building charactedstilealing with the complexity of the individual buildingsca
the complexity of the building areas.

3.2 Theset up for theempirical study

In each of the twelve test areas we have two data sets: onsetatagiven by the user of the data and the second one is
the reference data set and produced by a semi-automatensjet building extraction (Gulch, 1997), (Gulch and Néi)
1997), (Muller, 1997). The test areas have about 150 mgkli

The tolerancesa andb are to be chosen with regard to the specification. We use datdleviation in planimetry of 1
mfor determining the topological relations in tRAGand the thresholds=1 m andb = 3 m to describe the geometrical
differences. For classification of the other quality parsareewe have defined thresholds, which are based om#utkan
value megl(v;) of all the valuesy; pro quality parameter and thiebust standard deviatigmamely the median absolute
deviation megd(|v; — med; (v;)|).

3.3 Reaultsof thetest

The result of the quality analysis of all cities is shown ie thble 2 (Ragia and Laing, 2000). It contains for all quality
parameters the number of cities in the claggeen yellowandred.

The user of the data can change the thresholds for the otasiifi of the results in three parts (colors) and then thdtes
can be totally different. The user can use one or more quaditgmeters for making decisions in different applications
E. g. if only the geometry (position) is taken into accourgrttwe have 5 cities of 12 are not accepted or if only the
geometry (height) is regarded then we have 8 cities in greeinlpn the yellow and 3 in the red part.

The user can combine the quality parameters and can takadéotunt two or more of them. An example is shown in
table 3 where a combination of results of two quality pararseare given. E. g. When we regard the geometry (position)
and geometry (height) than we have 3 cities in green party@llow and 2 in red. This can be further extended by giving
different weights.

evaluation green #cities| yellow #cities | red #cities
degree of partitioning
degree of merging
geometry (position)
geometry (height)
completeness
detection rate
false alarm rate

O ~NO100WwWo O
~N~NwhrERLPBAAPO
ONWWOINDN

Table 2: The final estimation of the twelve cities, greeniamion of data based on the given criteria is acceptedowell
making a decision is uncertain, rot: collection of the dataadt accepted.

evaluation green #cities| yellow #cities | red #cities
geometry (position) - geometry (height) 3 7 2
Completeness - geometry (position 5 2 5

Table 3: The estimation of the twelve cities regarding a cioiafon of two parameters.

3.4 Quality results

The results of this model can only be evaluated taking intmant some specifications.
Let us assume we have three specifications:
1. The first one need to have a completeness of more than 808ema part of geometrie (position) of more than 30%

and a detection rate of more than 70%. The results of the aityber 1 appear to be acceptable. According to the
Binomial distributionB(n, p) the values lie in the 95% confidence interval [75%-93%], [19%86] and [60%-88%].



2. The second specification takes into account only the tyyadirameter completeness. It has to be more than 82%
guaranteed. Then the answer is the city number 3 becauseni@eateness is 92% and the 99% confidence interval
[82%-100%].

3. The third takes into account only the red part of the gedméposition). It must be smaller than 25% guaranteed.

Then the answer is the city number 2 because the value andnfidence interval is smaller than 25%.

cty | 1 ~=95% ~=99% 2 ~=95% ~=99% 3 ~=95% ~=99%

p | 11% | [0%-22%] | [0%-26%] | 3% | [0%-5%] | [0%-6%] | 17% | [1%-32%] | [0%-34%]
m | 7% | [0%-16%] | [0%-20%] | 0% [0%] [0%] 0% [0%] [0%]

¢ | 85.5% | [75%-93%] | [73%-95%]| 82% | [76%-87%]| [74%-88%]| 92% | [84%-99%] | [82%-100%)]

d | 74% | [60%-88%]| [56%-91%]| 69% | [61%-77%]| [58%-80%] | 89% | [77%-100%] | [73%-100%]

F | 3% | [0%-9%] | [0%-11%] | 1% | [0%-3%] | [0%-4%] | 4% | [0%-11%] | [0%-14%)]
Gy | 38.4% | [19%-57%] | [14%-62%)] | 25.3% | [40%-62%)] | [37%-65%] | 10% | [0%-21%] | [0%-25%]
Gyer | 34.6% | [16%-53%] | [11%-59%] | 60.3% | [49%-70%)] | [37%-65%] | 52% | [31%-73%)] | [24%-80%]
G, | 27% | [10%-44%]| [5%-49%)] | 15.2% | [7%-23%] | [5%-25%] | 38% | [18%-58%] | [11%-65%]
[ H [ 067 | - - [ 0.33 | - - [0.67 ] - -

Table 4: The values of the quality parameters with the confidénterval p:degree of partitioningy:degree of merging,
c:Completeness/:Detection ratef:False alarm rate/,,.:Geometry (position) greerty,.;:Geometry (position) yellow,
G,:Geometry (position) red,

4 CONCLUDING REMARKS

In this paper we proposed a method for quality control ofisppabjects. The concept we proposed was implemented and
tested empirically. The user needs only to specify the tolesvalues. The system processes automatically and sesult
either in the acceptance of the buildings data or it comeg it the areas where there is uncertainty. The problem

areas, for instance in buildings with inner courts are fartbrocessed manually.

The following extensions and improvements can be congidere

e The processing can be further improved with more topoldgind geometric analysis. It is especially important in
testing to analyse the individual objects in order to geteesaconcrete description of data errors. To achieve this
result we will need an exact description and classificatiopossible errors.

e There is a need to obtain the sensitivity of the method. Fstiaince, it is interesting to clarify the dependence of the
results on the choice of threshold parameters, on the codiylaf the buildings, on the choice of the testing data
e.t.c

¢ A self diagnosis of the method needs to be developed. Thibeattained by using boot-strap technics (Cho et al.,
1997) which provide parameter free statistical informaio the quality of results.

The previous application of the method has shown that itxsifle. The experience of the analysis of twelve testingsirea
have been useful for improving the method. They also givigiridor further improvements. The openess of the quality
model allows the integration of further parameters and #aélile specification of boundary conditions. In this wayegiv
knowhow in quality evaluation of city plans can be taken iatoount.
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