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ABSTRACT:

The paper describes an approach to reconstructing agricultural land-use areas from remotely sensed images using
digital polygon maps as prior information. Our goal is to update the geometry and class label of agricultural parcels.
The approach integrates an estimation of the vector polygons and the derivation of object (i.e. land-use unit) related
features for the determination of the object classes.

Both a feature edge model for the transition between two land-use units and the assumption of homogeneity are used
to reconstruct the land-use units in a least squares approach. The theoretical concept and its technical realization are
described, first results are presented and a critical evaluation of the results with a discussion of possible extensions is
given.

KURZFASSUNG:

Der Aufsatz beschreibt einen Ansatz zur Rekonstruktion landwirtschaftlich genutzter Gebiete aus Fernerkundungs-
daten mit digitalen Polygonkarten als Vorinformation. Unser Ziel ist es, die Geometrie und Klasse landwirtschaftlicher
Parzellen zu aktualisieren. Der Ansatz integriert eine Schatzung der Vektorpolygone mit der Herleitung objektbezo-
gener (d.h. auf die Landnutzungseinheit bezogener) Merkamle zur Bestimmung der Objektklassen.

Sowohl ein Merkmalskantenmodell fir den I"Jbergang zwischen zwei Landnutzungseinheiten und die Annahme der
Homogenitat werden benutzt um die Landnutzungseinheiten in einem kleinste-Quadrate-Ansatz zu rekonstruieren.
Das theoretische Konzept und seine technische Realisierung werden beschrieben, erste Ergebnisse werden vorgestellt

und eine kritische Bewertung der Ergebnisse mit einer Diskussion moglicher Erweiterungen gegeben.

1 INTRODUCTION

Automation in photogrammetry has led to an increasing
integration of geometric and thematic aspects. Thus au-
tomatic determination of object geometry and automa-
tion of interpretation have to be linked conceptually as
well as technically. Our aim is to classify images of
agricultural areas. Many approaches perform tasks like
surface reconstruction and point determination in object
space. Simultaneously they derive the reflectance prop-
erties of the object surface, e.g. to produce orthophotos
( Ebner et al. 1987, Fua and Leclerc 1993, Heipke 1992,
Helava 1988, Wrobel 1987). Also in classification pixel-
based approaches are more and more being replaced by
object-based approaches in order to link geometric and
thematic aspects and to overcome some of the deficiencies
of pixel based approaches (Janssen and van Amsterdam
1991, Johnsson and Kanonier 1991, Lemmens 1988, Lem-
mens 1992, Mason et al. 1988):

e During classification multitemporal and multisensoral
data as well as data from other sources (e. g. maps,
knowledge) have to be fused for several reasons, e.
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g. the problem with cloud coverage or the phenol-
ogy of vegetation. The separability of classes can be
increased by making use of domain knowledge which
is related to objects, not to pixels etc. The pixel is
not a temporarely stable reference for the fusion of
these data. This is especially true for the phenology
of vegetation.

o Purely pixelbased approaches cannot cope with the
mixed pixel problem. Object boundaries need to be
known or estimated to solve this problem.

o Objects rather than pixels are classified, leading to a
direct link to geographic information systems (GIS)
(cf. Lemmens 1988).

As a prerequisite for an object-based classification object
geometry and location must be known. Janssen et al. 1990
take the object geometry from a GIS. In most cases, how-
ever, actual land-use boundaries are not available. Due
to the high complexity of natural scenes, all information
sources must be used for the recovery of the geometry, in-
cluding images, map data and knowledge. Schneider 1992
takes advantage of the straightness of field-boundaries to
improve on the mixed-pixel problem. Pan and Forstner
1994 and Janssen et al. 1992 incorporate knowledge about
the field structure. Lemmens 1988 states ways to check
initial boundaries from a vector-format-GIS. He simulta-
neously incorporates thematic information from the GIS,



both to predict the type of the boundary and to search for
possible new boundaries.

Our approach uses vector polygons, e.g. legal boundaries,
out of date land-use boundaries or the result of a segmen-
tation (cf. Pan and Forstner 1994) as prior information.

In the next section the underlying model is described.
Its technical realization is outlined in section 3 (cf. also
Locherbach 1992). Details of the implementation are not
described here. First results are presented in section 4. Fi-
nally in section 5 the advantages, drawbacks and possible
extensions of the procedure are discussed.
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Figure 1: Map-generated hypotheses of land-use units
(from Forstner 1991)

2 A MODEL FOR FUSING RASTER AND VECTOR-
DATA

In this section the assumptions made by the underlying

model are described (cf. fig. 1).

o The object-model contains 3D polygons, representing

the geometry of the land-use units. (The terms land-
use unit, object, field and area here are taken as syn-
onyms.)
The radiometric part consists of one feature vector
per object, e.g. the field mean, within-field variance,
or a field histogram (e.g. in an ERS-1 scene). This
represents the object class.

o The geometry of the image model is represented by
2D polygons. The radiometric part contains the as-
sumption of homogeneous features within a given ob-
ject and a feature edge model describing the transi-
tion between two neighboring fields along the land-use
boundary.

The feature edge model is matched to the observed edge
in the images by least-squares matching. In other words

a global optimization is applied to simultaneously esti-
mate the unknown parameters from a set of multitemporal
and multisensoral and hence multiresolution images. Un-
known parameters describe object geometry and radiome-
try, global transformation and type and form of the feature
edge.

Due to discrepancies between the model and reality, a
pre-segmentation and a robust estimation are necessary
to cope with isolated objects or inhomogeneous regions.

Generalizations of this model are possible and will be dis-
cussed later.

use map-polygons as initial values for

1) |field boundaries

use images for initial values for field-
2) |related features

partition the images into point, edge,
and field regions according to the
3) |polygon-map

4) |carry out pre-segmentation |

5) ‘estimate nodes and object features ‘

6) |classify objects |

7) ‘delete edges (merge fields) ‘

Figure 2: flow-chart

3 TECHNICAL REALIZATION

In this section the technical realization is described. A gen-
eral description of the algorithm (cf. fig 2) is followed by
a more detailed description of the observation equations.

3.1 Overall Algorithm

1. Polygons are given as initial values for the geometry.
Either map polygons or polygons obtained from a seg-
mentation (Pan and Férstner 1994) can be used.

2. Images yield initial values for object features.

3. A partitioning of the images into point, boundary and
field regions is done by using a distance transforma-
tion of the boundaries and a connected component
algorithm for the fields (cf. also Fig. 4).

Thus each pixel can be identified as belonging to a
certain field or to a point or to a boundary surround-
ing a field. This information is needed in the following
two steps.

4. A local pre-segmentation is carried out within each
field region. This step serves to determine initial val-
ues for the features, to determine a weight for each



observation and eventually to split a field. After this
step the topology of the polygons remains fixed.

5. In the adjustment process geometry and radiometry

of the objects are estimated. Different types of obser-
vation equations are used:
We use a feature edge model for pixels within
boundary-regions to estimate geometry and radio-
metry. We estimate radiometry from pixels within
a field region and we use observation equations to in-
clude prior information.

6. Objects can now be classified (Janssen and van Ams-
terdam 1991).

7. In a final step objects can be merged, if the same
class for two neighboring objects was estimated in the
classification step or a low probability was found for
an edge in the estimation step.

This paper deals with the first 5 steps, i.e. the reconstruc-
tion of the geometry and the derivation of field-related
features. Due to the highly nonlinear observation equa-
tions the estimation process must be done iteratively. The
partitioning has to be repeated in each step of the iter-
ation. The observation equations for the estimation are
now described.

3.2 Observation Equations

The following notation is used:

set of images I = [1,...,1,...,1] (1)
set of channels K = [1,...)k,..., K]
set of pixels J = [1,...,5,...,J]
set of nodes N = [1,...,n,...,N]
set of edges E = [1,...,e,.., E]
set of areas A = [1,...,a,...,A]

We thus have the observed intensity values g;;x to estimate
the unknown parameters, i. e.

o the object coordinates of the nodes P, = (X,Y, Z)n
of the polygons

e the global transformation parameters p; of image 1
o the object-related feature vector miqx of area a

o the parameters g.;x describing type and form of the
edge e

We use different observation equations

o for pixels g;;. 1 close to a boundary e
o for pixels g;;,x within an area a

e for prior information.

3.2.1 Observation Equation for Boundaries

The boundary 7o, ne has been transformed to the pixel
system (r,c), cf. Fig. 3. A y-axis perpendicular to the
boundary then is positioned through each observed pixel
g;. The edge-model f = f(y) is matched to the signal edge
¢ = g¢; by a radiometric and a geometric transformation
Tr,Ta (cf. Forstner 1992, Pertl 1984).

giser = Tr(mia,k, mias; f(Ta(Pay Puypisgen)) | (2)

The radiometric transformation consists of a linear shift
and scale described by the features mia,x and miqx. ar
and a; denote the areas on the right- and left-hand sides
of the boundary.

The geometric transformation is obtained by writing the
y-coordinate as a function of the object coordinates P,
and P,, the global transformation paramerters p; and the
parameters g..

The feature edge currently is modelled by a normalized
and smooth function

1

f(‘y)zm

3)

This model has proved to be useful. However, it will be
shown also in analyzing the examples that also other types
of models should be included, e. g. aline model (cf. Malik
and Perona 1990). The type of model will then have to be
estimated in advance.

The observation equation 2 has to be linearized.

G
C
NN Yy
N
T 'j \ T
9j

Figure 3: For every observed intensity value g; a y-axis is
positioned perpendicular to the line ngng

3.2.2 Observation Equation for Homogeneous Areas

The derivation of equation (2) is based on the presence of
an edge. However, only pixels within a certain distance of
the edge are influenced by the reflectance of the neighbour-
ing field and may thus be used for estimating the position



of the edge using equation (2). For pixels within an area
a we use as observation equation

\E(gijak) = mgy, + dmaik (4)

since according to our model the area a is supposed to
have a homogeneous feature mq;x in channel k of image 1.

3.2.3 Prior Information

Prior information can be used in addition to the observed
intensity values of the images. Singularities may easily
occur if the edges in the map are not visible in the image,
the geometry of the polygons is unfavourable, points are
not well defined by intersecting edges, etc.

The following prior information may be used if available:
For nodes:

| E(Py) = P + dP,

For transformation parameters:

‘E(pz') = p{ + dpi

The strength of this prior information may be varied by
means of a priori weights w, — 0 to w, — oo respectively
w; — 0 to w; — o0, representing weak or strong prior
information (cf. Mikhail and Ackermann 1976).

4 EXAMPLES

This section gives some first results of the approach to-
gether with with an evaluation of the examples. Conclu-
sions drawn for future work are given in the next section.
The examples are organized as follows: Example 1 again
shows the principle of the algorithm. Examples 2 through
7 are simulated examples. The purpose of these synthetic
data is to allow the analysis of an isolated and exagger-
ated effect under well-defined conditions. Finally a test on
real data is given where we have to cope with a mixture
of these and other effects.

e Example 1 (cf. Fig. 4) shows the principle of the al-
gorithm. Vector polygons are given as initial values
for the geometry (upper left image). They are super-
imposed on each image (lower left image). The image
is partitioned into regions around nodes, boundaries
and inside a field (upper right image). The normal
equations are calculated according to the partition-
ing. Partitioning and solving the normal equations
is done iteratively, so that finally the new polygon
together with transformation parameters and feature
vectors is estimated (lower right images).

e Example 2 and 3 (cf. Fig. 5 and 6) relate to the
topology of the initial polygon. In the left-hand image
of figure 5 the initial polygon is superimposed on the
image. From the partitioning (middle image) it can be
seen that the boundary in the middle contains three
internal points. As a consequence the boundary can
be fitted to the image data compared to a joint (right
image). In figure 6 the initial boundary from the map

Figure 4: Principle of the algorithm: the initial poly-
gon (upper left) is transformed to each image (lower left);
the image is partitioned into regions (upper right); dif-
ferent observation equations are used for pixels within a
boundary- or a field-region. After an iteration the adjusted
polygon fits the image data (lower right)

Figure 5: Provided that the topology of the initial polygon
is complete, the initial boundary is fitted to the image edge
compared to a joint

Figure 6: In the case of incomplete topology, the initial
boundary cannot be merged with the image edge. The
remaining boundaries, however, are adjusted correctly



does not contain these internal points, hence it cannot
be fitted to the image. The initial boundary from
the map then is retained. The remaining boundaries,
however, can be adjusted correctly.

o

Figure 7: The topology of the initial polygon is incom-
plete. Nevertheless the existing part of the polygon can
be matched to the image

Figure 9: The edge model does not fit the line in the image

The imaging-geometry is given in Table 1. The ro-
tation angles were set to 0, the flight direction was
in Y-direction. Table 2 shows the convergency of the
iteration. Observe the fast convergency. The low em-
pirical accuracy results from the large pixelsize.

No. of images: 3
¢ = 150mm

Pixelsize: 100 pm
Fleight-height: 1500 m
Baseline: 1000 m
Extension of the terrain: 500 m
No. of polygon-nodes: 76

Table 1: Tmaging geometry for three images.

]

Figure 8: The topology of the initial polygon again is in-
complete. However, the differences of the intensity values
are more extreme. The algorithm cannot cope with these
conditions without a local pre-segmentation

e In example 4 and 5 (cf. Fig. 7 and 8) a boundary
that can be seen in the image is not contained in the
initial map. Nevertheless the existing part of the poly-
gon in figure 7 can be matched to the image. In the
example of figure 8 this is not the case. The reason is
that the intensity value of the lower left area lies be-
tween the two different intensity values of the larger
area. In this case the model assumption of homogene-
ity within each area is too severely violated and a local
pre-segmentation is necessary.

¢ Example 6 (Fig. 9) shows two fields of the same inten-
sity value that are separated by a feature line. How-
ever, our algorithm currently contains only a feature
edge model and cannot cope with the appearance of a
line. The nodes of the respective boundary are unde-
fined in row direction. The remaining boundaries are
merged correctly.

o In example 7 (cf. Fig. 10) the 3D-shape was recon-
structed from three images simulating a flight with
an aerial camera, thus using perspective projection.

Iteration | ux [m] py [m] pz [m] 5o
0 0.00 0.00 2.35
1 0.18 0.08 1.25 32.6
2 0.17 0.09 0.67 17.6
3 0.16 0.07 0.39 10.9
4 0.16 0.07 0.29 7.6
5 0.16 0.07 0.29 6.7
6 0.16 0.07 0.28 6.5

Table 2: Accuracy of the result in each iteration with three
images.

¢ Example 8 (cf. Fig. 11 and 12) shows a test on real

image data. The “map data” are still simulated data.
Only the area inside the surrounding polygon was ad-
justed. Figure 11 shows the start and figure 12 shows
the result of the adjustment which took eight itera-
tions. Boundaries that are rotated and even bound-
aries with a relatively strong parallel shift are adjusted
correctly. Problems occur especially for the paths in
the map. In the upper left area there are two crossing
paths. In the image they appear as a line or even as
a composition of two lines. Here the algorithm yields
unsatisfactory results, destroying the parallelism of
the two boundaries. In the lower left area the map
contains some paths that are not visible in the image.
Here the initial geometry from the map is retained,
due to prior information that is stronger than the ob-
servations. This is in accordance to our intention of
preserving the old map information if no information
from the observed image data is available. This also
holds for two long within-field-boundaries, one in the
light field in the upper part of the image, the other in
the dark field in the middle right area. Due to miss-
ing image information the initial boundary is retained.
Some problems still occur for short edges where the
intensity profile along the boundary varies.



Figure 10: Three images of a valley were simulted to test
the reconstruction of the 3D-shape

Figure 11: shows a test on real data

5 CONCLUSIONS AND FUTURE WORK

Many authors have stated the necessity for an interaction
between GIS and image data. The GIS serves as additional
information source for analyzing the remote sensing data.
On the other hand the extracted information can be fed
back into the GIS. Here a possible approach was shown to
update the geometry of a vector-format GIS. Conceptu-
ally the approach links geometric and thematic aspects as
it simultaneously estimates object-related feature vectors
to classify the objects. The objects are used as references
for the fusion of map and multitemporal and multisenso-

Figure 12: shows the estimated polygons

ral image data. The approach can be incorporated in a
broader context for image analysis (cf. Fuchs et al. 1993).
There are several advantages of the approach:

Closed polygons are derived.

The approach helps to handle the mixed-pixel prob-
lem in remote sensing. A distinction of pure and
mixed (=boundary) pixels is possible. The transition
between two classes is modeled. By projecting the
map into the images a resampling is avoided, which is
useful for classification.

Map data are used as a reliable information source in
image analysis.

The approach is both area- and edge-based.

If the image data meet the assumptions from the
model, the convergence behaves favourable.

The unknown parameters, object coordinates and
transformation parameters are also treated as obser-
vations with variable a priori weights. This unified
approach for the adjustment has turned out to be use-
ful: In case of missing or bad image information the
geometry from the map is preserved and singularities
are avoided.

By varying e.g. the a priori weights either X,Y- or
Z-coordinates or orientation parameters or a combi-
nation can be estimated.

From analysing the examples several conclusions can be
drawn for future work:

o A line model must be integrated or possibly a com-

bination of different types of lines and edges, e.g. to
handle ditches and paths in images of agricultural ar-
eas.

e Constraints can be included such as ”paths have par-

allel boundaries”.



e The type of feature edge should be predicted e.g. by
investigating the feature transition for each boundary
in advance. Possibly a change of the kind of tran-
sition along the boundary (e.g. a shading) must be
taken into account. The type of edge also can be pre-
dicted from the thematic information from the map
(cf. Lemmens 1988).

o A shading of the features within a field can also be
modeled, e.g. by means of a triangulation.

e A robust estimation should be included by varying
weights for the observations depending on the local
pre-segmentation. The pre-segmentation should be
one of the main issues to be investigated.

o Depending on the quality of the initial values the al-
gorithm should start at a higher level of a pyramid.

o A digital terrain model can be included. In this case
the number of internal points in the boundaries must
be increased, depending on the undulation of the ter-
rain surface. A problem of matching the nodes in the
different images does not exist, because the nodes are
given in object space.

o The approach could be applied to other problems than
analysing natural scenes provided that the objects are
composed of homogeneous areas.
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