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Abstract. We present a fast automatic reproducible method for 3d se-
mantic segmentation of magnetic resonance images of the knee. We for-
mulate a single global model that allows to jointly segment all classes.
The model estimation was performed automatically without manual in-
teraction and parameter tuning. The segmentation of a magnetic reso-
nance image with 11 Mio voxels took approximately one minute. Our
labeling results by far do not reach the performance of complex state of
the art approaches designed to produce clinically relevant results. Our
results could potentially be useful for rough visualization or initializa-
tion of computationally demanding methods. Our main contribution is
to provide insights in possible strategies when employing global statisti-
cal models.
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1 Introduction

We present a fast automatic reproducible method for 3d semantic segmenta-
tion of magnetic resonance (MR) images of the knee. We formulate a single
global model that allows to jointly segment all classes. The model adaptation
was performed automatically without manual interaction and parameter tuning.
The segmentation of an MR image with 11 Mio voxels took approximately one
minute.

From a broad perspective in this work we investigate the potential of Markov
random field (MRF) models [6] in this context. More specifically, we investigate
to what extent can we in this context eliminate the need for solving an involved
task of learning unknown model parameters.
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Fig. 1. (a) 2d slice of a training MR image. (b) Manual segmentation of the MR image
in (a), where we show the corresponding 2d slice. (c) 2d slice of a test MR image shown
in the outlined 3d MR image volume. (d) Our automatic segmentation of the test MR
image in (c), where we show the corresponding 3d view with transparent background
class labels. (e) Class label color code used in (b) and (d).

Markov random fields are global models that in general pose a problem of
estimating a complex probability distribution. A widely adopted approach is to
first formulate a model of specific functional form governed by some number of
unknown parameters and subsequently to learn these parameters from a training
data set. Learning unknown parameters of a global probabilistic model is a task
that can in principle be solved by a Monte Carlo simulation [8] or, alternatively,
by methods of variational inference [7]. However, the task involves solving an
NP-hard problem and, hence, in practice both approaches in general inevitably
lead to approximations. Even though much work has recently been done in both
areas, approximate parameter learning remains a difficult task.

We pose the following practical question. To what extent can parameter
learning be avoided? In this work we completely eliminate the need for solving a
difficult learning problem by designing a nonparametric model and reducing the
model adaptation to a simple histogram based nonparametric density estimation.
Let us note that while large volumes of magnetic resonance imaging (MRI)
data would further challenge the efficiency of approximate parameter learning
approaches, for nonparametric density estimation techniques, large amount of
data is of advantage.

In this work we focus on a generative model. Such model, as opposed to a
discriminative model, poses in general a more complex problem, however, it has
the advantage of allowing not only to find an unknown labeling, but a generative
model also provides means to compute labeling of incomplete data, it can be used
to sample an MR image using a Monte Carlo simulation and quite importantly
can be combined with additional priors or be integrated in a superior reasoning
system. Disadvantage of the model is its lower discriminative power, relative to
a pure discriminative model. In case we would be mainly interested in finding an
unknown labeling, it would be possible to adopt a similar approach and sacrifice
the estimation of the generative power in favor of a better estimate of a pure
discriminative model.
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2 Related Work

In clinical studies, a manual or semi-automated 2d slice by slice segmentation
is a prevalent approach, leading to possibly several hours of trained radiolo-
gist’s manual slice annotation. In the context of medical image analysis, number
of both semi-automatic and automatic approaches have been proposed. These
approaches range from 2d slice by slice methods, or methods combining this ap-
proach with 3d image registration, to the methods segmenting directly in 3d. In
our review we focus on current approaches that are automatic and that segment
directly in 3d.

Current state of the art approaches [2][3][1] are complex problem specific
methods comprised of multiple locally acting computational steps performed se-
quentially. We formulate a simple reproducible global model that in one step
allows to jointly segment all classes. Our work is in this regard related to the
work in [4]. An atlas based prior information has previously been used both in
the form of one particular manual segmentation [3] or in the form of a statisti-
cal atlas [4] that was derived from multiple manual segmentations. Our model
utilizes a spatially variant label prior that we derive from multiple manual seg-
mentations and that can be viewed as a form of a statistical atlas. Segmentation
time in [1] is in the order of tens of minutes. Cartilage segmentation in [3] takes
approximately 15 minutes. We segment an MR image with 11 Mio voxels in ap-
proximately one minute, which is comparable to [4]. Our approach is related to
the work in [4] both conceptually and computationally. Broadly they also adopt
MRF model and also employ the optimization algorithm proposed in [5]. They
are interested in finding patella cartilage and pose the problem as registering a
deformable statistical atlas to the observed data. We are interested in a multi-
label problem that we pose as a semantic segmentation task assuming that prior
label information can be captured in a spatially variant label prior and spatially
invariant label smoothness prior. We currently study the relation of our work
to the approach in [4]. Regarding the accuracy, our labeling results currently by
far do not reach the state of the art performance of complex problem-specific
approaches in [2][3][1][4].

3 Task and Model Requirements

We are faced with a multi-label semantic segmentation problem, where we wish
to identify each voxel of an observed and previously unseen MR image with the
femur, the femoral cartilage, the tibia, the tibial cartilage or with the background
class label.

We assume that complex MRI measurement yields noisy observation and,
hence, to account for the expected interscan variability we require our data
model to be statistical. It is our goal, among others, to distinguish between the
femur, the tibia and the patella. Let us maintain that we wish to identify the
latter with the background class. Inspection of Fig. 1(a) and Fig. 1(b) reveals
that these bones appear as large regions with pronounced boundaries. Hence,
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we assume that data provides us with a hint in regard to the spatial extent
of these regions. Nevertheless further inspection reveals that all bones appear
almost identical and also very similar to the area outside of the knee in the top
left corner in Fig. 1(a). Hence, we assume that MR data only provides us with
a hint of a class subset. On the other hand we realize that MRI is a controlled
measurement. Hence, we assume that the location in the MR image provides
us with a hint in regard to the class label. Nevertheless we expect variability
in the knee placement and in the knee itself and assume thus that at the same
time location in the MR image does not provide a hint of region boundaries.
This motivates the model requirement to provide means to statistically capture
spatially variant label prior information and to combine this information with
the statistical data model. Background and bones are large homogeneous regions,
see Fig. 1(b), and, hence, we require our model to prefer smooth segmentation
results.

The femoral and the tibial cartilage appear to challenge all model require-
ments. Cartilage lacks both distinct appearance and distinct boundaries with
neighboring soft tissues and represents thus challenge to the data model. Being
realized by a thin layer of tissue, cartilage represents a challenge for both the
spatially variant label prior, that should be well localized, and the smoothness
prior, that should not oversmooth the resulting segmentation. Hence, we require
the model to well balance all requirements.

4 Nonparametric Markov Random Field Model

In this section we derive a global statistical model that relates the unobservable
class labels to an observed MR image. In other words, let a vector y denote an
MR image, where y = (yi)i∈S , the scalar yi is the intensity of the ith voxel, and S
is the set of the MR voxel indices. Let the class labels assigned to the MR voxels
be given by a vector x = (xi)i∈S . We have xi ∈ {0, 1, 2, 3, 4}, where the label
set encodes the set {background, femur, femoral cartilage, tibia, tibial cartilage}
of classes of our multi-label semantic segmentation problem. We refer to the
vector x as label configuration and sometimes abbreviate label configuration as
labeling. In the considered generative framework we relate an unobservable class
label configuration x to an observed MR image y in terms of the joint probability
p(x,y) = p(y | x)p(x).

We in common way simplify complex data generation process p(y | x) as
p(y | x) ≡ ∏

i p(yi | xi). This step is needed to arrive at a computationally
tractable generative model. On one hand, this means to give up discriminative
power of features derived from larger image regions and to resort to using sole
intensity values as features. On the other hand, the resulting simplicity allows
to estimate the model component accurately from training data. We note that
the functional form of the term itself is spatially invariant. Nevertheless let us
maintain that the value of this term is spatially variant through the dependence
on the data. We thus refer to this term as spatially invariant data term.
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We model the class labeling prior p(x) ≡ pMRF (x)
∏

i pi(xi) as a product
of a spatially variant label prior pi(xi) and spatially invariant smoothness prior
pMRF (x). We model the latter term pMRF (x) ∝ exp{∏{i,i′} δ(xi − xi′)} as a
standard Potts model [6][8] Markov random field defined on a 3-dimensional (3d)
grid with 6-neighborhood. Here {i, i′} denotes pair of neighboring voxels.

The modeled joint probability can now be expressed as

p(x,y) = pMRF (x)
∏

i

p(yi | xi)pi(xi) (1)

5 Model Adaptation by Nonparametric Estimation

We adopt a histogram based nonparametric density estimation approach and
model the spatially invariant class-conditional intensity probability p(yi | xi),

p(yi | xi) ≡ p̂(yi | xi) (2)

as an empirical probability estimate p̂(yi | xi), i.e., as a class-specific frequency of
an intensity value in training data divided by the total number of its observations.

Similarly, the spatially variant class label prior distribution pi(xi),

pi(xi) ≡ p̂i(xi) (3)

is an empirical probability estimate p̂i(xi) of a class label at a specific location.
Unlike nearest-neighbor based nonparametric methods and kernel based non-

parametric methods, the adopted histogram based method has the advantage of
allowing to discard the training data once the histograms have been computed.
This is especially convenient in a situation involving large MRI data volumes.
In addition, this approach further allows for a convenient model update in case
the training data arrives sequentially.

6 Inference of Unknown Labeling

For the statistical model formulated in Eq. (1), for its estimate in Eq. (2), for
its estimate in Eq. (3) and for a given and previously unseen MR image y we
are interested in finding a label configuration x that maximizes the probability
in Eq. (1). To do so, we express the model in Eq. (1) in an equivalent form
of a Boltzmann distribution p(x,y) ∝ exp{−E(x,y)} and pose the problem as
finding a minimum of the so called energy function

E(x,y) = −
∑

i

log p̂i(xi)−
∑

i

log p̂(yi | xi) +
∑
{i,i′}

δ(xi − xi′)

In general, this problem is very difficult to solve exactly. Recently, algorithms
based on graph cuts, loopy belief propagation and convex relaxation have proven
to be efficient in finding good approximate solutions to the above problem. In
our experiments we adopted the latter proposed in [5].
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7 Experiments, Results and Discussion

In our experiments, we use training data to train our model and we use test data
to evaluate the model. Training data comprised 60 MR images, see Fig. 1(a), and
of 60 corresponding manual segmentations, see Fig. 1(b). In our work we refer
to the result of manual segmentation as ground truth label configuration. Test
data consisted of 40 MR images, see Fig. 1(c). Test ground truth labelings were
unknown to us during experiments. Evaluation of our segmentation results, see
Fig. 1(d), that involved the unknown test ground truth labelings, was performed
by a third party. In total, there were 100 MR images available to us. MR image
size ranged from 8 to 16 Mio voxels, where typical size was 11 Mio voxels.
Typical MR image resolution was roughly 300 × 350 × 100 voxels. MR image
spatial resolution was 0.4 × 0.4 × 1 mm. Hence, typical MR image volume size
was roughly 120×140×100 mm. In our experiments, we normalized the intensity
values, in each MR image individually to [0, 1] by finding the maximum intensity
and by dividing each intensity by this value. We did not correct the bias by
subtracting the minimum intensity from each intensity value.

We resort to using intensity values as features. To what extent are intensity
values discriminative for our problem? What is the interscan variability of the
intensities? To answer these questions we used training data to compute class-
specific histograms of intensity values, see Fig. 2(a). In Fig. 2(b) we show means
of single MR image frequencies together with the percentile ranges. We observe
that background class intensities cover almost the whole intensity range. Fur-
ther, we have observed that the femoral and the tibial cartilage class intensities
cover wide intensity range and that the distributions are very similar. The femur
and the tibia intensity distributions are more localized, however, appear almost
identical. In Fig. 2(b) we observe that per MR image distributions can deviate
considerably from each other. We conclude that the adopted features are simple
on one hand, however, on the other hand appear to be weak in terms of discrim-
inative power. For this reason, the spatially invariant data term, that is based
on the class conditional distribution of intensity values shown in Fig. 2(c), is a
weak component of our model. This is further confirmed in Fig. 4(b).

To what extent is the spatially variant label prior derived from unregistered
manual segmentations informative? Slices of the spatially variant label prior vol-
ume with the resolution of 60×60×60 are shown in Fig. 3. We show class-specific
slices and also a max prior probability slice, where white means preference for a
particular label and where gray area means weak preference for a particular class
label. What is the role of the spatially variant label prior? This is illustrated in
Fig. 4(c)(e)(f). Here we observe how prior alignment is corrected by the data
term. Fig. 4(d)(f) further illustrates the role and the impact of the spatially
invariant label smoothness prior.

Further qualitative and quantitative results using the full model, where a
coarse spatially variant label prior with the resolution of 30× 30× 10 was used,
can be found in respectively Fig. 5 and Tab. 1. Here we observe strong block
artifacts even though the segmentation was computed on the full resolution.
Comparison to the result in Fig. 4(f), where a finer 60×60×60 spatially variant
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(a) (b) (c)

Fig. 2. Single point on a function graph shows: (a) Class-specific frequency of an in-
tensity in training data, (b) mean with percentile range of frequencies computed per
training MR image, (c) class-conditional probability of an intensity computed from the
frequency in (a).

(a) (b) (c) (d) (e)

Fig. 3. Slices of spatially variant label prior. Probability values of (a) femur, (b) femoral
cartilage, (c) tibia, (d) tibial cartilage. (c) Maximum prior probability values. We show
probability of 1 in white, probability of 0 in black and other probability values in gray.

(a) (b) (c) (d) (e) (f)

Fig. 4. (a) 2d slice of the test MR image in Fig. 1(c). Model components: 2d slice of
labeling computed only with (b) spatially invariant data term, (c) spatially variant
label prior, (d) combination of spatially invariant data term and spatially invariant
label smoothness prior, (e) combination of spatially invariant data term and spatially
variant label prior. (f) 2d slice of the full model based labeling in Fig. 1(d).
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label prior was used, reveals that this is mainly a consequence of the coarse
spatially variant label prior used here.

8 Conclusion

We discussed the potential of a fast automatic reproducible method for 3d se-
mantic segmentation of magnetic resonance images of the knee. Our labeling re-
sults by far do not reach the state of the art performance of complex approaches
specifically designed to produce clinically relevant results. We illustrated to what
extent can an involved learning problem be avoided, while still obtaining results
potentially useful for rough visualization, see Fig. 1(d), or for initialization of
computationally demanding methods. Our main contribution is to provide in-
sights in possible strategies when employing global statistical models.
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Fig. 5. Different views on selected test cases 8 (top), 16 (center), and 31 (bottom). The
outline of the reference segmentation is displayed in green, the outline of the automatic
method described in this paper in red.
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Img Femur bone Tibia bone Fem. cartilage Tibial cartilage Total
AvgD RMSD Scr AvgD RMSD Scr VOE VD Scr VOE VD Scr Score
[mm] [mm] [mm] [mm] [%] [%] [%] [%]

1 2.27 3.14 0 2.31 3.52 0 50.8 89.2 31 50.3 -25.8 36 16.9
2 2.40 3.20 0 3.55 4.55 0 90.0 -89.6 17 62.4 10.2 59 19.1
3 2.91 4.29 0 3.95 5.40 0 56.6 -8.4 64 68.8 93.3 25 22.3
4 2.77 4.24 0 3.05 5.13 0 80.3 -74.2 21 59.3 -28.3 28 12.3
5 2.60 3.37 0 3.73 6.56 0 75.4 -67.6 22 66.2 14.3 51 18.3
6 2.04 2.90 3 1.51 2.16 6 55.2 38.5 30 52.3 18.1 49 22.1
7 3.16 4.61 0 3.41 4.91 0 76.2 -65.7 22 65.2 79.9 26 12.1
8 2.22 3.24 0 2.51 3.81 0 60.2 -36.1 28 57.2 95.3 29 14.3
9 3.31 4.49 0 3.32 4.81 0 60.9 -12.0 57 61.3 68.8 28 21.0

10 2.68 3.63 0 2.97 3.95 0 43.5 -25.2 40 49.4 82.2 32 17.9
11 2.99 4.20 0 2.86 4.07 0 55.8 62.2 30 56.6 105.5 29 14.7
12 3.19 4.93 0 3.44 5.23 0 70.7 -42.7 24 68.0 50.1 25 12.3
13 2.70 3.66 0 2.21 3.27 0 66.1 136.2 26 89.4 -24.9 24 12.3
14 2.57 3.40 0 2.21 3.21 0 61.4 131.5 28 68.4 -39.5 25 13.1
15 2.88 4.20 0 2.76 3.80 0 72.6 -66.4 23 64.2 105.4 27 12.5
16 3.73 5.39 0 3.86 6.05 0 89.1 -70.7 17 71.7 -39.8 24 10.3
17 2.92 3.85 0 3.09 4.78 0 86.3 -77.9 18 76.1 -37.7 22 10.2
18 2.09 2.97 2 2.58 4.43 0 55.7 106.9 30 79.8 -73.2 21 13.0
19 1.93 2.84 4 1.55 2.37 2 51.9 72.9 31 49.3 20.0 47 21.0
20 3.24 4.60 0 2.65 3.68 0 74.8 -52.3 23 51.1 70.5 31 13.5
21 2.14 3.21 0 3.30 5.60 0 74.1 -31.6 23 65.0 -25.6 31 13.5
22 2.40 3.57 0 3.39 5.16 0 59.5 93.1 28 82.6 -67.4 20 12.0
23 2.76 3.96 0 4.14 5.90 0 53.7 -6.6 69 64.1 64.2 27 23.8
24 2.38 3.61 0 2.76 3.93 0 45.7 52.0 33 61.8 -22.1 39 18.0
25 3.07 4.68 0 3.53 5.07 0 44.2 62.9 34 44.8 41.7 34 16.9
26 3.36 4.34 0 4.11 7.02 0 93.2 -93.1 16 82.5 -46.1 20 8.9
27 2.46 3.40 0 2.78 3.77 0 77.6 -61.0 22 50.5 44.6 32 13.3
28 4.86 7.21 0 2.76 3.89 0 68.4 39.4 25 50.5 31.7 32 14.1
29 2.09 2.73 6 5.06 6.77 0 76.1 -62.1 22 89.6 -58.9 17 11.3
30 2.64 3.93 0 2.07 3.70 0 53.0 33.0 31 64.7 24.3 34 16.1
31 4.74 6.90 0 2.24 3.61 0 63.6 -36.8 27 61.6 40.6 28 13.6
32 2.04 2.89 3 1.54 2.30 4 53.3 51.2 31 61.7 18.3 45 20.6
33 2.64 4.17 0 1.67 2.62 0 60.8 27.9 29 59.5 111.5 28 14.2
34 2.51 3.53 0 2.14 3.20 0 84.3 -79.3 19 64.4 93.7 26 11.4
35 2.51 3.78 0 2.16 3.24 0 61.5 -40.4 28 52.0 -1.2 79 26.6
36 1.94 3.22 0 1.81 2.72 0 47.6 80.8 33 72.5 -57.6 24 14.0
37 5.14 6.92 0 5.94 8.22 0 80.8 8.7 55 100.0 -100.0 13 17.1
38 2.94 4.34 0 2.14 3.26 0 53.8 4.7 72 57.9 129.1 29 25.2
39 4.35 5.53 0 5.47 7.23 0 95.9 -93.6 15 84.2 -41.3 19 8.5
40 4.39 6.82 0 5.32 8.77 0 52.5 28.7 31 65.6 75.8 26 14.2

Avg 2.90 4.15 0 3.05 4.54 0 65.8 -1.8 31 65.1 20.0 31 15.6
±0.81 ±1.17 ±1 ±1.09 ±1.59 ±1 ±14.4 ±66.9 ±14 ±12.7 ±60.7 ±12 ±4.5

Table 1. Results of the comparison metrics and scores for all 40 test cases. AvgD and
RMSD are the average and RMS surface distance, respectively, VOE is the volumetric
overlap error and VD indicates the volumetric difference.


