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Abstract. Well known estimation techniques in computational geom-
etry usually deal only with single geometric entities as unknown pa-
rameters and do not account for constrained observations within the
estimation.
The estimation model proposed in this paper is much more general, as it
can handle multiple homogeneous vectors as well as multiple constraints.
Furthermore, it allows the consistent handling of arbitrary covariance
matrices for the observed and the estimated entities. The major novelty
is the proper handling of singular observation covariance matrices made
possible by additional constraints within the estimation. These properties
are of special interest for instance in the calculus of algebraic projective
geometry, where singular covariance matrices arise naturally from the
non-minimal parameterizations of the entities.
The validity of the proposed adjustment model will be demonstrated by
the estimation of a fundamental matrix from synthetic data and com-
pared to heteroscedastic regression [?], which is considered as state-of-
the-art estimator for this task. As the latter is unable to simultaneously
estimate multiple entities, we will also demonstrate the usefulness and
the feasibility of our approach by the constrained estimation of three
vanishing points from observed uncertain image line segments.

1 Introduction

The final step in uncertain geometric reasoning usually is the optimal estimation
of unknown parameters from given uncertain observations taking geometric or
algebraic constraints into account, which either result from the structure of the
problem or have been found by some hypothesis generation process, e.g. [?,?,?].

The well known estimation techniques in geometric computation (e.g. [?,?,?,?])
usually deal only with single homogeneous entities, for instance points or trans-
formations. These estimation techniques, such as algebraic minimization, total
least squares, renormalization, or heteroscedastic regression cannot easily be
generalized to the estimation of multiple homogeneous entities with multiple
constraints, which is necessary in many vision tasks for instance when dealing
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with composed geometric entities such as straight line segments or the joint
estimation of vanishing points.

In order to address this problem we provide a generic estimation model for
the simultaneous estimation of more than one uncertain geometric entity. Based
on possibly correlated observed geometric entities, the results are derived in con-
sideration of constraints for the parameters and the observations. In particular
the proposed procedure is able to handle uncertain homogeneous vectors to-
gether with possibly singular covariance matrices extending the hitherto known
techniques w.r.t. the continuous use of homogeneous representations.

To demonstrate the applicability of the proposed estimation scheme we show
how the presented general estimation framework can be specialized for two ex-
emplary vision tasks. First, we demonstrate the applicability of our approach
for the very well-known and well-understood task of estimating the fundamen-
tal matrix from uncertain homogeneous point correspondences. We show, that
competitive results are achieved by comparing our approach to heteroscedas-
tic regression [?], which is considered as state-of-the-art estimator for this task.
Second, we show how three orthogonal vanishing points can be estimated simul-
taneously from uncertain straight line segments in homogeneous representation
for a real scene using the proposed framework. In contrast to other estimation
techniques (e.g. [?,?,?,?]), our approach is directly applicable for this task and
no re-parameterization is required due to the rigorous handling of the singu-
lar uncertainty structure of the homogeneous entities. Therefore, the presented
framework can directly benefit from the compact representation of many vision
problems using algebraic projective geometry, so that the task of formulating
estimation schemes is greatly simplified.

2 General Adjustment Model with Constraints

We will start by presenting the general problem-specific modeling tasks before we
will give examples for two specific vision tasks in Sect. 3. The approach is based
on the adjustment model proposed in [?]. The model consists of a functional
part for the unknown parameters and the observations, a stochastic part for the
observations, an objective function, and an iterative estimation procedure for
non-linear problems.

2.1 Mathematical Model

Functional model. The functional model describes the mutual relations between
the considered entities comprising of the observations and the parameters to be
estimated. We distinguish three types of constraints between the true observa-
tions l̃ and the U unknown true parameters p̃:

1. the G conditions g(̃l, p̃) = 0 between the observations and parameters re-
flecting their actual intended mutual relation (i.e. the model assumptions),
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2. the H restrictions h(p̃) = 0 on the parameters alone reflecting intrinsic
constraints (e.g. ||p̃|| = 1 for homogeneous entities) and enabling singular
parameter covariance matrices, and finally

3. the C constraints c(̃l) = 0 on the observations alone reflecting intrinsic
constraints (e.g. ||̃l|| = 1 for homogeneous entities) and enabling singular
observation covariance matrices.

The error-free observations l̃ are related to the real observations l by additive
unknown corrections l̃ = l+ ṽ. Since the true values remain unknown they will
be replaced by their estimates p̂, l̂ and v̂ in the following.

Stochastic model. The stochastic model describes the uncertainty of the obser-
vations. An initial covariance matrix Σ(0)

ll of the observations is assumed to be
known which subsumes the stochastic properties of the observations, thus l is
assumed to be normally distributed l ∼ N (̃l, Σ̃ll). With the possibly unknown
variance factor σ2

0 , the matrix Σ(0)
ll is related to the true covariance matrix Σ̃ll

by Σll = σ2
0Σ

(0)
ll (cf. [?]). Note, that we explicitly allow Σll to be singular as

long as its null space is properly handled by the constraint c(̃l) = 0. This is one
of the major contributions of this work.

Having defined the problem specific model (see Sect. 3 for examples, how this
framework can be specialized to specific vision problems), we will now derive a
corresponding estimation scheme for estimating the parameters and the adjusted
observations in the next section. We will also show how the unknown variance
factor σ2

0 can be estimated from the estimated corrections v̂, i.e. the negative
residuals.

2.2 Objective Function and Estimation

Finding optimal estimates p̂ and l̂ for p and l resp. can be done by minimizing
the weighted squared residuals subject to the given constraints, i.e.

L(v̂, p̂,λ,µ,ν) =
1
2
v̂TΣ+

ll v̂ + λTg(l+ v̂, p̂) + µTh(p̂) + νTc(l+ v̂) (1)

with the Lagrangian vectors λ, µ and ν. In contrast to [?] we explicitly include
the constraint c(l+v̂) in order to properly deal with singular covariance matrices
consistent with the pseudo-inverse Σ+

ll (see [?] for details).
For solving this non-linear problem in an iterative manner we need ap-

proximate values p̂(0) and l̂
(0)

for the estimates of the unknown parameters

p̂ = p̂(0) + ∆̂p and l̂ = l̂
(0)

+ ∆̂l = l + v̂. The corrections ∆̂p for the un-
knowns and the estimated observations l̂ are obtained iteratively by applying
the following steps (see [?] for a detailed derivation of the estimation formulas):

1. The Jacobians are computed at the current approximate values

A =
∂g(l,p)
∂p

, BT =
∂g(l,p)
∂l

, CT =
∂c(l)
∂l

, HT =
∂h(p)
∂p

(2)
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2. In each iteration τ compute the approximate values for the residuals of the
constraints

gτ = g(l(τ),p(τ)), hτ = h(p(τ)), cτ = c(l(τ)) (3)

3. Compute the auxiliary variable

a = BTC(CTC)−1(CT(l− l(τ)) + cτ )−BT(l− l(τ))− gτ (4)

4. Compute the covariance matrix Σgg = BTΣllB of the contradictions gτ
5. The unknown corrections to the parameters are now computed by solving

the normal equation system[
ATΣ−1

gg A H

HT 0

] [
∆̂p
µ

]
=
[
ATΣ−1

gg a
−hτ

]
. (5)

6. The Lagrangians and the residuals are finally computed as

λ = Σ−1
gg (A∆̂p− a) (6)

v̂(τ) = −ΣllBλ−C(CTC)−1(CT(l− l(τ)) + cτ ) (7)

The approximate values have to be iteratively improved for non-linear prob-
lems. In doing so, the covariance matrix Σ(τ)

ll of the observations have to be ad-
justed within each iteration step to be consistent with the constraint c(l(τ) + v̂),
e.g. by spherical normalization, because of the change of the observations l(τ)

within the iteration process. Note, that the estimation procedure is not problem
specific except for the computation of the Jacobians in the first step and can be
applied in a black-box manner.

2.3 Precision of the Estimates

One of the advantages of uncertainty modeling is the possibility of propagating
errors. We will now show, how the precision of the estimated parameters can be
derived. With estimated corrections v̂ from (7) we obtain the fitted observations
l̂ = l + v̂. The estimation for the variance factor σ2

0 is given by the maximum
likelihood estimation σ̂2

0 = v̂TΣ+
ll v̂/R with the redundancy R = G + H − U ,

cf. [?]. The pseudo inverse can eventually efficiently computed by exploiting the
block diagonal matrix structures and the relation CTC = I (cf. the examples in
Sect. 3).

We finally obtain the estimated covariance matrix Σ̂
p̂p̂

= σ̂2
0Σp̂p̂

of the esti-
mated parameters, whereΣ

p̂p̂
results from the inverted reduced normal equation

matrix by variance propagation:[
Σ
p̂p̂
·

· ·

]
=
[
ATΣ−1

gg A H

HT O

]−1

(8)

Observe, the model has the same structure as the classical Gauss-Markov-
model with constraints [?], which allows to easily modify for a robust ML-type
estimation to cope with outliers [?] by iteratively reweighting the individual
conditions gi.
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3 Examples

Having derived a very generic modeling and estimation framework in the previ-
ous section we will now show, how the presented framework can be specialized
for two exemplary vision problems.

3.1 Estimation of the Fundamental Matrix

As a first exemplary problem we consider the very well-known and well-understood
problem of fundamental matrix estimation from uncertain image point corre-
spondences. Since the 3×3 fundamental matrix F is homogeneous and singular,
two constraints have to be introduced for the 9 elements f = vec(F).

With at least 7 corresponding point pairs captured by straight-line preserv-
ing cameras the fundamental matrix can be estimated from the coplanarity con-
straints

x′i
TFx′′i = (x′′i

T ⊗ x′i
T)f = 0 (9)

which are bilinear in the corresponding homogeneous image coordinates x′i and
x′′i , and linear in the elements of the fundamental matrix. Suitable constraints
for the observations and for the parameters are

xT
i xi − 1 = 0, fTf − 1 = 0, and det(F) = 0, (10)

fixing the scale factors and enforcing the rank two constraint.
With the covariance matrix Σxx of the Euclidean coordinates x = [x, y]T of

an image point the initial representation is x = [xT, 1]T and Σxx = Diag(Σxx, 0)
assuming the factor of proportionality to be non stochastic. Spherical normal-
ization leads to the observations x := x/|x| with Σxx := JΣxxJ

T using the
Jacobian

J =
1
|x|

(
I3 −

xxT

xTx

)
(11)

for each point. For n image points the vector of observations is l = [xT
1 ,x

T
2 , . . . ,

xT
n]T and the corresponding covariance matrix Σll = Diag(Σx1x1 ,Σx2x2 , . . . ,
Σxnxn). Observe, we introduce all constraints at once, and in contrast to classical
approaches may use the uncertain homogeneous entities directly, without the
need for special treatment of the last coordinate.

The Jacobian of the n coplanarity constraints (9) is A = [x′′1 ⊗ x′1,x
′′
2 ⊗

x′2, . . . ,x
′′
n⊗x′n]T where ⊗ denotes the Kronecker product and the singular value

decomposition (SVD) of A yields the approximate values for the parameters f .
Furthermore, by considering the SVD of F the rank two property can be enforced
[?].

The Jacobians of (9) and (10) are B = Diag([x′′1
TFT,x′1

TF], [x′′2
TFT,x′2

TF],
. . .), A, C = 2 Diag(x′1,x

′′
1 , x′2,x

′′
2 , . . . ,x′n,x

′′
n), and H = [2f , f∗]T, where

f∗ = vec(F∗) denotes the elements of the adjoint F∗ of F. Since CTC = I holds,
the pseudo inverse of Σll can efficiently be computed by Σ+

ll = (Σll+CC
T)−1−

CCT exploiting the block diagonal matrix structures.



6

To validate the adjustment model we performed the following stochastic sim-
ulation: In 500 simulation runs we generated 50 3d points, each with normal
distributed coordinates. The two camera orientations have been randomly se-
lected with camera centers on a sphere with radius 6 around the point cloud and
viewing directions toward the center of the point cloud. This leads to observed
image coordinates in the range of approximately [−1, 1]. After adding isotropic
noise with σn = 0.02 to the Euclidean image coordinates the parameters of the
fundamental matrix have been estimated assuming i.i.d. observations.

The Mahalanobis distance between the estimated and the true values f is
computed for each of the simulation runs. Figure 1 shows the empirical dis-
tribution of the Mahalanobis distance which is χ2 distributed with 7 degrees
of freedom as expected. The hypothesized inequality of both distributions has
been rejected by the Kolmogorov-Smirnov goodness-of-fit test at significance
level α = 0.05.
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8-point HEIV approach

singular σ1/σ2 0.0323 0.0290 0.0288
values

1st x1 0.0775 0.0585 0.0591
epipole y1 0.0808 0.0645 0.0631

2nd x2 0.0737 0.0633 0.0638
epipole y2 0.0798 0.0701 0.0703

Fig. 1. Right: Empirical distribution of the Mahalanobis distance and its theoretical
χ2

7-distribution. Left: Comparison of the estimation results. Robust estimation of the
standard deviations of the parameters by the median absolute deviation w.r.t. the true
values.

To assess and compare the results we choose the HEIV based estimation
[?] as a representative for competing state-of-the-art estimators. For the HEIV
estimation the implementation [?] has been used. Figure 1 shows the results for
the estimation of the coordinates of the epipoles and the ratio of the estimated
singular values for the eight point algorithm, the HEIV, and our approach. For
the estimated parameters, the stated values denote a robust estimation of the
standard deviation by computing the median absolute deviation of the residuals
w.r.t. the true values, multiplied by 1.4826. According to the achieved precisions,
the results of the HEIV based estimation and our approach are the same up to
numerical effects due to the number of iterations.

3.2 Constrained Vanishing Points Determination

As a second example we chose the task of joint vanishing point estimation us-
ing all available constraints. In contrast to the computation of the fundamental
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matrix demonstrated in the previous section, the HEIV algorithm cannot be gen-
eralized easily to solve this task due to the multiple constraints on the estimated
entities. Since a vanishing point may lie at infinity, the use of the homogeneous
representation is a reasonable choice.

Figure 2 shows on the left side the first image of the corridor sequence with
extracted straight line segments provided by the Visual Geometry Group, Uni-
versity of Oxford. By using a random sample consensus [?] the segments have
been classified according to the 3 vanishing directions and an outliers class.

Fig. 2. First image of the Oxford corridor sequence. Left: Extracted straight line seg-
ments, classified according to their vanishing directions and an outlier class. Right:
Display detail with superimposed confidence regions, the approximate third vanishing
point (◦), and its estimation (+).

For each of the three sets of straight line segments the corresponding nk
straight lines lki should intersect in the vanishing point vk, not to be confused
with the residual vector v. Thus the constraints are

vT
k lki = 0, vT

kvk − 1 = 0, lTkilki − 1 = 0, k = 1 . . . 3, i = 1 . . . nk (12)

because of the incidences and the spherical normalizations of the geometric enti-
ties. Furthermore, if the homogeneous calibration matrix K for the straight line
preserving camera is known, we can introduce the two additional constraints

vT
1ωv2 = 0 and vT

2ωv3 = 0 (13)

which hold because of the orthogonality relations of the three vanishing direc-
tions K−1vk and where ω = K−TK−1 denotes the image of the absolute conic
[?].

The straight line segments are given without any information about their
uncertainty. Therefore, we initially determined the covariance matricesΣaiai and
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Σbibi
of the coordinates of the segment end-points ai and bi with the help of the

Förstner operator [?]. Then, assuming independent end-points, we determined
each straight line li by joining the corresponding end-points accompanied by
variance propagation [?]

li = Sai
bi, Σlili = [−Sbi

,Sai
] Diag(Σaiai

,Σbibi
) [−Sbi

,Sai
]T (14)

where S(·) denotes the skew-symmetric matrix inducing the cross product. Thus,
with all n straight lines the vector of observations is l =

[
lT1 , l

T
2 , . . . , l

T
n

]T and its
covariance matrix Σll = Diag(Σl1l1 ,Σl2l2 , . . . ,Σlnln).

Figure 2 shows on the right side a detail of the image with superimposed
straight line segments, the 99% confidence ellipses of the end-points enlarged by
factor 10, and the resulting error hyperbolas of the corresponding straight lines.

Approximate values can easily be obtained by considering each vanishing
point individually. The Jacobian of the constraints w.r.t. the unknown parame-
ters is simply Ak =

[
lk1, lk2, . . . lkn

]T
, and the singular value decomposition of

Ak yields the approximate values for the vanishing points vk.
For the joint parameter estimation with n = n1 + n2 + n3 observed straight

lines the block-diagonal Jacobians are

A = Diag(A1,A2,A2)
B = Diag(In1 ⊗ v1, In2 ⊗ v2, In3 ⊗ v3),
C = 2Diag(l1, l2, . . . , ln)

H =

2v1 0 0 ωv2 0
0 2v2 0 ωv1 ωv3

0 0 2v3 0 ωv2

T

,

whereas ⊗ denotes the Kronecker product. Again, since CTC = I holds the
pseudo inverse of Σll can efficiently be computed by exploitation of the block
diagonal matrix structures.

For the visual presentation of the estimation results we choose a gnomonic
projection of the image and the three vanishing points, because this projection is
suitable to represent the two vanishing points near infinity. For the projection we
used a sphere with radius equal to the camera constant and the principal point
of the camera as tangent point. Figure 3 shows the results with and without the
orthogonality constraints (13).

For the visualisation of the confidence regions we generated normal dis-
tributed samples according to the estimates, e.g., v ∼ N(v̂, Σ̂

v̂v̂
), in homo-

geneous representation and mapped them with the inverse calibration matrix
K−1 to the sphere. As expected, the three orthogonal clusters follow Bingham’s
distribution [?]. Observe, that the inclusion of the orthogonality constraint into
a joint estimation improves the accuracy as expected. Also note, that for the
third vanishing point the 99% confidence region overlaps the equator (i.e. the
corresponding image point is near infinity and therefore may lie on the opposite
side in the image), which is handled by the use of uncertain homogeneous entities
in a straightforward manner.
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Fig. 3. Image and vanishing points in gnomonic projection. left side: without orthog-
onal constraints, right side: with additional constraints to enforce the directions to be
mutually orthogonal. The 99% confidence regions of the vanishing directions follow
Bingham’s distribution and have been enlarged by a factor of 10.

4 Conclusions

We developed a scheme for simultaneous estimating sets of homogeneous entities
from observed homogeneous entities with an arbitrary number of constraints and
possible rank defect covariance matrices in order to integrate projective geometry
and estimation theory.

The consideration of uncertainty and correlations of the observed entities
leads to statistically optimal results as in the case of the equivalent Euclidean
representation. Thereby, possibly singular covariance matrices of homogeneous
entities can be treated. Since the model uses the same equations as for the uncon-
strained algebraic minimization, there is no need to change the representations
during the geometric reasoning. The adjustment model is of special interest
within the calculus of projective geometry, but the approach is not restricted to
problems with normalization constraints for homogeneous entities.

The proposed adjustment model has been statistically validated with syn-
thetic data and approved with real data sets. The results for the estimation
of fundamental matrices based on synthetic data are comparable to the ones
achieved by the heteroscedastic errors-in-variables (HEIV) approach being con-
sidered as a state-of-the-art estimator for such problems. The procedure can
cope with considerably large noise of the point coordinates. The constrained es-
timation of vanishing points in a real image leads to statistically optimal results
due to the stringent consideration of uncertainty and correlation of the observed
straight line segments.

The generality of the model makes it applicable to all problems containing
homogeneous entities. With a small modification one can transfer it into a robust
ML-estimation procedure, by iteratively reweighting the conditions gi. Of course,
due to the use of the redundant representation and the additional constraints,
computation times are larger than when using specially adapted representations
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because of the used overparametrization. But such a generic module for estimat-
ing with homogeneous entities may be used for rapid prototyping and for not
too large problems in case computing time is not critical.
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