
DESIGNING AN OBJECT-ORIENTED MATCHING TOOL

Hardo Müller
Institut für Photogrammetrie

Universität Bonn
Nußalle. 15, 53115 Bonn, Germany

Ph.: +49-228-73-2721, Fax: +49-228-73-2712
E-mail: hardo@ipb.uni-bonn.de

KEY WORDS: Design Pattern, Unified Modeling Language, Matching Technique, Feature Vector

ABSTRACT

A semiautomatic building extraction system has been extended by an automatic matching tool. It is used for an automatic
measurement of building-heights and a semiautomatic determination of ground-heights. The object-oriented design of this
matching tool gives the motivation for a design pattern of a general matching tool. This design pattern describes the object-
oriented design of implementing several matching techniques within one system. It is able to be applied to several kinds
of topographic objects, if a matching technique is known. We show as an example the implementation of a point matching
tool, which uses the matching techniques Intensity Correlation and Gradient Correlation as a refinement of Feature Vector
Matching.

1 INTRODUCTION

A semiautomatic building extraction system is being devel-
oped to extract 3D-vector data from aerial images (Lang
and Schickler, 1993, Englert and Gülch, 1996, Gülch and
Müller, 1997, Gülch, 1997)1. The semiautomatic system
is based on interactive form and pose adaptation of build-
ing primitives. Due to an object-oriented system design it
is easy to extend the system with new automated tools.
Automation is necessary to accelerate the acquisition pro-
cess.

Automation has so far been successfully applied for user-
guidance, extraction of the texture or the docking of primi-
tives for generation of complex buildings. Single primitives
can be matched automatically using robust pose clustering
methods.

A new automation tool is a general matching tool, which is
able to yield 3D-descriptions from a given set of 2D-images.
Actually it is realized as a point matching tool, intended a)
to measure homologous points of the buildings b) to mea-
sure homologous points nearby on the ground to derive the
height of the ground plan of the building and c) to measure
other features like road boundaries.

Stereo matching is a well known problem and several so-
lutions and application examples can be found in the liter-
ature (Förstner, 1986, Straub, 1991, Heipke et al., 1997).
We want to integrate the proved matching techniques in an
object-oriented design, to emphasize on the advantages
of object-oriented modeling in this context. The object-
oriented design of a matching tool offers the possibility

� to make use of the already implemented class inter-
face (Gülch and Müller, 1997),

� to implement several matching techniques, using com-
mon templates,

�This research is supported by BMBF/DARA GmbH under Grants 50 TT
9536/50 TT 9733.

� to use generic programming techniques for implement-
ing algorithms on an abstract level,

� to hide the implemented matching technique, which
will reduce dependencies in the software design,

� and to reuse the module within another context.

We want to depict this design as a design pattern (cf. sec-
tion 3), which describes a recurrent software design prob-
lem and a generic schema of solution (Buschmann, 1996).
This pattern is not only available for point-objects, but also
for other objects, like edges or more complex topographic
objects.

We use the Unified Modeling Language (UML), which is de-
scribed in (Rat, 1997b), for a graphic representation of our
dynamic and static object-model. The UML has adopted
elements of the OMT (Rumbaugh et al., 1991) and the
Booch-method (Booch, 1994). It is proposed for a standard
at the Object Management Group (OMG).

Section 2 gives a short introduction into object-oriented
modeling, UML, and Design Patterns. Especially the
description-schema of a design pattern according to
(Gamma et al., 1995) will be explained in section 2.3. The
actual Design Pattern “Matching Tool” is presented in sec-
tion 3. We finish this paper with some conclusions in sec-
tion 4.

2 OBJECT-ORIENTATION,UNIFIED MODELING
LANGUAGE AND DESIGN PATTERNS

This section gives a short introduction into object-
orientation, by defining some of the major expressions rel-
evant here, and describes the Unified Modeling Language
(UML), which we use in our notation.

2.1 Object-orientation

Definitions of “Object-oriented programming” and “Object-
oriented design” are described in (Booch, 1994):



Whole

PartWhole

Part

method_name(argument_name):return_type

Classname

Composition

Client

A

Client

Template Instantiation Template<float> Template

Supplier

B

Supplier

attribute_name:attribute_type

Class (Variant 2):

ClassnameClass (Variant 3):

Abstract Class: 

abstractMethod()

AbstractClassName

Association-SymbolsClass-Symbols

Class (Variant 1):

Classname

method_name(argument_name):return_type

T

Class 

Inheritance/Generalisation

Aggregation

Subclass

Dependency

Bi-Directional Association

Uni-Directional Association

Superclass

Association Type Class
Symbol
Association

Figure 1: UML-Notation of class-symbols and association-symbols.

“Object-oriented programming is a method of
implementation in which programs are organized
as cooperative collections of objects, each of
which represents an instance of some class, and
whose classes are all members of a hierarchy of
classes united via inheritance relationships.”

“Object-oriented design is a method of de-
sign comparsing the process of object-oriented
decomposition and a notation for depicting the
logical and physical as well as static and dynamic
models of the system under design.”

An object-oriented system consists of a set of objects,
which are defined by different classes. The integral part
of a class are methods and attributes. The attributes de-
scribe the data of an object, and the methods describe its
behavior. To prevent an illegal access to internal attributes
or methods of a class, an object-oriented language offers
different levels of encapsulation. This means that e.g. a
C++ class is able to contain public, protected and private
elements.

The classes of an object-oriented system are associated by
different types. The essential ones are (cf. also Figure 1):

� Inheritance

Class Subclass contains all elements of class Super-
class and some additional features. In this case it is
advantageous for class Subclass to inherit all elements
from class Superclass. Another aspect of inheritance
is the association between an abstract class and its
implementation. An abstract class contains only the
signature of its methods, which declares name and pa-
rameters, but not the definition. Only objects of inher-
ited classes, which have the abstract methods imple-
mented can be instantiated.

� Aggregation

Some attributes of class Whole are instances of class
Part. In other words: Whole contains Part.

� Uni-Directional Association

Class Client contains a reference to an object of class
Supplier, but class Supplier does not know anything
about class Client.

� Bi-Directional Association

Class A and B contain references to each other.

� Dependency

The methods of class Client use methods or attributes
of class Supplier.

� Template Instantiation

A class Template can be parameterized by the type
parameter T. For example the class Template�float�
is an instantiation of Template with the type parameter
float.

The design process of an object-oriented system starts by
modeling a set of classes and their associations. A special
notation of object-oriented modeling will ease the work of
the designer.

The main notions, used in the context of object-oriented
modeling can be found in e.g. in the UML-Glossary (Rat,
1997a).

2.2 The Unified Modeling Language

Neither a natural language nor a programming language
is able to describe the modeling of a complex system in
an easy way. For that reason G. Booch, I. Jacobson and
J. Rumbaugh designed the Unified Modeling Language
(UML). It is intended to include

� Model elements - fundamental modeling concepts and
semantics,

� Notation - visual rendering of model elements,

� and Guidelines - idioms of usage within the trade (Rat,
1997b).



The UML notation provides a variety of diagrams for differ-
ent purposes, like dynamic or static system views.

Figure 1 gives an overview of the UML notation, which
is used in the following diagrams. The association types
as described above are elements of Class Diagrams, that
show the static structure of the model. Classes are repre-
sented as boxes, divided in up to three fields, whereas the
upper field contains the class-name, the middle field con-
tains the attribute names and the bottom field contains the
method names. The attribute- and method fields may be
omitted (cf. Variant 3 in fig. 1).

These diagrams contain the essential classes and their as-
sociations. Other kinds of UML-diagrams are Use Case
Diagrams for the communication with users and orderers,
Collaboration- and Sequence Diagrams, which describe
the interaction between objects, Activity Diagrams for de-
scribing a specified operation and State Diagrams for de-
picting the states of a specified object.

2.3 Description schema of a Design Pattern

A design pattern describes a proposed solution of a
permanent recurring software design problem. We use
the description-schema of design patterns according to
(Gamma et al., 1995) in this paper. A more detailed de-
scription of design patterns can be found in (Gamma et al.,
1995, Sommerlad, 1996, Buschmann, 1996). The following
list gives a short overview of the used description-schema:

Intent Describes the underlying problem and the basic
principle of the design solution (cf. section 3.1).

Also Known As Other names of the pattern, if existing.

Motivation Depicts a scenario of a concrete design prob-
lem and gives a solution. In our case it describes the
design of a point matching tool as an occasion for the
design of a general matching tool (cf. section 3.2).

Applicability Itemizes the situations or conditions, in
which the pattern can be applied (cf. section 3.3).

Structure Describes the static structure of classes, which
are participating. As mentioned, we use the notation
of the UML. The class structure, presented in the Moti-
vation section, is a concrete instance of the more gen-
eral class structure, presented in Structure-section (c.f.
section 3.4).

Participants Lists the classes and objects, which are de-
scribed by the design pattern (c.f. section 3.5).

Collaborations Describes the interactions between the
objects to fulfill the task of the software (c.f. sec-
tion 3.6).

Consequences Discusses the advantages and disadvan-
tages of the pattern, and makes suggestions about
variations (c.f. section 3.7).

Implementation Gives some implementation details,
which may be language-dependent (c.f. section 3.8).

Sample Code A sample code, if necessary.

Known Uses Examples of applications, in which the de-
sign pattern is used (c.f. section 3.9).

Related Patterns Lists patterns, which describe a similar
task, and shows the relations to other patterns (c.f.
section 3.10).

The UML and Design Patterns are very helpful to improve
the communication between developers, users and order-
ers. We use these aids to describe the design of the match-
ing tool. The following section encloses the design pattern
Matching Tool.

3 DESIGN PATTERN OF A MATCHING TOOL

The name of the Design Pattern is

Matching Tool

3.1 Intent

Create an 3D-description from a set of images, using ap-
propriate matching techniques.

3.2 Motivation

A semiautomatic building extraction system system shall
be extended with an automatic matching tool. The sys-
tem is equipped with an object-oriented class interface,
which contains classes of 2D/3D points and oriented im-
ages (Gülch and Müller, 1997). The matching tool shall
create a 3D-description and implement several different
matching techniques.

The basic idea is to model the 3D description as an object,
which can be created from a set of oriented images. A
matching algorithm has to be called when a client, a class
that requests a service from another class, requires the 3D
structure of this object.

We begin with the design of a point matching tool as a con-
crete instantiation of a general matching tool. In this case
the 3D description is a 3D-point. The class MatchedPoint
describes the attributes and methods of such a 3D-point.

The class MatchedPoint should fulfill the following require-
ments:

1. Clients, e.g. a slot or a callback function of a Graphical
User Interface (GUI) in a semiautomatic system, are
independent of the used matching technique, i.e. the
change of the matching technique will not affect the
client-class. This eases the redesign of the system, if a
new matching technique is implemented. Additionally,
clients can be reused within a context, in which some
the used matching techniques are unknown.

2. Different matching techniques are exchangeable dur-
ing runtime. The selection of the matching technique
depends on

� the image data at the reference position,

� the knowledge about the 3D context,

� or the users decision.

3. Similar matching techniques are represented by a re-
finement of a more general template class with one
or more unbound type-parameters. This template de-
scribes on an abstract level a set of matching tech-
niques.



determineTechnique(image,position):PointMatchingTechnique*

TernaryMatchingController

determineTechnique(image,position):PointMatchingTechnique*

matching_technique:MatchingTechnique*

controller:MatchingController*

PointMatchingController

MatchedPoint

match(position1,image1,image2):PlaneVec

PointMatchingTechnique

<<Constructor>>

getSpatialPosition():SpatialVec

OrientedImage

controller

matching_technique

2..* 1

setMatchingController(controller)
MatchedPoint(position1,image1,image2)

2..*

PlaneVec

GradientCorrelationIntensityCorrelation

Function
FeatureVectorMatching

SpatialVec

Figure 2: Class structure of the Point Matching Tool.

The class structure of the Point Matching Tool is shown in
fig. 2. This structure is based on the Strategy Design Pat-
tern (Gamma et al., 1995), which contains an abstract in-
terface for a family of algorithms. In our case this family of
algorithms consists of different matching techniques. The
abstract interface, which contains at least one polymorph
method, enables the exchangeability of the algorithm dur-
ing runtime.

The class MatchedPoint is associated to the abstract class
PointMatchingTechnique. This enables MatchedPoint to
use the interface of PointMatchingTechnique for calling a
matching algorithm without knowing any detail about the
concrete matching technique. These are in the actual im-
plementation of the Point Matching Tool the classes Inten-
sityCorrelation and GradientCorrelation.

The class IntensityCorrelation performs a correlation of the
grey-values in the image, while the class GradientCorrela-
tion performs a correlation of the gradient. The algorithms
of these matching techniques are very similar and differ
only in some details. A common description of both al-
gorithms and further ones is given by the template class
FeatureVectorMatching.

The basic principle of Feature Vector Matching is to trans-
form the image data of a local window, surrounding a given
point, to a feature vector. The elements fi of this feature
vector are features, which are calculated from the image
data of the local window. These features may be invariant
under certain geometric or radiometric transformations.

Let the grey-value at position �r� c� in the local window be
g�r� c�. The next examples show several kinds of feature
vectors.

a) Simple grey-values:

fi � g�r� c� (1)

with
i � i�r� c� (2)

b) Gradient, e.g. with the Sobel Operator:

fi �
p

gr�r� c�� � gc�r� c�� (3)

c) Zernike moments Anl as described in (Straub, 1991):

f�n�l � Anl (4)

Generally the feature vector f can be expressed as a result
of a transformation T from the image to the feature space:

f � Tg�r� c� (5)

After transformation to the feature space the correlation
function between the feature vector of a reference im-
age point f�r� c� and the one of a search image point
f�r ��r� c��c�can be calculated.

��r� c� r��r� c��c� �

P
k

i
�f

���
i
�

�f �����f
���
i
�

�f ����qP
k

i
�f ���

i
�

�f �����
P

k

i
�f ���

i
�

�f �����

(6)
with

f
���
i

� fi�r� c�

f
���
i

� fi�r��r� c��c�

This correlation is calculated in a given search space of the
search image. The search space results from an epipolar
line, which is determined from the coordinate of the given
point in the reference image. The point in the search space
with maximum correlation is the corresponding point of the
given point in the reference image.

The transformation of the image data to a feature vector is
performed by a function object, which encapsulates a func-
tion in an object for use by other components (Musser and
Saini, 1996), as a parameter of the FeatureVectorMatching-
template. For each matching technique, based on Feature



MatchingController

determineTechnique(description):MatchingTechnique*

ConcreteMatchingController

determineTechnique(description):MatchingTechnique*

MatchingTechniqueGroup

controller

setMatchingTechnique(technique)

MatchingTemplate

MatchingTechnique1 MatchingTechnique2

Detail

controller:MatchingController*

setMatchingController(controller)

Description

MatchingTechnique
matching_technique

matching_technique:MatchingTechnique*

MatchedObject

match(description1,description2,...)

Figure 3: Class structure of a matching tool

Vector Matching, such a function object has to be imple-
mented.

All available objects with a PointMatchingTechnique-
interface are implemented as attributes of the class
TernaryMatchingController. This class is responsible for
creation and removal of the objects of PointMatchingTech-
nique and provides them with additional parameters, e.g.
the window-size. If the system will be extended with a fur-
ther matching technique, only this class has to be changed.
The method determineTechnique of this class comes to a
decision about the best matching technique for a special
position in an image. The classification into regions, point
and edges, as described in (Förstner, 1994) can be used
to determine the optimal matching technique. Tab. 1 de-
scribes the connection between this classification and a
set of appropriate matching techniques, which are Feature-
Based techniques, like Corner- and Line-based Matching,
and Area-Based techniques, like Correlation- and Least
Squares Matching.

Classification Matching Technique
point � Corner-based

(Lang and Förstner, 1996)
Correlation

(Gradient,Intensity)
Least Squares

edge � Line-based
Correlation

(Intensity,Gradient)
Least Squares

region � Correlation
(Intensity)

Least Squares

Table 1: The connection between feature classification and
matching technique.

The class TernaryMatchingController is a concrete Sub-

class of the abstract class PointMatchingController.
It makes the determineTechnique-method available to
classes, which are independent of the implemented match-
ing techniques, like the class MatchedPoint. So this class
is equipped with a reference to a object of PointMatching-
Controller.

As it is not necessary, that several objects of MatchedPoint
use several objects of PointMatchingController during the
same time, the controller attribute of the class Matched-
Point can be implemented as a class-scope attribute. A
class-scope attribute refers for every instance to the same
object, and it can be accessed without an instantiated ob-
ject. Its implementation is similar to a global variable in a
procedural system.

3.3 Applicability

The matching tool can be used in the following cases:

� Several matching techniques are used within one sys-
tem.

� A template of similar matching techniques is needed.

� Objects, which are created by a matching technique,
are designated to be independent of the implemented
technique.

3.4 Structure

The structure of the matching tool is shown in fig. 3.

3.5 Participants

Description (OrientedImage, PlaneVec, SpatialVec)

A set of images or higher level descriptions and ad-
ditional knowledge, which contains all the necessary
information to create the desired object.



MatchedObject (MatchedPoint)

The object, whose attributes are determined by a
matching process. For topographic applications, this
may be a topographic object.

MatchingTechnique (PointMatchingTechnique)

An abstract interface for a matching technique.

MatchingTechniqueGroup (AreaBasedMatching, Fea-
tureBasedMatching)

This class represents an intermediate level of abstrac-
tion. A group of matching techniques with common
attributes and methods is described by this class.

MatchingTechnique1, MatchingTechnique2
(IntensityCorrelation, GradientCorrelation)

Concrete implementations of matching techniques.

MatchingTemplate (FeatureVectorMatching)

A template, which describes the community of several
matching techniques. This class handles in contrast to
MatchingTechniqueGroup with internal or algorithmic
communities.

MatchingController (PointMatchingController)

An abstract interface, which is accessed by the
MatchedObject to determine an appropriate matching
technique.

ConcreteMatchingController
(TernaryMatchingController)

The concrete implementation of MatchingController,
which has the knowledge about all available matching
techniques.

3.6 Collaborations

If a client requires parameters, resulting from a matching
algorithm, the instance of MatchedObject calls the match-
method of the object of class MatchingTechnique. If a client
needs only parameters, which need no matching technique
for determination, e.g. the 2D-Coordinate of a point in the
reference image, the matching algorithm will not be called.

If no matching technique is associated to an instance of
MatchedObject, it asks the controller-object to determine
the matching technique. Alternatively a client can set the
matching technique explicitly.

The object of the Description-classes are used by the ob-
ject of class MatchingTechnique to get the image data or
higher level descriptions and additional knowledge based
information, e.g. orientation data and a reference position.

An instance of class ConcreteMatchingController creates
the objects of several implemented Matching Techniques. It
provides these objects with matching technique specific pa-
rameters and may use some of the description data from an
instance of class MatchedObject to determine the matching
technique.

3.7 Consequences

The matching tool pattern has the following advantages and
disadvantages.

+ The class MatchedObject is independent of the con-
crete matching technique and the client does not need
an explicit call of the matching algorithm.

+ The class MatchingTemplate enables to implement
communities of several matching techniques only
once.

+ If an new matching technique is implemented, only the
class ConcreteMatchingController has to be changed.

- Before the first instance of MatchedObject is created,
the class-scope method setMatchingController, which
is callable without an instance of MatchedObject, has
to be called. This method-call increases the initializa-
tion part of the surrounding system.

3.8 Implementation

The generic programming technique (Musser and Saini,
1996), which is used to design the class MatchingTemplate,
causes sometimes compile problems. Most c++-compilers
differ in the way of interpreting templates (cf. slide-in in
(Eisenecker, 1996)).

The class MatchedObject may be inherited from a more
general object description. In this case the programmer
has to check the consistency of the new matching features
with the methods of the superclass interface.

An alternative of inheritance is automatic type conversion
to another description of the MatchedObject. This is rec-
ommended for primitive objects, like points or edges.

3.9 Known Uses

The Design Pattern “Matching Tool” is used for designing
and integrating a point matching tool in a Semiautomatic
Building Extraction System as mentioned above. Its pur-
pose is to reduce the number of interactive actions. The
point matching tool is used to measure homologue points

1. at roof-edges to determine the 3D-position of the build-
ing primitive along the projection line of the image

2. and nearby buildings, whose bottom height cannot in-
teractively measured, because the ground edges are
occluded by vegetation.

Actually, the matching techniques IntensityCorrelation and
GradientCorrelation are implemented (cf. 3.2). The two
matching techniques were tested on several types of points
(cf. tab. 2). The decisions about successful matching were
made interactively. The points for both techniques were ap-
proximately chosen at the same position.

The test results show, that Gradient Correlation is a lit-
tle more successful at gable point positions. This can be
explained thereby, that the intensity values nearby gable
points are stronger changed by a projective transformation,
than the gradient values. This fact indicates the depen-
dency of the optimal matching technique on the local image



Figure 4: Left image with given point
(e.g. gable point).

Figure 5: Right image with epipolar
search space.

Figure 6: Right image with correctly
matched point.

Point location Technique Points Matches
Gable point Intensity Cor. 41 26 (63%)
Roof Top Intensity Cor. 22 22 (100%)
Street Intensity Cor. 26 24 (92%)
Gable point Gradient Cor. 43 29 (67%)
Roof Top Gradient Cor. 22 22 (100%)
Street Gradient Cor. 25 18 (72%)

Table 2: Test results of the point matching tool with Intensity
and Gradient Correlation (Street positions at urban streets,
mainly without markings).

features. All points on roof tops were successfully matched
at all examined positions by both methods. At locations in
the street, the intensity correlation is better, which is ex-
plained by the lack of strong edges.

Fig. 4-6 show an example of point matching in the semiau-
tomatic building extraction system. In this case the method
determineTechnique has found a GradientCorrelation as
the best technique for this point, which has successfully
been matched by the automatically chosen technique.

3.10 Related Patterns

� Strategy (Gamma et al., 1995)

The Matching Tool pattern can be understood as a re-
finement of the Strategy Pattern specialized to match-
ing techniques.

� Generic techniques of the STL (Musser and Saini,
1996)

The generic techniques, which are used by the STL,
are very helpful for designing the class MatchingTem-
plate.

4 CONCLUSIONS

In this paper we have shown an object-oriented design
of matching techniques. Beginning with the task to de-
sign a point matching tool, we found a general design pat-
tern for matching techniques. This design pattern offers
the possibility to create complex objects directly from low
level descriptions like images. E.g. a 3D-point object can
be created from only two images and a reference posi-
tion in one image. Details of the implemented matching
techniques are hidden, and they can be varied with no ef-
fect to other software components. The matching tech-
nique can be selected automatically, using local features

like edges, points or regions. The implementation of this
design pattern demonstrates, that object-oriented model-
ing techniques also can be applied on algorithmic models,
like matching techniques.

One of our future tasks is to apply the presented design
pattern to other topographic objects and to extend the vari-
ety of available matching techniques. For this intention we
need to model a set of further matching techniques, which
is actually not worked out. We will integrate these new com-
ponents into a semiautomatic building extraction system to
reduce further the amount of interactive operations.

ACKNOWLEDGMENTS

The inspiration and support by Prof. Dr.-Ing. Wolfgang
Förstner and Dr.-Ing. Eberhard Gülch are gratefully ac-
knowledged.

REFERENCES

Booch, G., 1994. Object-oriented Analysis and Design.
With Applications. Benjamin/Cummings Publishing Com-
pany, Inc.

Buschmann, F., 1996. Wie beschreibt man entwurfs-
muster? OBJEKTspektrum.

Eisenecker, U., 1996. Generatives programmieren in c++.
OBJEKTspektrum.

Englert, R. and Gülch, E., 1996. One-eye stereo system for
the acquisition of complex 3D building descriptions. GIS.

Förstner, W., 1986. A feature based correspondence algo-
rithm for image matching. In: International Archives of Pho-
togrammetry and Remote Sensing, Vol.26-3/3, Rovaniemi,
pp. 150–166.

Förstner, W., 1994. A framework for low level feature extrac-
tion. In: J.-O. Eklundh (ed.), Computer Vision - ECCV ’94,
Vol. II, Lecture Notes in Computer Science, 801, Springer-
Verlag, pp. 383–394.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1995.
Design Patterns. Addison-Wesley.

Gülch, E., 1997. Application of semi-automatic building
acquisition. In: A. Grün (ed.), Automatic Extraction of
Man-Made Objects from Aerial and Space Images (II),
Birkhäuser, Basel.



Gülch, E. and Müller, H., 1997. Object-oriented software
design in semiautomatic building extraction. In: Integrat-
ing Photogrammetric Techniques with Scene Analysis and
Machine Vision III, SPIE Proceedings, Vol. 3072.

Heipke, C., Mayr, W., Wiedemannn, C. and Ebner, H.,
1997. Automatic aerotriangulation with frame and three-line
imagery. In: Integrating Photogrammetric Techniques with
Scene Analysis and Machine Vision III, SPIE Proceedings,
Vol. 3072.

Lang, F. and Förstner, W., 1996. Surface reconstruction
of man-made objects using polymorphic mid-level features
and generic scene knowledge. In: ISPRS Congress, Vi-
enna.

Lang, F. and Schickler, W., 1993. Semiautomatische 3D-
Gebäudeerfassung aus digitalen Bildern. Zeitschrift für
Photogrammetrie und Fernerkundung 5, pp. 193–200.

Musser, D. R. and Saini, A., 1996. STL Tutorial and Refer-
ence Guide. Addison-Wesley.

Rat, 1997a. UML Semantics Glossary. Version 1.0 edn.
URL: http���www�rational�com.

Rat, 1997b. Unified Modeling Language. Version 1.0 edn.
URL: http���www�rational�com.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W., 1991. Object-Oriented Modeling and De-
sign. Prentice-Hall, Inc.

Sommerlad, P., 1996. Entwurfsmuster für software-
architektur. OBJEKTspektrum.

Straub, B., 1991. Ein Verfahren zur Rekonstruktion von
dreidimensionalen Objektmodellen aus digitalen Bilddaten.
PhD thesis, Universität Stuttgart.


