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Abstract. This paper presents an optimal estimate for the projection
matrix for points of a camera from an arbitrary mixture of six or more
observed points and straight lines in object space. It gives expressions
for determining the corresponding projection matrix for straight lines to-
gether with its covariance matrix. Examples on synthetic and real images
demonstrate the feasibility of the approach.

1 Introduction

Determining the orientation of a camera is a basic task in computer vision and
photogrammetry. Direct as well as iterative solutions for calibrated and un-
calibrated cameras are well known, in case only points are used as basic enti-
ties. Hartley and Zisserman (cf. [4], pp. 166-169) indicate how to use point and
line observations simultaneously for estimating the projection matrix for points.
However, they give no optimal solution to this problem.

We present a procedure for optimal estimation of the projection matrix and
for determining the covariance matrix of its entries. This can be used to derive
the covariance matrix of the projection matrix for lines, which allows to infer
the uncertainty of projecting lines and planes from observed points and lines.

The paper is organized as follows: Section 2 presents some basic tools from
algebraic projective geometry, gives expressions for the projection of 3D points
and lines from object space into the image plane of a camera and explains the
determination of the matrix Q for line projection from the matrix P for point
projection. Section 3 describes the procedure to estimate P and to derive the
covariance matrices of the orientation parameters. Finally we give examples to
demonstrate the feasibility of the approach.

2 Basics

We first give the necessary tools from algebraic projective geometry easing the
computation of statistically uncertain geometric entities.



2.1 Points, lines and planes and their images

Points xT = (a§,25,) and lines 1 = (I},ly) in the plane are represented with 3-
vectors, splitted into their homogeneous part, indexed with h, and non-homogeneous
part indexed with 0. Points X = (X, X;) and planes A = (A}, 4¢) in 3D space
are represented similarly. Lines L in 3D are represented with their Plicker coordi-
nates LT = (L}, L ). Tt can be derived from two points X and Y by the direction
L, =Y, Xy — X, Y of the line and the normal Ly = X x Y of the plane

through the line and the origin. We will need the dual 3D-line L' = (Lg,L})
which has homogeneous and non-homogeneous part interchanged. The line pa-
rameters have to fulfill the Plicker constraint LiLs + LoLs + L3Lg = LZLO =
%LTE = 0 which is clear, as L = Y3, Xy — XY is orthogonal to Ly = X x Y.
All 6-vectors L # 0 fulfilling the Pliicker constraint represent a 3D line.

All links between two geometric elements are bilinear in their homogeneous
coordinates, an example being the line joining two points in 3D . Thus the
coordinates of new entities can be written in the form

o~ oy
T=A@B=BBa =A@ FL=B()
Thus the matrices A(a) and B(3) have entries being linear in the coordinates o
and . At the same time they are the Jacobians of ~.
We then may use error propagation or the propagation of covariances of linear
y = Az functions of  with covariance matrix 3,, leading to X, = AZ,, AT
to obtain rigorous expressions for the covariance matrices of constructed entities

%Y,
2,y = Al@)Bg5A" () + B(B)SaaBT (B)

in case of stochastic independence.
We need the line L as intersection of two planes A and B

L=ANB= (?)’;{ _gf‘)) (gs) =T(A)B=-TT(B)A

inducing the matrix TT(A) depending on the entries of the plane A. We also
need the incidence constraints for points x and lines 1 in 2D, for points X and
planes A in 3D and for two lines L and M in 3D:

x'1=0 X'A=0 L'™M=0 (1)

2.2 Projection of points and lines in homogeneous coordinates

Point projection. As explained in [4], the relation between a 3D point in
object space and its image point in the image plane can be written as

AT
XI =PX with P3><4 = BT (2)
CT



where X is the homogeneous coordinate vector of a point in object space, x' the
homogeneous coordinate vector representing its image point and P the 3 x 4-
matrix for point projection. Due to the homogeneity of P it only contains 11
independent elements. Its rows AT, BT and CT can be interpreted as homoge-
neous coordinates of the three coordinate planes x} =0, x5, =0 and x§ =0
intersecting in the projection center X, of the camera (cf. [4]). Analogously, the
columns of P can be interpreted as the images of the three points at infinity of
the three coordinate axes and of the origin.

Line projection. For line projection, it holds (c. f. [2])

u™\ [Bno)"\ /TT(B)C ~TT(C)B
I'=QLwith Q=[VT |=[(cnA)" [=[TT(C)A | = [ -TT(A)C | (3)
3x6 \wT (AnB)T TT(A)B ~-TT(B)A

where the 6 x 1 vector L contains the Pliicker coordinates of the straight line
dual to the line L and 1’ denotes the coordinates of the image of L. As shown in
[2], the rows of the 3 x 6 projection matrix Q for line projection represent the
intersections of the planes mentioned above. Therefore they can be interpreted as
the Pliicker coordinates of the three coordinate axes x) = x4 =0, x5 = x; =0
and x; = x5, =0.

Inversion. Inversion of the projection leads to projection rays L' for image
points x' and for projection planes A’ for image lines I’

L'=Q'xY A'=P"Y (4)
The expression for L' results from the incidence relation x''1' = 0 (cf. (1a)), for
all lines I’ = QL passing through x, leading to (x'' Q) L = L/'L = 0 using (1c).
The expression for A’ results from the incidence relation 1'' x' = 0 for all points

x' = PX on the line ', leading to (I''P) X = A’"X = 0 using (1b). Especially
each point X on the line L lies in the projecting plane A’, therefore it holds

1"PX = 0. (5)

2.3 Determination of Q from P.
For a given matrix P together with the covariance matrix Xgg of its elements
8= (AT,BT, CT)T we easily can derive the matrix Q = (U,V,W)T using (3).
By error propagation we see that the covariance matrix 3., of v = (U, V, W)T
is given by

Yy = MEBBMT
with the 18 x 12 matrix



In a similar manner we may now determine the uncertainty of the projecting
lines and planes in (4).

3 Estimation of the projection matrix P

There are several possibilities to determine the projection matrix P for points
from observations of points or straight lines in an image.

For the case that only points are observed, eq. (2) allows us to determine P
using the well known DLT algorithm (cf. [4], p. 71). If no points but only straight
lines are observed, we might use a similar algorithm based on eq. (3) to determine
the matrix Q for lines. Then we need to derive P from Q, which is possible but
of course not a very elegant method for determining P. Integrating point and
line observations would require a separate determination of P independently
estimated from observed points and lines and a fusion of the two projection
matrices, which, moreover, would require a minimum of 6 points and 6 lines.

We therefore follow the proposal in [4] and use (2) for points and (5) for lines,
as they both are linear in the unknown parameters of the projection matrix P.
It only requires at least six pints and lines, however, in an arbitrary mixture. We
here give an explicit derivation of the estimation process which not only gives
an algebraic solution but a statistically optimal one.

Observations of points. For each observed point x; = (ug,fug,w;)T, i =
1,...,I it holds (cf. (2))
u ATXl 1),2 BT)(z
— = and = =
w CTX,' ’U); CTX,'

S~

o

which leads to the two constraints u{C'X; — w}ATX; = 0 and v|C'X; —
w!BTX; = 0 which are dedicated to estimate the elements of P. In matrix
representation, these two constraints can be formulated as bilinear forms

g [(~OiXT 0 wWXTY o
aepp = (TR r k) B—e e ©)
C'™X; 0 -ATX;

. I = B t i i

Bi(8)x; ( 0 CTX; _BTXi> Xi =€ (7)
T T LT AT .
where the vector 8 = (A ,B ,C ) contains all unknown elements of P. Eq. (6)
will be used to estimate the 8, (7) will be used for determining the uncertainty
of the residuals e; by error propagation.
As each observed point x} yields 2 constraints to determine the 11 unknown

elements B, I > 6 observed points would be needed if only points are observed
in the image.



Observations of straight lines. For each observed straight linel; = (a’, b}, c;)T,
j=1,...,J eq. (5) is valid.

Thus, if X4,; and Xg ; are two points lying on the 3D line with image 1',
one yields the two constraints

I"PXa;=0 resp. ;X ;A+bX) B+¢X,,C=0 and

I"PXp; =0 resp. a;Xp;A+b;X; B+¢Xp,C=0

or in matrix representation as bilinear constraints

T T T
;)8 = 4 %as biXa; ciXa,;
! a;Xp; bXp ; ¢iXp,

T T T

X4 AX, BX,.C

D; (Bl = | 9 A )T = ©)
Xp ;A X} BXj, C

) B =e; resp. (8)

Again, (8) will be used to determine B, while (9) will be used for determining
the uncertainty of the residuals e; by error propagation.

We see that each observation of a straight line in an image yields 2 constraints
to determine P. Thus again, if only straight lines are observed, J > 6 lines are
needed.

Note that in the following entities concerning observations of points are indexed
with ¢ and entities concerning observations of straight lines are indexed with j.

Parameter estimation. Now we seek an optimal estimate for 8. Due to the
homogeneity of P we search for an optimal estimate just under the constraint
|B| = 1. Thus, we optimize

2=3e(8) D51, (8) eilB) + D" e (8) ZL, (B) ;(8)

under the constraint |3| = 1. In case the observations are normally distributed
this is the ML-estimate (under this model).
The solution can be achieved by iteratively solving

BUTISATEY) (Bi(BY) 2,18 (B))  Aulx)

-1
+3°6 @) (0,821, 0,(B)) )]+ AL
. _

(cf. [6]). Observe, this is the solution of an ordinary eigenvalue problem with a

non-symmetric matrix, as the left factor, e. g. AiT(ig(")) uses the fitted observa-

tions SE;("), whereas the right factor A;(x}) uses the observed values.



The covariance matrices of e; and e; are given by Bi(ﬂ("))zx;zg BiT(,H("))

and D,-(/B(”))Elm DiT(ﬂ(")), so that they have to use the previous estimate 8.

The procedure is initiated with 3., = 3¢,.;, = I and using the observed
values X and T; as initial values i;(o) and 7% for the fitted observations. This
leads in the first step to the classical algebraic solution (cf. [1], p. 332, p. 377)
and no approximate values are needed.

The estimated observations ﬁ;(") and

7
by (cf. [6])

needed in (10) can be calculated

%) = (I ~ 2B, (B) (BA(BY) BB (B)) Bi<ﬂ<">)) x; (1)
S (l ~%y,D,7(8) (D;(8*)) 2y, D,"(8)) Dj(ﬂ(”’)> I (12)

With the final weight matrix 3/, = Diag(Diag(X{.,), Diag(X} ) of the
contradictions e; and e; the covariance matrix

3y = Diag(Diag (2,1, ), Diag(Zyr:))
of the observations, the covariance matrix of the estimated values is given by

. T, ~ -~ T, 2 -1 "

+3°67®) (0,820, B) " ¢

The pseudo inverse MT can be determined exploiting the fact that B should
be the null-space of Mt. We obtain an estimate for the unknown variance fac-
tor 62 = /R with R = rk(¥ee) — 11 with the redundancy R and the
weighted sum of squared residuals of the constraints (2. The redundancy re-
sults form the fact that we effectively have rk(Xee) constraints which have to
determine 11 unknown independent parameters of P. Therefore the estimated
covariance matrix of the estimated parameters is given by

& o
2/3 =0 2/3

4 Examples

4.1 Synthetic data

The presented method was applied on a synthetical image, only using straight
lines as observations. The straight lines used connect all point pairs of a synthetic
cube. The cube has size 2 [m] and is centered at the origin, the projection center
is (10,—3,4)T [m] and therefore has a distance of approx. 11.2 [m]. The principal
distance is 500 [pel], the assumed accuracy for the observed lines is 1 [pel], which



Fig. 1. Synthetic test data. (a) Ideal observations of lines in an image of a synthetic
Cube. (b) Erroneous observations, assuming an accuracy of 1[pel] referring to the end
points.

refers to the two end points. The cube appears with a diameter of approx. 200
[pel], thus the viewing angle is approx. 23° and the measuring accuracy is approx.
1 : 200. The figure shows the image of the ideal cube and the image of the
erroneous lines. The estimated projection matrix, determined from 28 observed
lines, differs from the ideal one by 0.6 %, an accuracy which is to be expected.

4.2 Real data

The presented method to determine P was also applied on real data, again using
only observations of straight lines. The test object has the shape of an un-
symmetric T with a height of 12 cm and a width of 14.5 cm (cf. Fig. 4.2). Tt
is not very precise, so that object edges are not very sharp. Object information
was gained manually by measuring the lengths of the object edges, supposing
that the object edges are orthogonal. An image of the test object was taken (cf.
Fig. 4.2a) using a digital camera SONY XC77 CE with a CCD chip of size 750
X 560 pixel. From the image straight lines were extracted automatically using
the feature extraction software FEX (cf. [3]), leading to the results shown in Fig.
4.2b.

a) b) e

Fig. 2. Real test data. (a) Image of the test object. (b) Results of the feature extraction
with FEX.



With revised data (short and spurious lines were thrown out) the parameter
estimation delivered the estimate

0.00295953 —0.00320425 —0.00106391 0.564433
P = | 0.00397216 0.00257314 0.0003446 0.743515
0.00000259 0.00000141 —0.0000050 0.00246196

with the relative accuracies op,; / ﬁ,-j given in the following table:

(i.)] 1 | 2 | 3 | 4
1 0883 %] 0598 % | 1.711% | 0.116 %
2 || 0964 % | 1.492% | 9.504 % | 0.068 %
31| 3.013% | 8218 % | 1.393% | 0.049 %

The relative accuracies indicate that most elements of P are determined with
good precision, particularly in view of the fact that the object information we
used is not very precise and that the observed object edges are not very sharp.
Obviously, the relative accuracy of some of the elements of P is inferior to the
others. This is caused by the special geometry of the view in this example and
not by the estimation method applied.

5 Conclusion

The examples demonstrate the feasibility of the presented method to estimate
the projection matrix P for points. The method is practical, as it needs no
approximate values for the unknown parameters and statistically optimal, as it
leads to the maximum likelihood estimate. Therefore we think that it could be
frequently used in computer vision and photogrammetry.
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