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Abstract. This paper proposes variance component estimation (VCE)
for empirical quality evaluation in computer vision. An outline is given
for the scope of VCE in the context of quality evaluation. The principle
of VCE is explained and the approach is applied to results of low level
feature extraction. Ground truth is only partly needed for estimating the
precision, accuracy and bias of extracted points and straight lines. The
results of diverse feature extraction modules are compared.

1 Introduction

Performance evaluation is essential for systems development. Building computer
vision systems requires clear documentation of the quality of each algorithm.

This paper deals with algorithms resulting in quantities (e.g. lengths, angles,
probabilities) which have a probability density function that can be parameter-
ized by first and second order moments. Characterizing such algorithms can be
based on the results on multiple data sets, either exploiting mutual constraints
between different results or using ground truth, e. g. when using simulated data.
Both scenarios are useful. We propose variance component estimation (VCE) for
determining the quality in both cases (cf fig. 1).

VCE estimates parameters of the distribution of observed values from the
residuals of a maximum likelihood estimation. Together with additional param-
eters in the estimation it is able to determine (1) the internal precision, (2)
the external accuracy and (3) the bias, all three measures being the classical
triad for characterizing measurement. In case of repeated observations the VCE
simplifies, in case of given ground truth the estimation of the bias simplifies.

The paper is organized as follows: Section 2 defines ”precision”, ”accuracy”
and ”bias” as concepts for specifying quality. Section 3 proposes VCE for esti-
mating these measures based on the results of parameter estimation. In Section
4, VCE is specialized to the case of estimating the quality of feature extraction
procedures for point and line extraction and in section 5, the approach is applied
to the output of diverse point and edge extraction modules. The paper closes
with a discussion and an outlook.
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Fig. 1. Estimating precision, accuracy and bias by VCE in general and repeated mea-
surement model.

Notation. We use Euclidean and homogeneous representation of entities in
2D. Euclidean entities are denoted with slanted letters, e. g. x and homogeneous
entities are denoted with upright shaped letters, e. g. x. Stochastic entities x are
underscored. ”True” values x̃ are marked with a tilde and expectation values x̄

are marked with a bar. Estimated entities x̂ are labeled with a hat. Uncertainty of
entities is represented by covariance matrices Σxx, containing variances σxx

.
= σ2

x

and covariances σxy.

2 Precision, bias and accuracy

In the following, processing results by applying an algorithm to data is inter-
preted as an observation process: The result of an algorithm is modeled as a
stochastic variable p (observation) with mean p̄ = E(p) and covariance matrix
Σpp. We assume that true values p̃ exist, representing the perfect result on given
noisy data and use the following terms for characterization:

Precision. The precision of an observation p is defined as the variance of p. It
is represented by the covariance matrix

Σpp = E[(p − p̄)(p − p̄)T]

and covers stochastic errors of the observation process.
Bias. The bias b of an observation p is the deviation

b = p̃ − p̄

of the expectation value p̄ from the true value p̃. It covers systematic errors
of the observation process.

Accuracy. The accuracy of an observation p is the variance of the observation
p referring to the true value p̃. It is represented by the matrix of second
moments

a
Σpp = E[(p − p̃)(p − p̃)T]

and covers both, systematic and stochastic errors of the observation process.

The relation between precision accuracy, and bias is given by (cf [8])

a
Σpp = Σpp + bb

T. (1)



3 Estimating precision, bias and accuracy

This section presents a two step procedure for estimating the bias, precision and
accuracy. In the first step, parameter estimation is carried out in a linear model
which links the expectation values of the observations mutually and together
with unknown parameters. In this model, the biases of the observations are
treated as additional unknowns. Maximum likelihood estimation leads to optimal
estimates for the biases and the other model parameters. In the second step, VCE
is carried out based on the estimated observation residuals of step 1. This leads
to optimal estimates for precision and accuracy of the observations.

3.1 Step 1: Parameter estimation for estimating the bias

The most simple case of parameter estimation in a linear model is the well known
Gauß Markoff model

E(y) =
∑

i

βiai =
�

β, (2)

where the goal is estimating unknown parameters β = (βi) from given data

y = (p1
T, . . . ,pN

T)T via a given coefficient matrix
�

= (ai). For estimating
the unknown parameters, the expectation values E(y) of the observations y are
formulated as a linear combination of the known vectors ai. A best unbiased
estimation β̂ for the unknown weights βi is obtained by minimizing the variance
V (β̂) under E(β̂) = β̃ (cf [8]).

If in (2) the unknown biases of the observations are introduced as additional
parameters, the parameter estimation procedure may be used for optimally es-
timating the biases. This requires a measurement setup that reveals sufficient
information for estimating the biases together with the other parameters.

3.2 Step 2: Variance component estimation for estimating precision

Variance component estimation (VCE) is a technique for estimating the precision
of observations by analyzing the estimated residuals of the observations. For this
purpose, systems with high redundancy are required.

Analogous to the Gauß-Markoff-Model (2), the model of VCE component
estimation is given by

E(Σ) =
∑

c

σ2
0,cΣ

(0)
c ,

where Σ
(0
c are given matrices and the goal is estimating the unknown variance

factors σ2
0,c. Here it is the expectation value E(Σ) of the covariance matrix Σ

of observations that is formulated as linear combination of given matrices Σ
(0)
c .

A best estimation for the variance factors σ2
0,c is obtained by minimizing V (Σ̂).

For estimating the unknown variance factors, the expectation value E(Σ) of the

covariance matrix Σ is approximated by Σ0 =
∑

cΣ
(0)
c .

The principle of VCE can be sketched as follows: Let ŷ be the vector contain-
ing the estimated expectation values of the observations y and let ε̂ = ŷ − y =



�
y with

�
= � − �

(
� T

Σ−1
0

�
)−1 � T

Σ−1
0 (cf [8]) be the vector of the es-

timated observation residuals resulting from parameter estimation in a Gauß
Markoff model. In the case of a diagonal covariance matrix Σ0 = Diag (σ2

i ), the
estimated variance factor of the observations is given by

σ̂2
0 =

ε̂TΣ−1
0 ε̂

R
=

ê2
1/σ2

1 + ê2
2/σ2

2 + . . . + ê2
k/σ2

k +

r1 + r2 + . . . + rk
| {z }

→σ̂2
01

ê2
k+1/σ2

k+1 + . . . + ê2
K/σ2

K

+ rk+1 + . . . + rK
| {z }

→σ̂2
02

, (3)

where ri is the contribution of observation i to the total redundancy R. If dif-
ferent variance factors σ2

0,1 and σ2
0,2 are expected for e.g. two different types

of observations, the fraction in (3) can formally be partitioned into two parts.
Analyzing each part leads to separate estimations σ̂2

0,i and σ̂2
0,2 of the variance

factors σ2
01 and σ2

02.
For a general covariance matrix Σ0, best estimations σ̂2

0,c of the variance
components σ2

0,c are given by (cf. [1], [8])

σ̂2
0,c =

ε̂
T
Σ−1

0 Σ
(0)
c Σ−1

0 ε̂

tr(Σ−1
0

�
Σc)

,

tr(#) denoting the trace operator. The estimated covariance matrix of observa-
tions is given by

Σ̂ =
∑

c

Σ̂c with Σ̂c = σ̂2
0,cΣ

(0)
c .

Observe that the estimated covariance matrix Σ̂ depends on the approximation

Σ0. Therefore VCE is applied iteratively with Σ
(ν+1)
0 =

∑
c Σ̂

(ν)
c and Σ̂

(ν)
c :=

(σ̂2
0,c)

(ν)Σ̂
(ν−1)
c . In the case of convergence, it holds (σ̂2

0,c)
(ν) → 1 for all factors

σ2
0,c.

3.3 Special case: repeated measurement with ground truth available

In the case that an algorithm is applied to N noisy versions of a data set,
resulting in the observations (p1n, . . . ,pIn) on the nth data set, and that ground
truth p̃in, i ∈ {1, . . . , I} is available, parameter estimation and VCE lead to the
following trivial results:

Bias. If the observations are weighted equally, the estimated expectation value
of N observations p′

in is given by their mean p̂i = 1
N

∑N

n=1 pin. With the true
value p̃i of the observations pin, the bias of observations pin is obtained by

b̂pi
= p̂i − p̃i with p̂i = 1

N

∑N

n=1 pin. (4)

Precision. The estimated covariance matrix and therefore the precision of the
observations are given by

Σ̂pipi
= 1

N−1

∑N

n=1(pin − p̂i)(pin − p̂i)
T. (5)



Accuracy is obtained by replacing in (5) the estimated point coordinates p̂i are
replaced by their error free values p̃i, leading to the matrix of second moments

a
Σ̂pipi

= 1
N−1

∑N

n=1(pin − p̃i)(pin − p̃i)
T (6)

If the sum (6) is taken not over n but over i, j and divided by (I − 1), where
I is the total number of observations in image n, then the mean accuracy of the
observations in image n is obtained.

4 Precision, accuracy and bias of points and straight lines

4.1 Representation of points and straight lines in 2D

Points. A point in 2D and its uncertainty is represented by its Euclidean coor-

dinate vector x = (x, y)T and its 2 × 2 covariance matrix Σxx, given by

Σxx =

(
σ2
x σxy

σxy σ2
y

)
= � ψ

(
σ2
r 0
0 σ2

t

)
� ψT with � ψ =

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)
.

Herein, σ2
r and σ2

t are the variances of the point in the two main directions of
its confidence ellipse; ψ represents the direction of the main semi-axis of the
confidence ellipse in the image coordinate system. (cf. fig. 2).

In homogeneous coordinates, an uncertain point is represented by a 3 × 1
coordinate vector x and its rank 2 covariance matrix Σxx, for example

x = (xT, 1)T and Σxx = Diag (Σxx, 0) . (7)
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Fig. 2. Representation of uncertain
points and straight lines in 2D.

Straight lines. Following ([3]), straight

lines l = (φ, d)T in 2D are represented
by their normal direction φ and their dis-
tance d to the origin of the image coordi-
nate system (cf fig. 2). With the coordi-

nates

(
s

d

)
=

(
− sin(φ) cos(φ)
cos(φ) sin(φ)

) (
xg
yg

)
of

the center of gravity (xg , yg) of the line
in the uv-coordinate system of fig. 2, the
uncertainty of the line is given by the co-
variance matrix (cf [3])

Σll =

(
1 0
s 1

) (
σ2
φ 0

0 σ2
q

) (
1 0
s 1

)
T.

Herein, σ2
φ denotes the variance of the line

direction and σ2
q is the variance represent-

ing the uncertainty of the center of gravity in the direction across the line.



With the 3 × 1 vector a = (sin(φ),− cos(φ), t)T, homogeneous coordinates l

of the line and their 3 × 3 covariance matrix Σll of rank 2 are given by (cf [7])

l = (sin(φ), cos(φ),−s) T and Σll = σ2
φ aa

T + σ2
d Diag(0, 0, 1). (8)

Observe that the covariance matrix Σll can be decomposed into a sum of a
matrix that only depends on the uncertainty σ2

φ of the direction and a matrix

that only depends on the uncertainty σ2
q of the center of gravity across the line.

4.2 Procedures for estimating bias, precision and accuracy of

extracted points and straight line segments

According to the explanations in section 3, we follow two approaches to estimat-
ing the bias, precision and accuracy of points and straight line segments provided
by feature extraction procedures.

1. Parameter estimation and VCE in a general model without ground truth at
hand

2. Estimating bias, precision and accuracy from repeated measurement with
ground truth at hand

General approach. Given homologous points and straight lines extracted
from N ≥ 2 projective images of an object, in a first step bundle adjustment
for camera orientation is carried out (cf [6]). The biases of the observed points
and line segments are treated as additional unknowns and they are optimally
estimated together with the camera orientation parameters.1 In the second step,
VCE is carried out for estimating the precision. Accuracy is estimated using (1).

Within the VCE procedure, we assume stochastic independence of points and
straight lines and decompose the covariance matrix Σ of the observations y into

Σ=σ2
0,x′

(
Σx′x′ 0

0 0

)

︸ ︷︷ ︸
Σ

(0)
1

+σ2
0,φ

(
0 0

0 Σl′l′,φ

)

︸ ︷︷ ︸
Σ

(0)
2

+σ2
0,q

(
0 0

0 Σl′l′,d

)

︸ ︷︷ ︸
Σ

(0)
3

with the unknown variance factors σ2
0,x′ , σ2

0,φ and σ2
0,q . The first matrix Σ

(0)
1

represents the uncertainty of points. It contains the 3I × 3I block diagonal ma-
trix Σx′x′ = Diag

(
Σx′

1x
′

1
, . . . ,Σx′

I
,x′

I

)
with the elements given by (7), assuming

independent observations of equal precision σx = σy = 1 and σxy = 0.

The 3J × 3J structure matrices Σ
(0)
2 and Σ

(0)
3 represent the uncertainty

of lines. Their sub-matrices Σl′l′,φ = Diag
(
Σl′1l′1,φ

, . . . ,Σl′
J
l′
J
,φ

)
and Σl′l′,q =

Diag
(
Σl′1l

′

1,q
, . . . ,Σl′

J
l′
J
,q

)
are obtained from (8) with σφ = 1[rad], σq = 1[pel].

1 In the case of a planar object, bundle adjustment can be replaced by estimating
planar homographies between the object and the images (cf [7]), including the biases
as additional unknowns.



Repeated measurement approach. Given points and straight lines ex-
tracted from N noisy versions of the same image and having ground truth
at hand, bias, precision and accuracy of the points and straight lines is esti-
mated by employing the equations (4), (5) and (6) with points parameterized

by x = (x, y)T and lines parameterized by l = (φ, d)T.

5 Experiments

Primarily, our experiments are intended to verify the usability of our approach
for evaluating the precision, accuracy and bias of points and straight lines. Sec-
ondary, we wanted to compare the quality of feature extraction modules on
various levels of image noise.

5.1 Experimental setup

Fig. 3. Test Image

In the experiment, we involved the Harris corner detec-
tor (cf [5]), the Förstner window operator (cf [2]) and the
Förstner point operator (cf [2]) as procedures for point
extraction and the feature extraction software FEX (cf
[3]) and the Schickler - Operator (cf [9]) as procedures for
straight line extraction. Each operator was applied to 11
synthetic image pairs, each consisting of two noisy versions
of the 500 × 500 image that is shown in fig. 5. On a dark
background, the image contains 25 bright squares in vari-
ous rotations. The side length of each square is 50[pel] and
the image contrast is ∆g = 85[gr]. Image noise σn was chosen in 12 steps in the
range of σn ∈ {0, 0.7, 1.4, 2.8, 4.2, 5.7, 7.1, 8.8, 11.3, 16.7, 30.2}[gr].

The tuning parameters σ1 and σ2 (cf [3]) of each operator were chosen to
σ1 = 1.0 and σ2 = 3.0 for point extraction and σ1 = 1.0 and σ2 = 2.0 for
straight line extraction. Only the noisiest image was smoothed with σ1 = 2.0.

VCE was used in the general approach for estimating the precision of ex-
tracted points and lines. Accuracy and bias were analyzed using the repeated
measurement approach with ground truth.

5.2 Results
The experiment proves the usability of VCE for estimating precision, bias and
accuracy of points and straight lines. The results of VCE in the general and
in the repeated measurement approach are consistent and plausible and allow
a comparison of feature extraction modules with regard to precision, bias and
accuracy.

Quality of points. In fig. 4, the estimated precision, accuracy and bias of
points is depicted as function of the image noise σn.

For noise in the range 0 – 8[gr], the Harris operator and the Förstner window
operator have the same characteristic in precision, accuracy and bias. This is to
be expected because their theory is very similar. Bias and accuracy are about
3–4 pixels and thus quite bad – a fact that is plausible because both opera-
tors do not provide optimal points but optimal positions of search windows for
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Fig. 4. Noise dependence of precision, accuracy and bias of points from the Harris
corner detector (thick), the Förstner window operator (thin) and the Förstner point
operator (dashed). Left: Precision σ̂p =

√
σx′x′ + σy′y′ [pel]. Center: Accuracy aσ̂p =

p
aσ̂x′x′ + aσ̂y′y′ [pel]. Right: Bias b̂ =

p
aσ̂2

p − σ̂2
p [pel]. In each graph, the first axis is

labeled with the standard deviation σn [gr] of the image noise.

point extraction (cf [2]). For larger noise (σn > 8), in our example no points are
detected by the Harris operator.

For image noise in the range of σn < 16 [gr], the Förstner point operator pro-
vides points with accuracy aσp < 0.5[pel]. In this noise range, precision bias and
accuracy increase nearly linearly with the noise. The bias is small (< 0.3[pel]).
Larger noise worsens heavily the quality of the results.

Quality of straight lines. The estimated quality of the results of line extrac-
tion is depicted in fig. 5. Referring to precision, accuracy and bias of extracted
features, for lower noise (σn < 17[gr]) the feature extraction FEX is superior
to the Schickler operator both in precision and accuracy. For noise σn > 17[gr],
precision and accuracy decrease heavily. This is caused by the fact that with
increasing noise straight lines are broken up into smaller pieces with worse qual-
ity. Concerning the uncertainty of the center of gravity of lines in the direction
across the line, both FEX and the Schickler operator behave similar and the
uncertainty increases linearly with increasing noise.

6 Conclusions and outlook

In this paper we have proposed VCE for estimating the quality of results drawn
from computer vision algorithms. The application area of VCE in the context of
quality evaluation has been outlined and its basic principles have been explained.
After a specialization to the case of repeated measurement, VCE was carried out
exemplarily for estimating the precision, accuracy and bias of points and straight
lines.

The results are consistent and plausible and show the usability of VCE for
evaluating quality. A more meaningful investigation of precision, accuracy and
bias of feature extraction modules will have to take into account synthetic and
real images of various quality and content. Furthermore, investigating precision,
accuracy and bias of features is not enough for characterizing feature extraction
algorithms (cf [4]). We also will evaluate other properties of feature extraction
extraction algorithms, especially the coverage of lines, and the effect onto rela-
tions between features needed for grouping.
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Fig. 5. Noise dependence of precision, accuracy and bias of lines from FEX and from
the Schickler-Operator. Top row: Uncertainty in line direction Left: Precision σ̂φ.

Center: Accuracy aσ̂φ. Right: Bias σ̂φ =
q

aσ̂2
φ − σ̂2

φ. Bottom row: Uncertainty of the

center of gravity across the line. Left: Precision σ̂d. Center: Accuracy aσ̂d. Right: Bias
σ̂d =
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d − σ̂2
d. In each graph, the first axis is labeled with the standard deviation

σn [gr] of the image noise.
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