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ABSTRACT

This paper presents a concept for analysing the quality of 212 -D spatial objects. The developed method is based on the
evaluation of specific quality parameters. These parameters are determined by a topological and geometrical analysis.
The quality parameters are classified into three categories: green=accepted, yellow=uncertain, red=rejected, depending
on the specifications. We give confidence regions for all quality parameters, especially for completeness, false alarm
rate and detection rate. The feasibility of the method is shown by using real examples taking into account the technical
specifications.

1 INTRODUCTION

Spatial data are in increasing demand for many applications. Spatial data play an important role in city planning, in mobile
phone networks etc. The quality and reliability of the acquired data is essential for any further processing or use.

Information on the quality of data is a major concern for bothdevelopers and users of GIS (Chrisman, 1994). The quality
of spatial information is multidimensional and complex (Beard et al., 1991). The usefulness of the quality measures
depends on the application. It is not always clear to decide on how many quality parameters can be introduced to describe
the quality of data. The number of quality parameters can be very large because quality varies spatially and temporally.
We want to develop a concept that is flexible enough for a largenumber of applications and is appropriate for controlling
different types of data.

Defining the quality measures is already a very actual topic in the standardisation process. The CEN Meta data Standards
of the Commite Europeen de la Normalisation deals with the quality description. The model of ISO is the most com-
plete concept (CEN, 1994). It involves the following aspects: lineage, positional accuracy, thematic accuracy, temporal
accuracy, consistencyandcompleteness(Guptill and Morrison, 1995).

Building information, which is important for many applications, needs to be evaluated with respect to given specifications.
(Laing and Ruff, 1998). As an example, Fig. 1 shows a section of an aerial image. In Fig. 2(a) and (b) footprints of the
buildings are shown, which result from two different data acquisition schemes. There are differences between them e. g.
missing parts of buildings or differences in the neighborhood relations. It is not clear which class of quality parameters
could cover such types of differences. We therefore need to describe such types of differences and develop adequate
quality measures.

Figure 1:A section of an aerial image with some buildings,cDeTeMobil GmbH, Bonn, 1999



(a) (b) (c) (d)

Figure 2:The footprints of the data sets of the buildings of the image Fig. 1. The figures (a) and (b) show the buildings
with their parts and the figures (c) and (d) show the outlines without the partitioning. Observe the difference in the
partitioning.

2 QUALITY MODEL

2.1 The task

We identify and detect the differences and the degree of similarity of two different descriptions of the same spatial area.
We assume two independent data sets of spatial objects. In order to reach quality assessment of the two data sets it is
assumed one to be the reference to the other. The requirements of the specifications for which the descriptions are going
to be used are taken into account. The two descriptions may beextracted from any source but they have to refer to the
same coordinate system. The data sets are controlled initially for their homogeneity and consistency, which is not our
concern.

Our quality model consists of parameters specifying the following quality aspects:topology, geometryandsuccess.

2.2 Topology

The topology refers to thestructural differencesof two corresponding spatial objects. These are the differences in parti-
tioning of the buildings, although their outlines are equivalent, and in the topological relations between parts of buildings
and building Fig 2.

For deriving parameters characterizing the topological differences we determine the spatial relations of all given objects.

We assume the spatial objects to be represented by theregion adjacency graphs(RAG). The classification of the topo-
logical relations is based on the model of Egenofer (Egenhofer and Herring, 1991). The classification of the topological
analysis takes the method of observation and the type of context into account by treating the boundaries as uncertain, as
explained below. Due to the consistency checks, only the topological relationtouchandoverlapand its alternativesstrong
overlapandweak overlap(Winter, 1996) occur. Both RAGs, one for the reference data one for the test data, represent its
set of spatial objects together with its spatial relations.Nodes and edges of the RAG have attributes, e. g the number of
the holes, the number of the footprint points, or the type of the topological relation (Ragia and Förstner, 1999).

Theregion correspondence graph (RCG)is a bipartite graph, containing all correspondences between regions of the two
different data sets. The topological relation can be:equal, strong overlap, covers, covered by, contains, contained by.
Attributes of the connected components of theregion correspondence graphscan be used for identifying the interior
structure of the sets of regions. This allows to check isomorphic sets of regions or cases where regions are merged or split
with respect to the reference data set. Vector and raster format is used leading to a hybrid analysis technique.

As an example in Figure 3 we can see the overlap of two sets of buildings. The identification numbersf1,2,3,4g charac-
terize the buildings of the first data set and the codefa,...,fg characterizes the buildings of the second data set. The overlap
refers only to the outlines of the buildings, i. e. overlapping buildings are already merged. On the right of the Figure 3 we
can see theRCGwith the building structure represented by the RCG. The nodes represent the building and the edges the
correspondences between buildings of the two data sets.

The degree of partitioningand thedegree of mergingcharacterize the topology of the data sets, which can be derived
from the RCG similar to the analysis of the transition table used by (Fuchs et al., 1994) for evaluating the result of feature
extraction. We may distinguish: thedegree of partitioningpj if an objectOj is partitioned intopj primitives and the
degree of mergingmi if mi given objects are merged into one.
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Figure 3: The overlap of two sets of ground plans of the building structures shown in Fig. 1 is on the left and the
correspondingRCG is on the right

2.3 Geometry

2.3.1 Position The geometrical analysis of the footprints of the objects isbased on the distance function which char-
acterizes the difference area, i. e. the sliver polygon of two corresponding sets of regions, or formally the symmetric
different area of the objects A and BA 	B = A nB [B nA.

Figure 4:The zone skeleton of an artificial example and the corresponding distance function

The distance functiond(s) (Winter, 1996) is derived from the so called zone skeleton, including all centers of circles
which touch the boundaries of regions of different data sets. The distance function is the radius of those circles as a
function of the arc lengths of a zone skeleton Fig. 4 (Ragia and Winter, 1998).

The qualitative classification of the geometrical differences uses the distance function and depends on the users specifi-
cation namely the degree of required generalization. Two thresholdsa andb with a < b are used in order to define three
parts: the red part, the yellow and the green one (cf. Fig. 5).

If the skeleton curve lies between[�a; a] then the two objects are classified as equal, the result of theevaluation is’green’.
If the skeleton curve is between[�b; b] and outside of[�a; a] then the two objects have some differences and they could
be checked further, the result of the evaluation is’yellow’. If the skeleton curve is outside of [-b, b] then the objects have
gross differences, the result of the evaluation is’red’ .

In the general case the zone skeleton may consist ofmore than one closed line, leading to alist of distance functions.
Moreover, the zone skeleton and its distance function can also be used toidentifyn : m-relationsbetween corresponding
objects independent of their partitioning and missing parts.

Fig. 6 shows a real example taken from the left part of the section of the aerial image in the Figure 3 with the corresponding
distance function in Fig. 7.



Figure 5:Three artificial skeleton curves with their classification

Figure 6:On the left there is the overlap of an aggregated building andon the right the corresponding zone skeleton

di
st

an
ce

 fu
nc

tio
n

2000 3000 pixel
Zone skeleton

m

-10

-20

0

0 1000

Figure 7:The distance function of the buildings in the Fig 6

This is a case of ’yellow’ where a further analysis may be needed. We can then with the help of the distance function
Fig. 7 characterize the differences between two buildings e. g. there is a missing part, a shift, a magnification etc.

2.3.2 Height The geometrical analysis of the heights is done in a more simple way. Here we obtain parameters
characterizing the accuracy of the height but also possiblesystematic errors, which could be introduced e. g. by errorsin
the orientation data.

Prerequisites are two data sets with heights as attributes (212-D). The points of the objects are classified into three cate-
gories: roof-top points, in gutter footprint points and footprints points.

The planar correspondence yielding the RCG is also used to define corresponding heights. The height differences can be
evaluated for all corresponding buildings and their parts.Tab. 1 shows the used values for making statements about the
quality. Again, two thresholds for the classification of theresults are used in order to define three evaluation classes,red,
yellow and green. The thresholds depend on the specification.

2.4 Success

We define three global quality parameters depending on theRCG, specifically on the acquired objects and the objects
having a correspondence in the other data set.



systematic errors (median)statistical errors (robust deviation)
low value no error no error
high value wrong orientation inaccurate

Table 1: Criteria for statistical values

The reference data set isO1 = fOi1g; i = 1; :::; I1, I1 being the number of all objects in the reference data set1. The
data set to be evaluated isO2 = fOi2g containingI2 objects.

The set of alldisjointobjects, which have no corresponding object in the other data set isDj = fDkjgwith k = 1; :::;Kj,Kj being the number of disjoint objects in data setj, cf, Fig. 8. Thus we formally have:Dj0 = Oj0 n Oj00 j0; j00 2 (1; 2)
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Figure 8:Two setsO1 andO2 of objects and the definition of the setsD1 andD2
2.4.1 Completeness The completenessc is defined as the ratio of all missing or spurious objects in relation to all
acquired objects: c = jO1 \O2jjO1 [O2j
2.4.2 Detection rate Thedetection rated has a commonly used definition (McKeown et al., 1997), (Nevatia, 1999)
and represents the number of the objects that are detected only in the reference data set in relation to the number of
reference objects: d = jO1 \O2jjO1j
2.4.3 False alarm rate The false alarm ratef (McKeown et al., 1997), (Nevatia, 1999) represents the number of the
objects that are not detected in the reference data set in relation to the number of objects to be evaluated:f = jD2jjO2j
The three quality parameters are mutually dependent as onlythe ratio of magnitude of the three setsD1,O1 \O1 andD2
is relevant, as e. g. c = 11d + f1� f
3 EMPIRICAL TEST

3.1 Selection of representative test areas

We want to demonstrate the usefulness and the flexibility of this method checking its applicability on real examples. We
have at our disposal some data sets from twelve cities. Because of the great number of the buildings per city (e. g. more
than 10.000) a selection of representative test areas takesplace. The representativity of the chosen test areas is decisive
for the evaluation of the given data sets. In order to show andcover many types of these differences we select areas of
cities with quite different type of structure.The test areas are chosen from:� areas with isolated buildings,� central city areas with simple block structures,



� typical old city areas with complicated building structure,� mixed building areas,� complex building areas, e. g. industrial parks.

In this way we capture the different building characteristics dealing with the complexity of the individual buildings and
the complexity of the building areas.

3.2 The set up for the empirical study

In each of the twelve test areas we have two data sets: one dataset is given by the user of the data and the second one is
the reference data set and produced by a semi-automatic system for building extraction (Gülch, 1997), (Gülch and Müller,
1997), (Müller, 1997). The test areas have about 150 buildings.

The tolerancesa andb are to be chosen with regard to the specification. We use a standard deviation in planimetry of 1
m for determining the topological relations in theRAGand the thresholdsa =1 m andb = 3 m to describe the geometrical
differences. For classification of the other quality parameters we have defined thresholds, which are based on themedian
value medi(vi) of all the valuesvi pro quality parameter and therobust standard deviation, namely the median absolute
deviation medi(jvi �medj(vj)j).
3.3 Results of the test

The result of the quality analysis of all cities is shown in the table 2 (Ragia and Laing, 2000). It contains for all quality
parameters the number of cities in the classesgreen, yellowandred.

The user of the data can change the thresholds for the classification of the results in three parts (colors) and then the results
can be totally different. The user can use one or more qualityparameters for making decisions in different applications.
E. g. if only the geometry (position) is taken into account then we have 5 cities of 12 are not accepted or if only the
geometry (height) is regarded then we have 8 cities in green part 1 in the yellow and 3 in the red part.

The user can combine the quality parameters and can take intoaccount two or more of them. An example is shown in
table 3 where a combination of results of two quality parameters are given. E. g. When we regard the geometry (position)
and geometry (height) than we have 3 cities in green part, 7 inyellow and 2 in red. This can be further extended by giving
different weights.

evaluation green #cities yellow #cities red #cities
degree of partitioning 5 5 2

degree of merging 6 4 2
geometry (position) 3 4 5
geometry (height) 8 1 3

completeness 5 4 3
detection rate 7 3 2

false alarm rate 5 7 0

Table 2: The final estimation of the twelve cities, green: collection of data based on the given criteria is accepted, yellow:
making a decision is uncertain, rot: collection of the data is not accepted.

evaluation green #cities yellow #cities red #cities
geometry (position) - geometry (height) 3 7 2

Completeness - geometry (position) 5 2 5

Table 3: The estimation of the twelve cities regarding a combination of two parameters.

3.4 Quality results

The results of this model can only be evaluated taking into account some specifications.

Let us assume we have three specifications:

1. The first one need to have a completeness of more than 80%, a green part of geometrie (position) of more than 30%
and a detection rate of more than 70%. The results of the city number 1 appear to be acceptable. According to the
Binomial distributionB(n; p) the values lie in the 95% confidence interval [75%-93%], [19%-57%] and [60%-88%].



2. The second specification takes into account only the quality parameter completeness. It has to be more than 82%
guaranteed. Then the answer is the city number 3 because the completeness is 92% and the 99% confidence interval
[82%-100%].

3. The third takes into account only the red part of the geometrie (position). It must be smaller than 25% guaranteed.
Then the answer is the city number 2 because the value and the confidence interval is smaller than 25%.

city 1 =95% =99% 2 =95% =99% 3 =95% =99%p 11% [0%-22%] [0%-26%] 3% [0%-5%] [0%-6%] 17% [1%-32%] [0%-34%]m 7% [0%-16%] [0%-20%] 0% [0%] [0%] 0% [0%] [0%]c 85.5% [75%-93%] [73%-95%] 82% [76%-87%] [74%-88%] 92% [84%-99%] [82%-100%]d 74% [60%-88%] [56%-91%] 69% [61%-77%] [58%-80%] 89% [77%-100%] [73%-100%]f 3% [0%-9%] [0%-11%] 1% [0%-3%] [0%-4%] 4% [0%-11%] [0%-14%]Ggr 38.4% [19%-57%] [14%-62%] 25.3% [40%-62%] [37%-65%] 10% [0%-21%] [0%-25%]Gyel 34.6% [16%-53%] [11%-59%] 60.3% [49%-70%] [37%-65%] 52% [31%-73%] [24%-80%]Gr 27% [10%-44%] [5%-49%] 15.2% [7%-23%] [5%-25%] 38% [18%-58%] [11%-65%]
H 0.67 - - 0.33 - - 0.67 - -

Table 4: The values of the quality parameters with the confidence interval,p:degree of partitioning,m:degree of merging,c:Completeness,d:Detection rate,f :False alarm rate,Ggr:Geometry (position) green,Gyel:Geometry (position) yellow,Gr:Geometry (position) red,

4 CONCLUDING REMARKS

In this paper we proposed a method for quality control of spatial objects. The concept we proposed was implemented and
tested empirically. The user needs only to specify the threshold values. The system processes automatically and results
either in the acceptance of the buildings data or it comes back with the areas where there is uncertainty. The problem
areas, for instance in buildings with inner courts are further processed manually.

The following extensions and improvements can be considered.� The processing can be further improved with more topological and geometric analysis. It is especially important in
testing to analyse the individual objects in order to generate a concrete description of data errors. To achieve this
result we will need an exact description and classification of possible errors.� There is a need to obtain the sensitivity of the method. For instance, it is interesting to clarify the dependence of the
results on the choice of threshold parameters, on the complexity of the buildings, on the choice of the testing data
e.t.c� A self diagnosis of the method needs to be developed. This canbe obtained by using boot-strap technics (Cho et al.,
1997) which provide parameter free statistical information on the quality of results.

The previous application of the method has shown that it is flexible. The experience of the analysis of twelve testing areas
have been useful for improving the method. They also give insight for further improvements. The openess of the quality
model allows the integration of further parameters and the flexible specification of boundary conditions. In this way given
knowhow in quality evaluation of city plans can be taken intoaccount.
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