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1 Motivation

One of the central tasks in Photogrammetry and Computer Vision is the localization
and reconstruction of objects in the scene. Localization aims at determining the pose,
1. e. the position and the orientation of an object. It assumes the form of the object
to be known or at least to be known up to some structural or numerical parameters
and the mutual relation between the reference frames, i. e. coordinate systems of the
object and the cameras to be determined. Reconstruction, on the other hand aims at
determining the form possibly also the structure of the object. The form description
need not, but may be related to a e. g. object centred, reference coordinate system.
In all cases the central tasks is to match the description of one or several images to the
description of the images or objects, i.e. to establish correspondence.

1.1 Notions

In all cases automating localization and reconstruction requires to establish the cor-
respondence or match between several images or between one or several images and a
model. We therefore may distinguish several cases:

1. Image Matching

aims at establishing the relation between two images. Examples are the classical
point transfer used in relative orientation (cf. SCHICKLER chap. 5) or - applied to
several image points - in image sequences or bundle blocks. Image matching also
is applied when features, others than points, e.g. lines or segments are transferred
from one image to an other. When transferred manually these usually are features
with a label or an interpretation attached to it, as the gable of a roof (line) or
a group of trees (segment). It is essential that no explicit reference to a scene
model is required but only the appearance of the scene is needed for establishing
correspondence.

2. Object Localization

aims at establishing the relation between an image or a set of images and a given
object. Examples are the localization of fiducial marks, of numbers in a map, of
targeted points or natural points in an aerial image that means localization of
objects for which an explicit model is available such as a canal cover or a house
roof (cf. SCHICKLER chap. 5) . The location may be the position in the im-
age (translation), possibly rotation and scale or the pose in 3D (translation and
rotation). There are close relations between image matching and object localiza-
tion, especially if the expected appearance of the object, i. e. the projection of
the object is used for its localization within the image. It is typical for object
location that only a few datum parameters are of primary interests, though some
form parameters may have to be determined in order to establish a good match
between the object and the image(s).

3. Object Reconstruction
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certainly is the most demanding task in this context as a relation between the
image(s) and a parametric or generic (structural) model of the object has to
be established. Examples are the mensuration of Digital Elevation Models (cf.
KRZYSTEK chap. 7) including the detection and localization of breaklines or the
extraction of man made objects such as buildings, bridges or roads, which in a
first instance may be represented by polyhedra and conics (cf. BRAUN chap.
10) . The reconstruction may include the recovery of physical properties such
as the albedo or parameters of a model for the reflectance function. In all cases
it is essential that rich geometric, physical, possibly structural information is
extracted, however without explicit reference to the meaning of the parts of the
objects, which would lead to an image interpretation. This would require a much
deeper modelling and up to now only is realised in prototypes.

1.2 Formalisation

We may formalise the different tasks in order to provide the basis for the more
technical description of their solutions.

Fig. 1 shows the standard set up: The surface O of the object is projected into the
images I',I?,.... These projections formally are mappings

TF: 0 = I*. (1)
Object reconstruction is the process of inverting this mapping process:

(I 1%....)— O (2)

which of course can only yield an estimate O for the objects surface, however
including its geometry and its reflectance properties. Due to the projections T, the
large number of unknown parameters and of course due to the imperfect measurements
the problem is underconstrained.

In case of two images we obtain the diagram of Fig. 2 which suggests to directly
relate the images I' and I? by a mapping T¢ : I' — I

This may be derived from

¢ =T717 =T)(T;) ™ (3)

in case the projection T} can be inverted.

No explicit reference to the object O is visible any more. However it is hidden in
the usually much higher complexity of T2, when compared with T*:

E. g. if TF are the usual perspective relations and if the objects surface is nearly
flat and diffuse, then T may be represented by a smooth vector field which in the
normal case of a stereo image pair even only consist of the locally varying x-parallaxes.
In special cases, e. g. locally flat terrain, the parallax field, moreover, may very well
be approximated by a constant or at least a linear function which is the justification
for using the simple approaches of image matching.

However, slight height variations may lead to (local) occlusions making the parallax
field T discontinuous, thus much more complicated than the surface itself (cf. Fig. 3)

3
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object surface

TH T T8 T8

Figure 1: illustrates the setup if image matching or surface reconstruction for two
perspective images. The reconstruction of the surface is either possible by a direct so-
lution of the parameters describing the surface’s geometry and reflectance properties,
or by forward intersection after having established correspondencies between homolo-
geous image features and interpolation (taken from Wrobel 1987). This would require
a much deeper modelling and up to now is only realised in prototypes.
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Figure 2: illustrates the general setup for object reconstruction and image matching.
The object is mapped to I' and I? via the transformations 7! and T? resp. In case
enough images I* are available the reconstruction of the whole imaging process is
possible in principle. In case the reflectance properties of the surface O can be derived
from one image, the compound transformation 7% only contains geometric parameters
which may be derived using image matching techniques.

In both cases — reconstruction and image matching — the estimation may be based
on higher level descriptions D* of the images I* or the surface.
Thus the general object reconstruction procedure formally looks like

(I 1%....)— (D', D? ..)—= O (4)

whereas the image matching procedures may look like:

(I',1*) = (D', D*) = TY. (5)

As the second image may be replaced by an object model O, object localization
formally reads as

(I",0) — (D*,D%) — T}, (6)

In case the descriptions D are iconic, i. e. in raster format D = I, the reconstruction

and the matching algorithms are termed area based, in case D is composed of lists of
features possibly including their relations, the algorithms are feature based.

The goal of image matching may be described in two ways:

1. Establish the correspondence between the primitives (features) P; and P; of the
two descriptions Dy = (P, R1) and Dy = (P, Ry) of the two images I, and .
The relations R; and R; may be used to restrict the correspondence or may not
be available.

2. Establish the geometric transformation T} between the two images.

The solutions of 1. and 2. are not completely equivalent: The solution to 1. not
automatically implies the mapping T2 as an interpolation scheme may not be defined.
But the solution to 1. may be derived from the solution of 2. in case the mapping T2
is one-to-one and known for the complete image area.

In the following we first want to discuss area based matching, as here the mapping
function at least for a small window is determined, thus following the second type of
approach. Feature based methods follow both approaches.
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Figure 3: shows a one-dimensional profile observed from two line cameras using or-
thogonal projection: a) horizontal, b) sloped, ¢) smooth and d) piecewise smooth with
occlusions.

1.3 Problem areas

There are a number of subproblems to be solved in image matching. Up to now they
have no commonly accepted solution which is general enough. But for several well
defined subtasks solution strategies are known.

1. Similarity Measure

The similarity of features within the descriptions has to be measured. The sim-
ilarity measure has to take into account the uncertainty of the features, the
projection T* and the type of the object. There exist proposals for measuring
the similarity of intensities (cf. Hannah 1974, Witkin et al. 1987, Huang 1981),
points (cf. Nagel and Enkelmann 1981, Forstner 1986), straight line segments
(cf. Baker and Binford 1982, Benard 1983, Grimson 1981, Ohta and Kanade
1987), and relational descriptions (cf. Boyer and Kak 1988, Price 1985, Vossel-
man 1992). In all cases they are embedded in a statistical framework. With the
exception of relational descriptions, simple means for deriving the influence of
the sensor noise on the similarity measure and for evaluating the sensitivity with
respect to model errors are available.

2. Regularization

All matching problems are ill-posed, that is they are underconstrained, have no
unique solution or have an instable solution. Therefore they require regulariza-
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tion (cf. Terzopoulos 1986b). E. g. least squares estimation is a regularization
method for in general underconstrained problems which have no unique solution.
In image matching the object model may be useful for regularization (cf. Rosen-
holm 1987), e. g. when requiring the resultant parallax field to be smooth due to
the assumption of a smooth object surface. Other regularization techniques are
parametric or structural constraints as the assumption of the object to be planar
or polyhedral. The problem with regularization, as with all types of imposed con-
straints, is the proper link with the similarity measure. Generally speaking, the
matching may be treated as an optimization problem minimizing a cost function:

C = adCd + amCm (7)

where the total costs C' are a weighted sum of the costs Cy due to dissimilarity and
C,, due to mismatch with the model structure. The relation a;/«,, determines
whether the solution is closer to the data or closer to the model. It may be
determined by introducing a/a,, as additional unknown, which under certain
conditions, is equivalent to variance component estimation (cf. Forstner 1991,
Weidner 1994).

3. Algorithmic Complexity

In most matching and reconstruction problems the number of unknowns and
therefore the search space is huge. Only under very restricted conditions the
problem can be formulated as an estimation task with a few parameters. Gen-
erally the number of unknown parameters is in the order of 10* — 107. In case
of discrete parameters, e. g. when matching features, search methods have to
be applied with search spaces which generally are at least in the order of again
10* — 107 but may easily grow as fast as n! with n being the number of features.

Thus in all cases the algorithmic complexity has to be taken care of. Any type
of a priori knowledge therefore may be included into the algorithmic solution.
Strong constraints, e. g. like the epipolar geometry (cf. Kreiling 1976) of course
are of highest value. But also weak constraints as approximate values, average
depth, conditional probabilities (close to a house should be a road) etc. may
significantly reduce the expected computing times. In case these constraints can
be evaluated they may be at the same time used for regularization .

4. Approximate Values.

The optimization function C' from eq. 7 is highly irregular with many local
optima. This requires specific strategies for finding the global optimum in order
to cope with far off approximate values. Scale Space techniques (cf. Witkin et
al. 1987), e.g using image pyramids are powerful for solving this problem: They
follow a coarse-to-fine strategy, also known from the densification of geodetic
networks. In our context the strategies which follow this paradigm are: multigrid
methods (cf. Terzopoulos 1986a), graduated convexity algorithms (cf. Blake and
Zisserman 1987) and the use of image pyramids (cf. Ackermann and Hahn 1991),
which is the most transparent one.
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Figure 4: shows the principle of image matching: The image I is warped such that the
intensities best fit to 7;. A point P! may then be transferred to P? using the estimated
geometric transformation T}.

We will touch all these aspects in the following sections. Section 2 discusses ap-
proaches for area based image matching, especially cross correlation (sect. 2.1) and
least squares matching (sect. 2.2). Some feature based matching approaches are pre-
sented in section 3, namely pose clustering (sect. 3.1), string matching (sect. 3.3), and
relational matching (sect. 3.4).

2 Area Based Matching

Area based image matching starts from two descriptions Dy and D, which are identical
to the images or which are pixelwise (pointwise) functions I, = f(I;) and I, = f(I,)
of the images, thus I; and I, are images themselves. In both cases the images may be
vector valued, e. g. color images. In the following we will restrict the discussion to
scalar valued intensity images.

The idea of area based matching is to shift and possibly warp one of the images

such that its intensities best fit to the intensities of the other image:
mj@x(similarity(ll,T(I2))) —

(8)
(9)

~, R,

mTin(distance([l, T(1%)) —

The best fit can be achieved using either a similarity or a distance measure.
In case of only one channel gx(z;) (k = 1,2, z; = (14, ¢;)) per image k, we may write
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Figure 5: shows the assumed generation process: The original image f is observed
leading to a noisy version g; on one hand and is warped, pointwise transformed and
observed independently leading to g5 on the other hand.

the following model (¢’ = g1, 9" = g2, etc.):

g(z) = [flz)+n'(z) (10)
g"() = h(f(zispa);pr) +n"(2) (11)

with the parametric geometric transformation
Te = f: R? = R? (12)

depending on the geometric parameters pg and the intensity transformation
T[ =h:R—1R (13)

depending on the radiometric parameters py.

The model contains the following components (cf. fig. 5):
f(z) = f(ri,e;) the ideal image

g'(z}) = gi(r,¢) the first image
n'(z) = mni(rie) its noise
"zl g1(pi,q;) the second image
na(

N
~ T
n
N—
Il

(2l = Pi,qi) its noise

Ta = f a geometric transformation from the (r, ¢)-coordinate system of
G to the (p, ¢)-coordinate system of go

PG the parameters of T

17 = h an intensity transformation,
in general it relates the values of I to I,

pr the paramters of 17

There exist quite some variations how to setup and handle this problem, depending
on T', on the chosen similarity measure and on the algorithmic solution:

1. The mapping function Ty

implicitely refers to the object model, specifically the type of the surface. Ex-
amples for the geometric transformation and its implicit assumption about the
surface, related to the normal setup of a stereo model are (cf. Fig. 4)
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translation (horizontal plane)

translation and rotation

translation, rotation and scale

affinity (locally planar surface)

projectivity (globally planar)

smooth (smooth surface without occlusions)

piecewise smooth (piecewise smooth, possibly with occlusions)

Translation is used for cross correlation e. g. for point transfer on surfaces which

are flat enough, affinity is used for least squares matching, e. g. for point transfer

on locally smooth surfaces and - the most general model - piecewise smooth T
is used in the "multipoint matching” procedure of Rosenholm 1987 for matching

SPOT images, where T is parametrically represented by finite elements.

2. The

similarity measure

has to measure how well the two images match with each other. This usually
is based on the normalized cross correlation or on a function of the intensity

differences of the values themselves, actually measuring the distance between the
images. The following measures are frequently used

sum of products (mixed 2nd moments)

sum of products, reduces by the mean (covariance)
sum of squared differences (least squares, Ly-norm)
sum of absolute differences (L;-norm)

normalized cross correlation

All can be shown to be the optimum for a different given radiometric and noise

model.

3. The

algorithmic solutions

complete search
sequential search
heuristic search
iterative least squares
simplex algorithms

dynamic programming

highly depend on the mapping function and the similarity measure and reflect
the a priori knowledge.

The lists are by no way complete. Many, but not all combinations are meaningful

- reveiling the wide field to be covered.

We will representatively discuss some of these techniques in the further sections.

10
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Figure 6: shows the principle of cross correlation.

2.1 Cross Correlation

Cross Correlation is a powerful technique to get the correspondence between digital
images (cf. Jahne 1989). It is based on two assumptions:

1. the two images geometrically differ only due to translation.
2. the two images radiometrically differ only due to brightness and contrast

Thus the geometric transformation

e f0) = (0) () u

only contains the two unknown shift parameters pg = (u,v)’. The radiometric trans-

formation

T, :h(f) = a+bf (15)
is linear with the parameters pr = (a,b)”. The principle is illustrated in Fig. 6.
An initial estimate ﬁ(GO) = (4, 'ﬁ)OT may be obtained from
maXu,v 1)12(‘“, ‘l)) - (&a ﬁ)(O) (16)
with
Ogigs (U, V)
prz(u,v) =
0 (U, v)0,
1 m 1 m m
0-9192(uav> e [Zgl(rl u, ¢ — 'U).QQ(TZ'?CZ') _Zgl('rz u,C; — 'U)ZQQ(Tiaci)
m—1 |4 m - i=1

s L
N
=
—~
3

I

=

O

I

>4
S—

I
3=
z.
A
—

N

=
N
3

I

=

O

I

<
S—
N——
]
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P A
/

Figure 7: illustrates a hierarchical coarse-to-fine approach for image matching. The
result of the match in each level of the image pyramid is used as approximate value for
the match in the next lower level.

2
. 1| & 1 Zm
2 2
9% T o _1 [ZZ.:I 9alris i) = m (izl g2(ri’0i)> ]

The estimate is independent on differences in brightness and contrast due to the
normalization with respect to mean and standard deviation. The estimation process
usually exists of a spiral type of search starting from an approximation value for the
shift, stopping in case a relative maximum of p;; is found.

In case the approximation values are very coarse, a complete search in a search
window may be performed. However it is better to perform the correlation using a
coarse to fine strategy. This is based on an image pyramid (cf. WEIDNER chap. 2) of
the two images I' and I? (cf. Fig. 7). The correlation starts at the top of the pyramid
which may consist of two small windows of 10 x 10 to 40 x 40 pixels, say. A window in
the left image is selected and searched for in the right image. The estimated positions
are transferred into the next lower level. At this level the transferred window in the
left image is then searched for in the right image. This procedure is repeated until the
lowest level of the pyramid is reached. In all cases only a small search area is necessary,
making this coarse to fine strategy very fast (cf. Hannah 1974).

The estimate (4, ) from eq. (17) is integer valued. This is sufficient for the
intermediate steps in the hierarchy and in case no high precision is aimed at. Usually
the precision then is governed by the rounding error being approximately 1/3[pel].

A subpixel estimate can be obtained by approximating the surface of the two di-
mensional correlation function pi(u,v) in the vicinity of (4, ) by a second order
polynomial and determining its local maximum.

This leads to the final estimate

A A -1
(i, 9)" = (i1, )07 = [Hp |apyo] Vo lano (18)
with

12
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pTT [07'0
Hp |(11,1>)(0) = ( Por Pec ) |(a,a)(0) (19)
Pr
Vo oo = ( ) ) | (3,5)(® (20)
and e. g.
s 1 +1 0 -1
r
+1 0 1
-1 2 -1
62 1
Prr = TSP = -2 4 =2 *p (22)
or? 4 1 92 1

(cf. WEIDNER chap. 2) .
The precision of this estimate is given by its covariance matrix

U 1 1-— P12 -1
D4 )= S [ o] e (23)

m P12

with
m  the number of pixels involved in the correlation
p12  the similarity of the two windows at (i, )
Hp the roughness of the texture of the signal,
a high value of Hp leads to a small covariance matrix,
in case the texture within the window shows an orientation
this will reflect a higher uncertainty of the estimate in that direction.
Az the pixel size, assumed to be identical in row and column direction.
Eq. (23) reveils that merely evaluating the correlation coefficient is not sufficient.
Also the noise variance o2 of the two images can be estimated in case 0, ~ o,
and the contrast of both images does not differ too much (a ~ 1) :

&2 = 03(1 = pra) (24)
where the mean variation of ¢ is
1
7= Lo a2 (29

Discussion:

1. Cross Correlation can be shown to be optimal for estimating a shift between two
signals provided that the noise is white, i. e. the intensities are independent ran-
dom variables with the same standard deviation. Otherwise a withening process
has to be performed which, in case of images, where the intensity is proportional
to the number of received photons, leads to a squareroot point function.

13
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2. If the signal is homogeneous, i.e. with constant variance o, (u) = 0,,, normal-
ization with o,,,0, can be omitted, reducing the estimate for maximizing the
covariance oy, 4, (u,v).

3. If, in addition to the variance being constant, the mean of the signal can be
assumed to be zero, only the sum of the products 3" ¢g1(r; — u, ¢; — v)ga(rs, ¢;) of
¢1 and ¢ within the window has to be maximized. Both normalizations can be
achieved by replacing g by (9—p)/o, where  and o, are local means and standard
deviations. Then the products can be taken from a look-up table increasing the
efficiency of the procedure.

4. Hardware chips for determining the cross correlation of 64 x 64 [pel] windows in
a few milliseconds are available. Cross correlation also can be realized optically
thus allowing real time applications on large images.

5. The equation for one dimensioned cross correlation can be derived by replacing
(r,¢) by z, (p,q) by y, (u,v) by u leading to

G=a® o Pr P A,
2(p+ +2po — p-)
11— Ax?
02 _ . P12 . x (26)
m o pi2 —p+t+2p0— p-

with po = max,p12(u) to integer position and p_ and p; being the correlation
coefficients at 4 — Az and @(© + Az resp.

6. The applications of cross correlation are manifold:
e point transfer in aerial triangulation and registration of satellite images

(cf. Tsingas 1992, ACKERMANN chap. 6)

e locating fiducials or targeted control or tie points (SCHICKLER chap. 5,
FucHs chap. 3)

e mensuration of digital elevation models (cf. KRZYSTEK chap. 7) .
e recognition of standardized letters or numbers (e. g. of aerial images)

e tracking objects in image sequences (cf. Hahn 1994)
7. Cross correlation has a number of disadvantages

e The precision decreases rapidely if the geometric model is violated. Rota-
tions greater 20° and scale differences greater 30 % should be avoided (cf.
Forstner 1984).

e The extension of the search space when determining other parameters (e. g.
rotation or scale) is prohibitive. Therefore no real extension of the method
is vailable.

e Cross correlation cannot handle occlusions in a straight forward manner.

1
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The least squares approach discussed in the next section aims at reducing some of these
restrictions.

2.2 Least Squares Matching

Least squares matching (cf. Forstner 1982, Ackermann 1984) is a generalization of
cross correlation. It has the following crucial features:

e any parametric type of mapping function can be assumed,

e any parametric type of radiometric relation between the two images may be dealt
with,

e the estimation process is efficient,
e the evaluation tools from least squares estimation are available.

We first want to explain the principle of least squares matching of two one-dimensional
signals, where one is given, taking the part of the object, the other one being a shifted
and noisy version of the object. Then we will discuss the case of linear Tz and 77.

2.2.1 Principle of Least Squares Matching

The model in the one-dimensional situation with the only unknown parameter, the
shift, is given by:

Yy = T—u (27)
g(zi) = flyi) +n(z), t=1,...,m (28)

The observed discrete signal ¢g(z;) is related to the given function f(y) by an unknown
shift w. The noise n(x;) is assumed to be white, i. e. uncorrelated and with variance
o2. The number of observations is denoted by m.

With an approximate value uy we may write

u=ug+ du (29)

where du is the unknown correction to the approximate value. Thus the nonlinear
model can be rewritten as

g = flwi—u)+ni (30)
= flz; —uo — du) + n; (31)

with the abbreviations ¢; = ¢g(z;) and n; = n(x;). We now linearize around the point
z; — ug to obtain

gi = f(z; —ug) — f'(x; — ug)du + %f”(lﬁi — ug — (du)du® + n; (32)

for some ¢ € [0,1] and where f'(y) = df /dy and f"(y) = d*f/dy*. In the following we

assume f’ not to vanish and the second order terms to be negligible.

15
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Figure 8: illustrates the principle of the differential least squares approach to estimate
the local shift du(z;) (left). The functions ¢ and f (right) are assumed to be locally
approximable by a linear function. Then one is able to derive the shift du; = —Ag;/ f!
from the difference Ag; of f and ¢ at the corresponding positions z; and x; — uo which
depends on the approximate shift uo and on the slope f/ = tan a.

With the differences

Agi = Ag(x;) = g(x:) — f(zi — uo) (33)
and the derivative
fi=f'(z: — o) (34)
we then obtain the linearized model
Ag; = —fldu + n;, i=1,...m (35)
or explicitely
df (i )
oo = Jai—w) ==L dutnte) iz m 30)

We first give the solution for a single observed g(x;), thus for m =1

7 Ag;
du; = _7|y=xz‘—uo (37)
thus e
u; = ug + du; (38)

This estimate thus is based on the assumption, that the local intensity change is only
caused by the unknown shift (cf. Fig. 8)

We obtain for its standard deviation
On
o~ = —~ (39)
T

16
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Obviously the precision depends on the local slope f/ and is high at edges with high
slope, which is to be expected. No estimate for u is available if f/ = 0. In case one
choses

gg = Op, (40)

the weight of this estimate is
w; = ff? (41)

again intuitively going with the square of the slope of f.
There is no redundancy in this estimate making the estimate unreliable.
Using m observations leads to the estimate

= Y fiAg _ YiL(g(ws) = fwi = uo)) f(ws)

du = — i = — 42
S T o) "

This is equivalent with the weighted correction of the shift
du = M (43)

m 7 .
=1 w;

Obviously observations with weight being 0 thus f/ = 0 do not at all contribute to the
estimation.
The precision of the total shift

U= up+ du (44)

is given by

2 n
O = —— 45
du Z;ril fi/2 ( )

If we now define the mean squared gradient of f by

m g1
ot = 72211]( : (46)

we can represent the standard deviation of the estimated shift by
On

\/TWO'JH

As expected it depends on the number m of observations, on the noise standard de-
viation o, and the texture or the edge buisiness measured by the squared gradient

(47)

O =

Ogr.
This simplified formula may be used for predicting the precision of least squares
matching.

Example: In case two profiles with noise standard deviation o,, = 2[gr], m = 10
common pixels and an average gradient oy, = 10[gr/pel] we can expect the precision

of the shift to be o, = 1/(1/10)-2[gr]/10[gr/pel] = 0.06[pel]. Clearly subpixel accuracy

is reachable.

17
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If m is large enough, the noise variance can be estimated from the residuals of the
least squares fit

A 1 - .
62 = ——=> (g(z;) — f(a; — @) (48)
m = 1 =1
whose standard deviation is .
0y = ——0,,. (49)
2(m —1)

in case the simple model really holds.

2.2.2 2D-Least Squares Matching with Linear Geometric and Radiometric
Model

We now want to explicitely give the linearized observation equation for the case of
linear T; and Ty (cf. Ackermann 1984):

we(y) = (o) () + (%)
q i a4 dpy C i ag

Troh(f) = ar-f+as (50)
Starting from initial values

aor = 1
aor = 0, k=234,638 (52)

we obtain the m observation equations:

Agi = [ 'Ti'ga\l+fm'ci"7a\2+fm'j‘;;+fcz"ri'(m
+ fo ccodas+ fo-dag + fi-dar + 1-das + n;

with
P _ Gp1 dp2 r i Qo3 (53>
q ) Gpg dps ¢/, Qos
67(;@ = flk—aok
Agi = g2(ri,ci) — g1(poi, 9oi)
;= mna(ri,¢) — ni(Poi, Goi)
estimates
agl(riaci)
Jri = ar
0G1(ri, ¢
fci:M (54)
de
fi=g1(ri,ci) (55)
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where ¢, is a restored, i. e. smoothed version of g;. Of course the restored version
g1 may also use g, in order to obtain a better estimate. But then the geometric and
radiometric transformations have to be taken into account.

Observe that the transferred coordinates (po;,go;) according to eq. (53) are not
integer values which therefore requires resampling when calculating the expressions in
eq. (54). At least linear interpolation is always necessary. This is to avoid instabilities
in the iteration scheme.

The 8 x 8 normal equation system

N3 =h (56)

for the 8 unknown parameters B = (c?cﬁ) yield the 6 corrections dpg for the ap-
(v=1) 7

proximate values a; of the geometric transformation and the corrections da; and
dag for contrast and brightness. Thus

o =& 4 dg"” (57)

may be used as new approximate values in a further iteration v.
The estimated noise variance

br=——=> T (58)

measures the average noise difference between ¢; and ¢ which in case a7 &~ 1 and
04, R 0,4, leads to the estimate

bn = 65/V2 (59)

for the image noise, which is assumed to be constant, i. e. signal independent (w; =
const.).
The standard deviations of the unknowns then can be derived from

G4, = 0/ (N7 )k (60)

In case a point (rg, pg) is transferred to (pg,go) via the estimated geometric transfro-
mation Ty its 2 X 2 covariance matrix may be used for an evaluation. This has to be
derived by error propagation.

Fig. 9 shows 3 small windows from which the interior 16 x 16 pixels are used
to evaluate the expected precision of a match. Assuming a noise standard deviation
of o, = 5[gr] the confidence ellipses shown below the template are obtained. With
99 % probability the true shift will lie within an area depicted by the ellipse around
the estimated shift. The pixel size is 20um. The smallest confidence ellipses have
major axes of below 1um thus below 1/20 of a pixel. The largest confidence ellipse is
obtained at the edge point indicating that one cannot expect a good accuracy for the
position along the edge. With respect to the expected matching precision the other
ellipses reflect the image content reasonably well. As the form of the ellipse essentially
depends on the squared gradient, no image interpretation is performed when predicting
the precision.
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Figure 9: Precision of matching to be expected for 3 small windows. Although 32 x
32 pixels are shown, only the interior 16 x 16 pixel are assumed to be used. The noise
standard deviation is assumed to be o, = 5[gr]. The 99 % confidence ellipses given in
um refer to a pixel size of 20um.

In the most simple case where only a shift is to be estimated the 2 x 2 normal
equation system reads as

N3 = h (62)
where the sums are to be taken over all pixels in concern. Obviously the normal

equation matrix N contains the average I'f of the squared gradient T'f = VfV T,
with Vf = (9f/0r,0f/0c). Thus the normal equations may be written as

mTf B3 =mVfAg (63)

where m is the number of observations.

This reveils close relations to the information preserving smoothing (cf. WEIDNER
chap. 2) and to the interest operator (cf. FUCHS chap. 3) .

In order to give an insight into the structure of the precision to be expected from
least squares matching we analyse the covariance matrix of the estimated shifts (7, ¢)

D( ) =% ()" (64)

m
1. the number m of pixels used, i. e. the window size,

o> 3>

The precision depends on:

2. the noise variance o,, and
3. the average squared gradient L'f.
I'f reflects the characteristics of the local texture. Three cases are of special interest:

1. In case the window contains an irregular texture, a corner or a distinct point, T'f
will be large with the diagonal elements being small and approximately equal.
Thus the error ellipse will be small and round.
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2. In case the window contains an edge or oriented texture, the elements of T'f will
be large, but T'f will be nearly singular. This indicates that the estimation of the
shifts is uncertain, namely in the direction of the edge or the texture. The shift
across the edge, however, may be very precise.

3. In case the window contains no or only weak information, the average gradient
will be small. This leads to a large error ellipse, indication no shift can be
estimated.

The discussion confirms intuition. It also motivates the information preserving filter
and the feature extraction procedures discussed in WEIDNER chap. 2 and FUCHS chap.
3.

Often the small windows do not contain enough detail to enable a determination of
all 8 parameters. Especially the scales a¢; and a5 and the shears a; and a4 often are not
estimable. Therefore a priori knowledge about the transformations may be introduced
in a Bayesian manner by using additional observations (possibly fictitious ones)

day, = day + ng, Wq, = UTTL k=1,..8 (65)
ag
with individual weights depending on the quality, specifically on the standard devi-

ations of the corrections to the a priori values day. This leads to the modified and
stabilized normal equation system (cf. eq. (62)).

[N + Diag(wak)]'l@ =h (66>

The right hand side remains unchanged h, because of the corrections assumed to be
dar = 0 . The following standard deviations can be recommended:

scales, shears 04, =01 -1 k=1,2,4,57
geometric shifts o,, =1 —10[pel] k=3,6
radiometric shift o, =10 —100[¢gr] k =8

The noise standard deviation o, has to be estimated or guessed. The result is not
too sensitive against errors of a factor 2 in these assumed standard deviations.

Discussion:

1. In case the geometric transformation is restricted to a shift and the radiometric
transformation is linear, least squares matching and cross correlation conceptually
are equivalent.

2. In case the images are in normal position, i. e. the image planes and the z'—
and z''—axis are parallel to the baseline, the geometric model reduces to

= a2 +ay” +as (67)
y/ — y// (68)

Thus, together with p;, only 5 parameters have to be determined. The aj, intu-
itively correspond to the depth (a3), to the slope of the surface along the baseline
(a1) and to the slope across the baseline (a3).
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3. The case, that the unknowns are restricted to a locally varying shift — thus
no radiometric parameters are involved, is important in image sequence anlysis,
where the time difference dt between neighbouring images is small. Then the
observation equation

Agz = f'/‘i das + fci dag (69)

after division by dt can be rewritten as the socalled optical flow equation

do _ Of or  Of o

dt — Or ot ' dc Ot (70)

or

¢g=Vfv (71)

with the temporal change ¢ of g, the virtual velocity v = (9r/dt, dc/ot)T of
the point in concern and the gradient V f of the intensity function. Observe
that (das, das) = (dr,dc) represents the parallax field between the neighbouring
images. The optical flow equation just states, that the (temporal) change of the
intensity is solely due to the optical flow, 1. e. the velocity of the projection of
the object feature in the image plane.

4. Eq. (69) reveils that the local shift cannot be determined from one intensity
change alone. This is the socalled aperture problem. Therefore the estimation
of a parallax field is underdetermined, illposed, thus requires regularization. In
the approach above this is achieved by requiring the parallaxes to follow a linear
transformation. In general one could require the parallax field to be locally
smooth.

5. Eqs. (61) and (64) were the basis for the ”interest operator” selecting distinct
image "points” used in feature based matching (cf. Paderes et al. 1984, Forstner
1986). The variance of the predicted match leads to an optimal choice of a
window for matching.

3 Feature Based Matching

Feature based matching uses symbolic descriptions of the images for establishing cor-
respondence. It is assumed that such a symbolic description can replace the original
image sufficiently well and all information which is necessary for matching is contained
in the attributes of the features and possibly their relations. Using features instead of
the original intensities allows to select a representation which is much more invariant
with respect to distortions such as illumination, reflectance or geometry. This makes
feature based algorithms, also in general, more robust than intensity based procedures.
These advantages are only partly payed for by a loss in precision, much more, how-
ever, by a loss in spatial resolution as the features do not replace the complete image
in all details. In many applications such as object location or surface reconstruction
feature based matching algorithms have proven to be very effective which is the reason
to discuss them in this chapter.
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Figure 10: shows the graph of two symbolic image descriptions one derived from a
satellite image the other from a map. The points are characterized as T-, L-, Y-, or
X-junctions

We want to discuss 4 representative techniques in order to show the wide range of
applications of feature based matching algorithms:

1. pose clustering

is a powerful tool for for object location and recognition in case only a few
parameters have to be estimated and the percentage of spurious features is high
(cf. Stockman 1987, Stockman et al. 1982, SCHICKLER chap. 5).

2. robust estimation

has been proved to be quite powerful in case approximate values for the trans-
formation 7}, are available (cf. Forstner 1986)

3. string matching

is favorable in case the symbolic representation is a sorted list of attributed
features. Dynamic Programming is a tool for finding optimal matches and is
used quite often (cf. Baker and Binford 1982, Benard 1983, Ohta and Kanade
1987).

4. relational matching

probably is the most general tool for finding correspondencies between descrip-
tions as any type of attributed features and relations can be handled. This makes
this procedure also useful for image interpretation tasks (cf. Boyer and Kak 1988,
Price and Huertas 1992, Vosselman 1992).

3.1 Pose Clustering

Pose clustering is a powerful technique for determining the transformation between
two image or object descriptions. The representation of the images or objects is as-
sumed to consist of a list of attributed geometric primitives.

We want to describe the approach for the case of matching an image and a 2D-
object (cf. Stockman 1987). The procedure is the same for matching two images or
two objects.
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The idea of pose clustering is to combine every primitive of the image with every
primitive of the object, determine the parameters of the geometric transformation and
select the parameter set where there is a cluster in parameter space.

Fig. 10 shows the sketches of a symbolic description of a satellite image and of a
map. It is assumed that the image feature extraction is able to produce points which
may be classified as X-, L-, Y- or T-junctions depending on the number and directions
of the adjacent edges and that a similar description can be derived from the map.

We first assume image and map to be of approximately the same scale (e. g.
derived from the sensor model) and only a translation to be determined. Thus the
representation of the image and the map looks like:

Dy = Pr = {(type, (r,c))} (72)
Dy = Py = {(type, (p. q))} (73)

The geometric model is identical to eq.(14). The similarity measure simply states two
primitives (points) are similar if and only if they are of the same type. Then all pairs
(P;, P,) with P; € Py and P,, € Py and type; = type; give an estimate

Uim =Ti = Pm Vim = Ci — Gm (74)
for the unknown shift. These estimates have the following property:

1. If the match is correct then

(v) ~w(u)m (73

T is the true shift and ¥ the covariance matrix of the differences

where (u,v)

(U, )i

2. If the match is incorrect the (u,v);, are equally (F) distributed in a certain
range, depending on the size of the image and the map, say in a square of size L
for simplicity:

( ; ) ~ E(=L/2,L/2) x B(—L/2,L/2) (76)

The density function in 1-D looks like

f(x) = (1-€)p(x)*+€h(x)
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Figure 11: illustrates the result within the accumulating process.

Thus the joint distribution function of (u,v);, would be
F=(1-¢)N+cFE (77)

where 100-¢ is the percentage of wrong matches, which usually is large. Then the mode
of the density function can be used as an estimate for the unknown shift.
The estimation procedure therefore consists of the following steps:

1. provide an accumulator for the unkowns. In our case this is a matrix acc repre-
senting the discretized (u,v)-plane in the expected range. Fill the accumulator
with zeros.

2. For each pair P;, P,, which is similar determine the transformation 7", here the
shift (u,v);, and increase the corresponding element of acc by 1.

3. Search for the maximum of acc which gives the desired estimate (u,?) for the
unknown shift.

The result may look like in Fig. 11.

Discussion:

1. The similarity measure is decisive for the success of the procedure, as with a
poor similarity measure the accumulator would show a full background making
the detection of the peak very difficult.

2. Pose clustering for determining a shift is a different way to realize cross correla-
tion.

3. In case the geometric model is violated the peak is blurred.

4. In case the discretization of the accumulator is too coarse the result is inaccurate.
If the discretization is too fine the peak will not show.
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5. The last two effects can be significantly reduced if instead a 1, i.e. a unit impulse,
a blurred version of a unit impulse, e. g. a 3 x 3 or 5 x 5 Binomial kernel is
added to the accumulator (cf. Sester and Forstner 1989).

6. A higher precision can be achieved by interpolation around the peak e. g. by a
second order polynomial and determining the maximum (cf. eq. 18).

7. The procedure can be generalized to more complex transformations (cf. Stockman
1987). Then more complex primitives have to be selected in order to be able to
obtain individual estimates 7).

An example is the joint estimation of translation, rotation and scale. Here the
primitives may be point pairs. When using the same type of points one could
select pairs of different type, e. g. XT, XL, XY, TL, TY or LY, where the
order of the points is important. Point pairs of this kind could be termed abstract
edges as, when drawing them, they look like edges though they in general to not
represent real image edges.

8. The algorithmic complexity of the algorithm is high. The storage and the com-
puting are of order O(n*”), where n is the number of the primitives (assumed to
be equal in image and map) and p is the number of parameters.

The procedure can be used to advantage if:

e the number of unkowns is small

e a direct solution for 7' from pairs of primitives is available

e large noise, i. e. a large amount of spurious features is present and

e several solutions are possible. Then the search for the second solution can be
started after the primitive pairs corresponding to the first are eliminated from
the accumulator.

Pose clustering is used in the absolute orientation procedure presented by (cf.
SCHICKLER chap. 5) .

3.2 Robust Estimation

The principle of pose clustering is to replace the matching problem by the estimation
of the transformation parameters. In case of a large number of such parameters a
different technique for parameter estimation has to be applied which however is capable
of rejecting wrong matches. Robust maximum likelihood type estimators, short M-
estimators have shown to be a powerful tool in this situation (cf. Paderes et al. 1984,
Forstner 1986).

The model eq. (75) then may be replaced by a general relation

e[(4) ]-ed (1)
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or after linearization with the groups y; of observations containing the (u,v);m ’s

E(y:) = X, W, =x"!

YilY:

(79)

representing a Gaufl-Markov-Model. Observe that correlations between the observa-
tions within each group may be be present.

In case of wrong matches eq. (75) holds.

The principle of robust M-estimation is to use a less increasing function p(e;) in the
minimization @ = 3", p(e;) — min. . This may be realized by iteratively reweighting
the observations

W =wO. fal) (80)

i.e. reducing the weights of the group if the residuals égy)

The reweighting function f(xz) is choosen to be

(V))

or a function A%(é;"”’) is large.

1

fle) = NS (81)

for the first few (3, say) iterations as correspondence is guaranteed if the model eq.
(78) really is linear. Later iterations use

f(z) = eap(—2*/2) (82)

The argument = = A(é(y)

/) can be choosen in various ways:

1. Ay (&) =8
This is the most practical choice, with the disadvantage not taking different
weights of y; and the varying geometry of the mensuration design into account.

2. Ag(égy)) = égy)T WEO) éz(y)/n,- , ;= rank(WEO))

is the most simple choice, as no error propagation for the él(-y)

and in case the geometry is homogeneous, i.e. the redundancy is homogeneous

distributed and leads to quite satisfactoring results.

's 1s required,

3 As(e) = (& fni = 6T WL e [ni  with ng = rank(Wi)
only seems to be a natural choice, taking the geometry via the weights of the
residuals into account. However E[A(éz(y))] = 1 therefore even for large errors A

is not large leading to no reduction of the weights.

~ (v — [v
1. Ay@) = | Ay /s
seems to be the best choice. It is the estimated error Ay, if observational group

A/§Z~ is not taking part in the estimation. @EZ]V is invariant with respect to WZ(-O).
The prerequisits for this type of matching techniques are:

1. The relative number ¢ of errorneous matches should be small, when taking the
individual weights into account. The percentage 100 - ¢ may practically reach
80 % or even 90 %, but then refers to matches which partially are of low weight.
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Figure 12: shows two segmented lines with straight segments. The symbolic description
could be a sequence of length and directions.

2. The size of the errors should not be large, thus not exceed the size of the obser-
vations.

3. approximate values are necessary. Good approximate values, of course, speed up
convergence. Wrong approximate values may prevent a valid solution.

Robust estimation using M-estimators has been successfully applied in DEM-Generation
(cf. KRZYSTEK chap. T) , spatial resection for exterior orientation (cf. SCHICKLER
chap. 5) , automatic aerial triangulation (cf. ACKERMANN chap. 6) or model based
building detection (cf. BRAUN chap. 10) .

3.3 String Matching

In many cases the description of an object may be an ordered list of features which has
to be compared to an ordered list of features of a reference object.

A typical example is the boundary description of a planar figure, e. g. a line with
straight and curved parts. Such a line could be described by a sequence of —1’s, 0’s
and 1’s describing the sign of the curvature. Fig.12 shows two similar lines which
may be compared. There are missing and additional parts and one line obviously has
additional parts at the beginning or end.

Another example could be two ordered lists representing two intensity profiles which
are to be matched. The lists {(z, sign(f.), f2);} may consist of the edge points within
the profiles with attributes e. g. being the position x and the sign sign(f:) and size
12 of the intensity change.

In the extreme case the pixels of an intensity profile themselves could be interpreted
as features with their intensity value as attribute (cf. the example below)

These problems can be interpreted as a string matching problem which occurs when
searching a word in a dictionary assuming misspellings. Then the task is to find the
word in the dictionary which is closest to the given word. Errors are:

e replacement

e deletion and
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b 1 2 3 4 5 6
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5 E \\yf\y\\y>\?>\y,
6 N \\.\.v \‘,
7 - \\?:\§ﬂ>\>l\\}’ N

1.d(1,1)=0
2. fori=2to |s|+1
d@i,1)=d(@-1,1) +1
3. forj=2to |t|+1
d(1,j)=d(1,j-1)+1
4. fori=2to |s|+1
forj=2to |t|+1
di(i,j)=d(i-1,)) +1
d2(i,j) =d(i,j-1) + 1
d12(i,j) = d(i-1,j-1) + O (s(i-1),t(-1))
d(i,j) = min (d1(i.j), d2(i,j), d12(i,j))
5. D(s,t) = d(Is|+1, [t]+1)

Figure 13: a.shows the determination of the Levenshtein-distance as shortest path in
a directed attributed graph (cf. Forstner 1991); b. shows the algorithm.
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Match
54323 31221 asdfq wetzw #eruw oryfl vgdcj ghkkf +h.12 341

Figure 14: shows the match of two strings. The optimal path is goes via the nodes
denoted by 1 or 0. 1 denotes different symbols, 0 identical symbols.
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Figure 15: shows three samples of two grey value profiles and their match determined
by a modified version of the algorithm in Fig.13 b.
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e inclusion

of a letter.

The similarity of two strings s = {s;} and t = {¢;} can be based on the Levenshtein-
distance (cf. Niemann 1990). It is defined as the minimum number of the sum of
deletions, insertions and replacements:

D(s,t) = min(nqg + n, + n;) (83)

ng: the number of symbols to be left out in the first string
where n,: the number of symbols to be replaced
n;: the number of symbols to be left out in the second string

E. g. the Levenshtein-distance of s = OSTEN and t = WESTEN is 2, as 2 letters
have to be replaced.

In the previous examples this procedure corresponds to replacing, deleting or in-
cluding a segment in a line, an edge in the edge list, or a pixel in the profile. Here
deletions and insertions may be necessary to cope with occlusions.

The matching algorithm itself can rely on the powerful tools of dynamic program-
ming as in all these cases the optimization function, i. e. the similarity measure can
be written as a sum of locally computable parts. This allows a recursive formulation of
the optimization procedure which is the precondition for using dynamic programming
techniques. In this context the distance can also be determined as the shortest path
in a directed attributed graph (cf. fig.13 a.)

Fig. 15 shows the match of two intensity profiles, where the cost function takes
into account the difference of the intensity values and the cost for a high slope in the
profile.

The path from A to B following the edges corresponds to the match of the symbols
of the strings s and t. A vertical edge represents a deletion of the previous symbol in s,
a horizontal edge represents the deletion of the previous symbol in the string t, while
a diagonal edge represents no deletion. The costs of passing a horizontal or a vertical
edge are 1. The cost of passing a diagonal edge from (¢ — 1,5 — 1) to (7,j) depends on
whether the symbols s;_; and ¢;_; are equal or not. Incase they are equal the cost of
the edge is 1, else 0. The algorithm is given in fig.13 b.

The solution needs not to be unique. By backpropagation one is able to determine
the corresponding symbols. Fig. 14 shows the match of two longer sequences. The
symbols may represent a code for textures in intensity profiles of two epipolar lines.
The optimal path goes via the 1’s and 0’s. It obviously is not unique. From the match
the parallax profile may be derived.

This type of matching has been used for matching images which have a large number
of discontinuities (cf. Baker and Binford 1982, Ohta and Kanade 1987).

3.4 Relational Matching

Relational matching is the most powerful matching technique available as it refers to
a symbolic description of the image which in addition to the primitives also contains
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Figure 16: a. shows a segmented image with named regions as features, b. shows the
relations between the segmented regions

relations between these primitives. We want to introduce the idea by giving an example,
discuss one basic technique for the algorithmic solution and discuss the properties of
the matching approach.

Assume you have a segmented image, as e. g. in Fig. (16). Of course this seg-
mentation is idealised'. We have no difficulty in interpreting this scene, which means
labelling the different region with names: ’sun’, ’sky’, roof’, 'wall’, ’grass’, ground’.
This labelling is a matching problem. Assume the descriptions of this image to consist
of the region identifiers, their color, their form and their relations as shown in Table 1.

e Possible form attributes are:
circular (circ), round, partially round (p-round), irregular (irreg), parallel (par-
all), rectangle (rect), triangle (triang), polygon(poly), pentagon (penta), oval.

e Possible relations are:

no’ denotes 'no’ ‘cont’ denotes ’contains’
‘in’ denotes ’in’ 'neig’  denotes ’neigbour of’
’abov’  denotes ’above’ ‘any’  denotes ’any’

'belo”  denotes ’below’ fron’ denotes ’in front of’
left”  denotes ’left of’ 'behi’  denotes ’behind of’
‘righ’  denotes ’right of’ ‘clos” denotes ’close’

On the other side you have a model of an outdoor scene, which consists of a list of
possible objects with their expected colour, form and possible neighbourhood relations
(Table 2 and 3).

Based on this information a correspondence can be established: (a,sun), (b, sky),
(¢,roof), (d,wall), (e,wall), (f,ground), (¢g,car). Thisis a mapping T} : O — L where

'hut remember the illustrations in children’s books
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id | COLOR | FORM a |b c d € f |y
a | red irreg
b | grey irreg || cont abov abov
c | green | irreg abov | abov
d | grey irreg left | abov
e | grey irreg abov
f | green | irreg
g | yellow | round in

Table 1: shows the extracted features (regions), their attributes and mutual relations

class possible COLOR possible FORM

sun yellow, orange, red, white circ, round, p-round, irreg

sky blue, grey, black, white irreg

roof red, brown, grey, white, green, black | parall, rect, triang, poly, irreg

wall white, grey, brown, black, pink parall, rect, penta, poly, irreg

car — round, oval

ground | brown, grey, white, green irreg

Table 2: shows the possible attributes of the object classes
sun sky roof wall car | ground

sun no in, belo | abov, left, righ abov, left, righ abov | abov
sky cont, abov abov abov abov | abov
roof belo, left, righ | belo neig, left, righ abov any abov
wall belo belo belo n, left, righ any abov
car belo belo any fron, behi, left, righ | any | abov, in
ground belo belo belo belo close

Table 3: shows the possible neighbour relations.
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O ={a,b,c,d,e, f,g} and L = {sun, sky,roof, wall, car, ground}. Observe, that there
could be multiple solutions.

Formally the matching problem can be stated as follows. Let the two descriptions
of the images be

D1 == (Pl,Rl) D2 == (PQ,RQ) (84)

The lists P, and P, contain attributed primitives like in the previous example, e.
g. ((cOLOR red),(FORM irreg)) representing the color and form of the object a.

Further these lists contain relations between the primitives. In the example above
this e. g. could be (inside, sun, sky) stating the region sun lying inside the region sky.

This type of matching problem, especially in more complex situations, heavily relies
on the expected relations between the features.

There are several ways to solve this matching problem. The most important are
e discrete relaxation (cf. Price 1985, Hummel and Zucker 1983)
e tree search (cf. Shapiro and Haralick 1987)

To set an example for the algorithmic solution we will explain the principle of tree
search. In this case the search space of the correspondence problem is represented in
a tree consisting of nodes and edges (Nilsson 1971). Each node stands for a possible
mapping between one primitive element of P; and one primitive element of P,. The
edges represent the connections between different nodes. Thus starting with the root
node, representing the initial problem state, each path from the root node to the bottom
leat node is a possible mapping of the descriptions. The depth of the tree is equal to
the number of primitives in the list Pj.

The most general way to find a mapping is to completely scan the tree in a system-
atic manner, called blind search, namely Depth-First and Breadth-First Search.

The Depth-First Search always expands first the node with the deepest level. If
there doesn’t remain any successor node, backtracking starts up to that predecessor
node, which has an alternative successor. The search will stop if a solution is found.

An alternative possibility to proceed is the Breadth-First Search, which always
axpands every successor node on the actual level before moving down in the tree.
Observe that the size of the search tree exponentially grows with the number of levels,
making a complete search unfeasible already for middle size problems.

In contrast to blind search, it is therefore useful to include information, which path
is the most likely one to lead to a solution. This kind of informed search can be done
by associating costs or merits to the edges of the tree. The best solution is then defined
as the path from the root node to a leaf node, which has the lowest sum of costs or the
maximum merit respectively with the edges of the path (cf. Hill Climbing Method or
Best First Search).

Including some heuristics, these evaluation functions more generally can be defined
as the sum f(n) = g(n) 4+ h*(n) of the minimum cost path g(n) from the root node
to the actual node n plus the estimated cost of a minimal cost path from the actual
node to a goal node. That is f(n) is an estimate of the cost of a minimal cost path
constrained to go through node n (cf. A* Algorithm). Thus it is possible to avoid the
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: sky/ h

d sky roof wall
/ N\ / N\
c roof ground roof ground roof
7 1\
e sky roof wall
9 sun car
f roof ground roof ground

Figure 17: shows the tree which is build up during depth-first-search for the given
example Tab. 1-3

search to stay on an upper level because of the costs being low, as it can happen with
Best First Search.

Due to the exponential complexity of tree search, these methods can only be applied
to sparse data sets, like high level descriptions. As all possible combinations between
primitives of the descriptions P, and P, can be evaluated, no a priori knowledge about
the spatial transformation between the 2 descriptions is required. This makes the tree
search method suitable for tasks like object recognition and object localization where
no such information is available ( Vosselman 1992, Vosselman 1994).

To give an example for Depth-First Search we want to illustrate the tree which
is built up during the search if the list orderings are P, = {a, b, d, ¢, e, g, f} and
Py = {sun, sky, roof, wall, car, ground}.

The solution is given by the labelling { (a, sun), (b, sky), (d,wall), (¢c,roof), (e, wall),
(g,car), (f,ground)} and is found by 19 trials (cf. Fig. 17).

Which branches of the tree are to be expanded during the search, mainly depends on the
ordering of the matching units within the lists. This can be used for advantage, if durig
the built up of the unit orderings, those units with the least possible corresponencies
are put at the root of the tree. Thus the search tree will be reduced by always first
labelling the unit with the fewest possible labels. In case the ordering of list Py is P, =
{f, g ,e, d ;¢ ;b ,a } certainly the same solution will be found, but the search time
requires up to 25 trials.

Another possibility to reduce search space is by forward checking, which is looking
forward to the units of a lower level, to check if there remain possible labels after
labelling on the higher levels.
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Discussion:

1. As the symbolic image descrition being invariant with respect to different ge-
ometric transformations, even distortions, under such circumstances relational
matching techniques are very useful.

2. As the numbers of possible correspondencies is very large, it is necessary to reduce
the search space as soon as possible. Besides the algorithmic techniques this can
be done including constraints due to the geometric model or scene knowledge.

3. In contrast to area based or feature based matching using a local similarity mea-
sure, within relational matching the similarity measure is a globel one, including
the hole image information (primitives, their attributes and mutual relations).
Thus relational matching doesn’t need any approximate values and thus is not
liable to find a wrong match due to insufficient approximate values.

4 Conclusions

This contribution gave an introduction in different matching techniques which can be
used to establish the correspondence or match between several images or between one
or several images and a model as it has to be done in image matching (cf. ACKERMANN
chap. 6, KRZYSTEK chap. 7), object localization (cf. SCHICKLER chap. 5) and object
reconstruction (cf. GULCH chap. 12). We introduced the two fundamental techniques
area based matching and feature based matching, using different abstraction levels of
the images and models.
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