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ABSTRACT:

We investigate Discriminative Random Fields (DRF) which provide a principled approach for combining local discriminative classifiers
that allow the use of arbitrary overlapping features, with adaptive data-dependent smoothing over the label field. We discuss the
differences between a traditional Markov Random Field (MRF) formulation and the DRF model, and compare the performance of the
two models and an independent sitewise classifier. Further, we present results suggesting the potential for performance enhancement
by improving state of the art parameter learning methods. Eventually, we demonstrate the application feasibility on both synthetic and

natural images.

1 INTRODUCTION

This paper presents an investigation into the statistical modeling
of spatial arrangements in the context of image understanding or
semantic scene interpretation.

Our goal is the interpretation of the scene contained in an im-
age as a collection of semantically meaningful regions. We are
specifically interested in the interpretation of terrestrial images
in build-up areas, showing man-made structures, vegetation, sky
and other more specific objects. The result of such an interpreta-
tion could be a rich image description useful for 3D-city models
of high level of detail. In this paper we focus on the problem
of binary classification of image regions, especially on detecting
man-made structures.

It has been argued that the incorporation of spatial dependencies
in the image interpretation task is vital for improved performance.
Markov Random Fields (MRF) allow modeling local contextual
constraints in labeling problems in a probabilistic framework and
since the early work on stochastic fields by (Besag, 1974), the
pioneering on stochastic algorithms in MRF’s by (Geman and
Geman, 1984) and the work by (Modestino and Zhang, 1992)
on MRF-based image interpretation, MRF is the most commonly
used model for modeling spatial interactions in image analysis
(Li, 2001).

MREFs are generally used in a generative framework that models
the joint probability of the observed data and the corresponding
labels. In other words, let y denote the observed data from an
input image, where y = {y: }ics, ¥ is the data from the ith site,
and S is the set of sites. Let the corresponding labels at the image
sites be given by x = {x;}ics. In the considered generative
MREF framework, the posterior over the labels given the data is
expressed using the Bayes’ rule as,

P(xly) o< P(x,y) = P(y|x)P(x)

The prior over labels, P(x) is modeled as a MRF. The observa-
tion model, P(y|x) is described in the following.

(c) MRF (d) DRF

Figure 1: Image interpretation. (a) Input image. (b - d) Man-
made structure detection result for different methods. DRF im-
proves the detection rate and reduces the false positive rate. Man-
made structure is denoted by bounding squares superimposed on
the input image.

Let us consider a common MRF formulation of binary classifica-
tion problems. The labels are assumed to be x; € {—1,1} and
the label interaction field P(x) is assumed to be a homogeneous
isotropic 2D lattice, thus an Ising model. Let us further assume,
that the observation or likelihood model P(y|x) has a factorized
form, i.e., P(y|x) = HiES P(y;|z;) (Besag, 1986) (Li, 2001).
Then the posterior distribution over labels can be written as,

P(xly) = %GXP (Z log P(y:|z:) + Z Z ,Bxi$j>
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where (3 is the interaction parameter of the MRF, y; is data from
a single image site 4, IV; are the neighbors of site x; and Z is
the normalization constant, the partition function. We note that
even though only the label prior P(x) is assumed to be a MRF,
captured in Bz;x;, the assumption of conditional independence
of data implies that the posterior given in Eq. (1) is also a MRFE.
If the conditional independence assumption is not used, the pos-



terior will generally not be a MRF making the inference difficult.
Hence, for computational tractability data are generally assumed
to be, conditioned on the labels, independent. In the following,
we refer to the above described MRF model as the conventional
MRF model.

Following the previous reasoning, let us now consider the task of
detecting man-made structures in images of urban scenes. See
Fig. 1 for an example. Looking at textures, lines, corners, etc.,
that are present in the image, we realize that given the man-
made structure class label, the data is still highly dependent on
its neighbors, e.g., edges and textures cover larger areas, than just
a single image sites. Hence, the assumption of conditional inde-
pendence indeed is restrictive.

In the context of classification, we are generally interested in
estimating the posterior over labels given the observations, i.e.,
P(x|y). In the generative framework, we model the joint distri-
bution P(x,y), which involves modeling additional complexity
not relevant to the considered classification task. Simplifying as-
sumptions are often needed to deal with the resulting complexity.
In addition, learning full probabilistic model is hard if little train-
ing data is available. In a discriminative framework, on the con-
trary, the distribution P(x|y) is modeled directly. In this work,
we describe a model called Discriminative Random Field (DRF),
introduced by Kumar (Kumar and Hebert, 2003), that directly
models the posterior distribution as a MRE.

The paper is organized as follows: After a review on recent re-
lated work, we describe the concept, parameter learning and the
inference using DRF’s. We investigate different learning strate-
gies, namely pseudo-likelihood with and without prior informa-
tion on the parameters. The central part of our investigation
is the comparison of different inference methods, namely logis-
tic classification, iterated conditional modes algorithm and max-
flow/min-cut type of algorithm, which show to yield better results
than shown in (Kumar and Hebert, 2004a). The application to real
data shows the feasibility of the approach for detecting man-made
structures in terrestrial images.

2 RELATED WORK

DRFs have been introduced in (Kumar and Hebert, 2003). The
DRF models are based on the concept of Conditional Random
Fields (CRF) (Lafferty et al., 2001) that have been proposed in
the context of segmentation and labeling of 1D text sequences.

DRFs have later been modified in (Kumar and Hebert, 2004a) in a
way that leads to model parameter learning as a convex optimiza-
tion problem. DRFs model have been extended for multiclass
problems for parts-based object detection (Kumar and Hebert,
2004b). Learning - inference coupling is studied in (Kumar et
al., 2005). Further, formulation with hierarchical interactions can
be found in (Kumar and Hebert, 2005). Learning in DRF can be
accelerated using Stochastic Gradient Methods (Vishwanathan et
al., 2006) and Piecewise Pseudo-likelihood (Sutton and McCal-
lum, 2007).

In addition, CRF can formulated using hidden states (Quattoni
et al., 2004, Wang et al., 2006, Quattoni et al., 2007). The con-
cept of CRFs can be employed for incorporating a semantic ob-
ject context (Rabinovich et al., 2007). Modeling temporal con-
textual dependencies in video sequences is described in (Smin-
chisescu et al., 2005). A semi-supervised learning approach to
learning in CRF can be found in (Lee et al., 2007). Last, pseudo-
likelihood based approximations are investigated in (Kor¢ and
Forstner, 2008).
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Figure 2: Image restoration. From top, row 1: ground truth im-
ages, row 2: input images (ground truth images corrupted with
bimodal noise), row 3: logistic classifier result, row 4: MRF re-
sult, row 5: DRF result.

3 DISCRIMINATIVE RANDOM FIELD

Let us review the formulation of DRFs and discuss the model in
the context of binary classification on 2D image lattices. A gen-
eral formulation on arbitrary graphs with multiple class labels is
described in (Kumar and Hebert, 2004b). Recalling notation in-
troduced in the previous section, where x = {z; }ics denotes
labels at image sites ¢, we now have z; € {—1, 1} for a binary
classification problem. The DRF model combines local discrim-
inative models to capture the class association at individual sites
with the interactions in the neighboring sites as:

P(xly) = 7 exp (Z Al y)+ Y > L, y>>
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where Z is the partition function (normalizing constant) and N;
is the set of neighbors of the image site . Let us note that, as op-
posed to the conventional MRFs, both the unary association po-
tential, A;(x;,y) = log P'(z:]y) , and the pairwise interaction
potential, I;;(x;, z;,y) = log P”(z;,z;|y) , depend explicitly
on all the observations y. The restrictive assumption of condi-
tional independence of data, made in the conventional MRFs,
is thus relaxed. Further, unlike conventional generative MRFs,
where the pairwise potential is a data-independent prior over the
labels, the pairwise potential in DRFs depend on the data y and
allows thus data-dependent interaction among the labels. We en-
courage the reader to study the differences of the MRF model in
Eq. (1) and the DRF model in Eq. (2) as they form the basis of
our discussion.

In Eq.( 2), P'(z:ly) = exp(Ai(wi,y)) and P"(zi,2;]y) =
exp(1ij(zi,zj,y)) are arbitrary unary and pairwise discrimina-
tive classifiers. This gives us freedom to choose any domain
specific method to identify object classes (P’) or neighborhood
dependencies (P"), especially classifiers which use any type of
features, especially image features which exploit possibly over-
lapping neighborhoods of the site in concern, or even depending
on global image characteristics.

Let us denote the unknown DRF model parameters by 6§ =
{w, v}, the parameters w specifying the classifier for individual
sites, the parameters v specifying the classifier for site neighbor-
hoods. In this paper, as in (Kumar and Hebert, 2004a), we use a
logistic function to specify the local class posterior, i. e.

P'(zily) = o(ziw" hi(y)) A3)



where o(t) = 1/(1 + e~ "). Here, h;(y) is a sitewise fea-
ture vector, which has to be chosen such that a high positive
weighted sum wThz-(y) supports class ; = 1. Similarly, to
model P"(x;,x;|y) we use a pairwise classifier of the following
form: P"(xs,2;ly) = wix;v" p,;(y). Here, p,;(y) is a fea-
ture vector similarly being able to support or suppress the identity
xix; = 1 of neighbored classes.

It is helpful to note that by ignoring the dependence of the pair-
wise potential on the observed data y, we obtain the conventional
MRF smoothing potential, Sz;x; in Eq. (1), known as the Ising
model.

In the following we assume the random field in Eq. (2) to be ho-
mogeneous and isotropic, i.e., the functional forms of A; and I;;
are independent of the locations ¢ and j. Henceforth we will leave
the subscripts and use the notation A and I.

3.1 Parameter Learning

In the MRF framework the parameters of the class generative
models, p(y;|z;) and the parameters of the prior label interaction
field, P(x) are generally assumed to be independent. Therefore
they are learned, i. e. estimated from training data, separately (Li,
2001). In DRFs, on the contrary, all the model parameters have
to be learned simultaneously.

We learn the parameters 6 of the DRF model in a supervised
manner. Hence, we use training images and the corresponding
ground-truth labeling. As in (Kumar and Hebert, 2004a), we
use the standard maximum likelihood approach and, in princi-
ple, maximize the conditional likelihood P(x|y,#) of the DRF
model parameters. However, this would involve the evalua-
tion of the partition function Z which is in general NP-hard.
To overcome the problem, we may either use sampling tech-
niques or approximate the partition function. As in (Kumar and
Hebert, 2004a), we use the pseudo-likelihood (PL) approxima-
tion P(x|y,0) = [[,cs P(xilxn;,y,0) (Besag, 1975),(Besag,
1977), which is characterized by its low computational complex-
1ty.

It has been observed (Greig et al., 1989), that in the case of the
Ising MRF model, this approximation tends to overestimate the
interaction parameter 3, causing the MAP estimate of the field
to be a poor solution. Same observation has been made for the
interaction parameters in the DRFs, (Kumar and Hebert, 2004a).
To overcome the difficulty, they propose to adopt the Bayesian
viewpoint and find the maximum a posteriori estimates of the pa-
rameters by assuming a Gaussian prior over the parameters such
that P(0|7) = N'(0]0, 7°I) where I is the identity matrix.

Thus, given M independent training images, we determine 6
from

M
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Figure 3: Image restoration with DRF. Different inference meth-
ods (ICM: Iterated Conditional Modes, MIN-CUT: min-cut/max-
flow algorithm) in combination with single parameter learning
method (PPL: Penalized Pseudo-likelihood).

As stated in (Kumar and Hebert, 2004a), if 7 is given, the problem
in Eq. (4) is convex with respect to the model parameters and can
be maximized using gradient ascent. We implement a gradient
ascent method variation with exact line search and maximize for
different values of 7.

In our experiments, we adopt two methods of parameter learning.
In the first set of experiments, we learn the parameters of the DRF
using a uniform prior over the parameters in Eq. (4), i.e., 7 = oc.
This approach is referred to as the pseudo-likelihood (PL) learn-
ing method. Learning technique in the second set of experiments,
where prior over the DRF model parameters is used, is denoted
as the penalized pseudo-likelihood (PPL) learning method.

Discrete approximations of the partition function based on the
Saddle Point Approximation (SPA) (Geiger and Girosi, 1991),
Pseudo-Marginal Approximation (PMA) (McCallum et al., 2003)
and the Maximum Marginal Approximation (MMA) are de-
scribed in (Kumar et al., 2005). A Markov Chain Monte Carlo
(MCMC) sampling inspired method proposed by Hinton (Hinton,
2002) and called the Contrastive Divergence (CD), is another way
to deal with the combinatorial size of the label space. We leave
that for future exploration.

3.2 Inference

When solving the inference problem we aim at finding the opti-
mal label configuration x given an image y. Currently, we use
the MAP estimate as the criterion of optimality.

In case the probability distribution meets certain conditions (Kol-
mogorov and Zabih, 2004), MAP estimate can be computed ex-
actly for undirected graphs and binary classification problems
employing the max-flow/min-cut type of algorithms (Greig et al.,
1989). We compute approximate MAP solution,

x « argmax P(x|y)

as explained in (Kumar and Hebert, 2004a), using min-cut/max-
flow algorithm and employ the algorithm described in (Boykov
et al., 2001). The method is referred to as MIN-CUT.

For comparison, we use two other algorithms for inference. The
first algorithm, referred to as ICM, is the Iterated Conditional
Modes algorithm, (Besag, 1986), that given an initial labeling
iteratively maximizes local conditional probabilities, cf. (4)

x; «— argmax P(z;|xn,,y)

Tq

ICM yields local estimate of the posterior. We implement a par-
tially synchronous update scheme. In this scenario, we first divide
image sites into coding sets, i.e., sets of non-neighboring pixels.



In each iteration, we compute a synchronous update of the image
sites in a single coding set and then use the result to update the
sites in the other coding set. This speeds up the usual sequential
updating process.

For further illustration, we set the model interaction parameters to
zero. This reduces MRF model to a maximum likelihood (ML)
classifier. In the DRF case, the model is reduced to a logistic
classifier in Eq. (3) yielding the second algorithm, referred to as
LOGISTIC, that we use for comparison. In this case, given ob-
servation y, optimal labeling x is found by maximizing the class
posterior, i.e.,
x; «— argmax P(x;]y)

Logistic inference is an example of a MAP solution where no
label interaction is used.

In the future, we intend to explore an alternative to the MAP in-
ference based on the Maximum Posterior Marginal (Marroquin,
1985). Such solution can be obtained using loopy Belief Propa-
gation (Frey and MacKay, 1998).

4 EXPERIMENTS

To analyze the learning and inference techniques described in the
previous section, we applied the DRF model to a binary image de-
noising task. The aim of these experiments is to recover correct
labeling from corrupted binary images. We use the data that has
been used in learning and inference experiments in (Kumar and
Hebert, 2004a),(Kumar et al., 2005),(Kumar and Hebert, 2006)
and compare our results with those published in the above men-
tioned works.

Four base images, see the top row in Fig. 2, 64 x 64 pixels each
are used in the experiments. Two different noise models are em-
ployed: Gaussian noise and Bimodal (mixture of two Gaussians)
noise. Details of the noise model parameters are given in (Kumar
and Hebert, 2004a). For each noise model, 10 noisy images from
the left most base image in Fig. 2 are used as the training set for
parameter learning. Remaining 190 noisy images are used for
testing.

The unary and pairwise features are defined as: h;(y) = [1, I;]”
and p;;(y) = [1, |I; — I ]” respectively, where I; and I; are the
pixel intensities at the site ¢ and the site 5. Hence, the parameter
w and v are both two-element vectors, i.e., w = [wo, w1]”, and
v = [vo, v1]T.

4.1 Logistic Classification, MRF and DRF

Let us first compare the DRF model with the conventional MRF
model, described in Sec. 1, and the logistic classifier.

Each class generative model P(y;|x;) of the MRF in Eq. (1) is
modeled as a Gaussian P(I;|x;) = N (I;|p1,0?). I; is the pixel
intensity at the site ¢. Standard deviation o for both class gener-
ative models is fixed to the value of the standard deviation of the
Gaussian noise model in use. We learn the MRF model parame-
ters, i.e., Gaussian means p; and po together with the interaction
parameter 3 using pseudo-likelihood and gradient ascent.

We illustrate this comparison in Fig. 2. The original images or,
in other words, the ground truth labeling, used in the experiments
is shown in the first row. The second row depicts the input im-
ages, i.e., the ground truth images corrupted heavily by a bimodal
noise. The third row illustrates classification result that we obtain
by estimating a pixel label independent of its neighborhood.

Inference Learning Inference

Method Method Time
PL PPL (sec)
Gaussian  LOGISTIC || 15.28 15.28 0.003
Noise ICM 4.33 4.33 0.081
MIN-CUT 2.54 2.55 0.012

Learning Time (sec) 32 37
Bimodal LOGISTIC || 30.53 30.24 0.003
Noise ICM 22.51  22.43 0.103
MIN-CUT 569 5.65 0.015

Learning Time (sec) 59 53

Table 1: Image restoration with DRF. Pixelwise classification er-
rors (%) on 190 test images. Rows show inference techniques and
columns show parameter learning methods used for two different
noise models. Means over 10 experiments are given.

The third and the fourth row in Fig. 2 illustrate two ways of in-
corporating label neighborhood dependencies in the classifica-
tion process. The fourth row shows a typical classification result
in case the contextual information is modeled using the conven-
tional MRF model. Last row presents a typical result for classi-
fication with spatial dependencies captured by the DRF. We ob-
serve that the MRF and the DRF models yield comparable results
in this case.

4.2 Parameter Learning

Finding optimal parameters of the DRF model means solving
convex optimization problem in Eq. (4). For this purpose, we
implement a variation of the gradient ascent algorithm that we
describe in the following.

In all our experiments, we initialize the ascent method with the
DRF model parameters §(*) = [w(®; v(®] =[0,0,0,0]”. Then
we repeat the gradient computation, line search and the update
computation until a stopping criterion is satisfied. For the com-
putation of the numerical gradient we use a certain small value
of the spacing 1’ between points in each direction. This value is
fixed during the whole computation. We specify the value in the
following.

During line search computation, we make use of a variable spac-
ing 1. We start with some initial value of n and then anneal it
according to a decrementing schedule. In our experiments, we
start by choosing an initial value of n = 0.2 and anneal 1 by
multiplying it with 0.4 until the value of ) is smaller than 0.001.
We choose the update step size via exact line search as being a
multiple of the current spacing.

We iterate until a stopping criterion is satisfied. In our experi-
ments, we run our optimization until the vector norm of the dif-
ference of the last two parameter vectors in the minimizing se-
quence is smaller than current spacing. Every time a convergence
is reached current spacing is annealed in the way described above.

We note that it is the smallest value of the variable spacing 7 that
is used in every iteration as the fixed spacing n’ for the numerical
gradient computation.

Our experimental observations motivate the use of exact opti-
mization. An inexact approach, commonly used in practice, tends
to stop the computation far from optimum.

4.3 Inference

We compare results of LOGISTIC, ICM and MIN-CUT inference
for the case of parameters learned through PL, PPL and for both



Gaussian Bimodal || Learning

noise noise time

MIN-CUT MIN-CUT (Sec)

MMA, KH’05 34.34 26.53 636
PL, KH’05 3.82 17.69 300
CD, KH’05 3.78 8.88 207
PMA, KH’05 2.73 6.45 1183
SPA, KH’05 2.49 5.82 82
PL, ours 2.54 + 0.04 5.69 £+ 0.06 46 £ 8
PPL, ours 2.55£0.04 || 5.65 4 0.06 45 +5

Table 2: Image restoration with DRF. Pixelwise classification
errors (%) on 190 test images. Rows show parameter learning
methods and columns show inference technique used for two dif-
ferent noise models. KH’05 stands for the results published in
(Kumar and Hebert, 2005). Mean = standard deviation over 10
experiments is given for our results.

noise models. For PPL learning we used uniform prior over the
association parameters, Gaussian prior over the interaction pa-
rameters and we optimize for different values of the parameter 7.
Several typical results on synthetic and natural images can be re-
spectively found in Fig. 3 and Fig. 4. Our experiments are further
summarized in Tab. 1.

Gaussian prior over the interaction parameters {v} is used in our
experiments, where uniform prior is used for the rest of the pa-
rameters. As in (Kumar and Hebert, 2004a), PPL learning with
Gaussian prior over the interaction parameters v together with
the MIN-CUT inference yields the lowest classification error for
both noise models.

We run the PPL parameter learning for the following values of
the prior parameter 7 = {1, 0.1,0.01,0.001} and choose the pa-
rameter value based on the lowest resulting classification error.

Further, we compare our results of MAP MIN-CUT inference
used with PPL learning with the results of MAP MIN-CUT infer-
ence used in combination with other state of the art learning meth-
ods proposed in (Kumar et al., 2005) and mentioned in Sec. 3.1.
We summarize the comparison in Tab. 2. For the bimodal noise
model, our PPL learning with MAP MIN-CUT inference outper-
forms other learning methods in Tab. 2. Further, we note that
enhanced performance is achieved while less time is needed for
learning.

In (Kumar et al., 2005), the MAP inference with SPA learning
is found to yield the lowest classification error for the Gaussian
noise model. Both PL and PPL learning with the MIN-CUT in-
ference yield comparable classification errors in this case. For the
Bimodal noise model, the lowest error is obtained using the MPM
inference with PMA learning. This combination is not mentioned
in Tab. 2.

To conclude, we improve the PL and the PPL parameter learning
methods and outperform other methods used in combination with
MAP MIN-CUT inference proposed in (Kumar et al., 2005).

4.4 Natural Images

We demonstrate the application feasibility on natural images in
the following. Our intention in this experiment is to label each
site of a test image as structured or non-structured. We divide our
test images, each of size 384 x 256 pixels, into non-overlapping
blocks, each of size 16 x 16 pixels, that we call image sites. For
each image site ¢, a 2-dim single-site gradient magnitude and ori-
entation based feature vector is computed. We use linear dis-
criminant and quadratic feature mapping to design the potential
functions of the random field.

MIN-CUT, PL

MIN-CUT, PPL

Figure 4: Image interpretation with DREF. Different inference
algorithms (ICM: Iterated Conditional Modes, MIN-CUT: min-
cut/max-flow algorithm) in combination with different param-
eter learning methods (PL: Pseudo-likelihood, PPL: Penalized
Pseudo-likelihood).

Learning
Sitewise Time
Error DR FP (sec)
MREF, PL 29.57 61.11 11.42 10
DRF, PL 29.55 61.16 11.48 23
MRE, PPL 17.94 87.83 29.13 12
DREF, PPL 17.78 85.26 23.66 25

Table 3: Image interpretation. Rows show different models
(MREF, DRF) trained using different learning methods (PL, PPL).
Comparison is given in terms of sitewise error, detection rate
(DR) and false positive rate (FP). 100 images were used to learn
the model parameters and 47 images were used for testing. Means
over 10 experiments are given.

We observe that, by imposing the smoothness label prior, the con-
ventional MRF approach reduces the classification error of an in-
dependent sitewise classifier. The data-dependent smoothness la-
bel prior of the DRF model further reduces the false positive rate
of the conventional MRF approach. In this experiment, 0.002
seconds was the average inference time. See Fig. 1 for illustra-
tion and Tab. 3 for more details.

5 CONCLUSIONS AND FUTURE WORK

We investigate discriminative random fields which provide a prin-
cipled approach for combining local discriminative classifiers
that allow the use of arbitrary overlapping features, with adap-
tive data-dependent smoothing over the label field. We show that
state of the art parameter learning methods can be improved and
that employing the approach for interpreting terrestrial images of
urban scenes is feasible. Currently, we explore the ways of fur-
ther improving the DRF model parameter learning.
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