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Abstract. We present a solution to the following discrete optimization
problem. Given a set of independent, possibly overlapping image regions
and a non-negative likeliness of the individual regions, we select a non-
overlapping subset that is optimal with respect to the following require-
ments: First, every region is either part of the solution or has an overlap
with it. Second, the degree of overlap of the solution with the rest of
the regions is maximized together with the likeliness of the solution.
Third, the likeliness of the individual regions influences the overall so-
lution proportionally to the degree of overlap with neighboring regions.
We represent the problem as a graph and solve the task by reduction
to a constrained binary integer programming problem. The problem in-
volves minimizing a linear objective function subject to linear inequality
constraints. Both the objective function and the constraints exploit the
structure of the graph. We illustrate the validity and the relevance of the
proposed formulation by applying the method to the problem of facade
window extraction. We generalize our formulation to the case where a set
of hypotheses is given together with a binary similarity relation and simi-
larity measure. Our formulation then exploits combination of degree and
structure of hypothesis similarity and likeliness of individual hypotheses.
In this case, we present a solution with non-similar hypotheses which can
be viewed as a non-redundant representation.

Key words: object detection, non-overlapping solution, binary integer
programming

1 Introduction

Object detection is one of the fundamental problems in computer vision. In this
context, identification of the extent of an image object, that we more specifically
refer to as object extraction, is a challenging and computationally demanding
task.

Running single or multiple object extraction algorithms over an image at
different locations and scales is a common approach. In this case, a number
of independent, possibly overlapping regions are identified as representing an
object of interest. We refer to these regions as candidates. See Fig. 1a for an
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Fig. 1. (a) Image object candidate regions. (b) Selected subset of non-overlapping im-
age object regions. (c) Image object candidate graph. Vertices denote object candidate
regions. Links denote overlap between two candidate regions. (d) Image object candi-
date graph with selected candidates denoted by dark nodes. We note that both links
and vertices are respectively weighted by the degree of overlap of two candidate regions
and likeliness of individual candidates.

example. In the considered scenario, all regions are candidates of the same cate-
gory. In addition, an extraction algorithm may yield some non-negative likeliness
of individual regions.

We first turn candidate regions into a graphical representation, where graph
vertices denote the candidates and links an overlap between two candidates, see
Fig. 1c. We assign links with weights that reflect the degree of overlap between
two candidates. In addition, every vertex is assigned with a weight corresponding
to the likeliness of the individual candidate.

We consider every candidate as a plausible solution. Our objective is to select
a non-overlapping subset that we call a solution and that is optimal with respect
to the following requirements: (i) Every region is either part of the solution or
has an overlap with it. (ii) The degree of overlap of the solution with the rest
of the regions is maximized together with the likeliness of the overall solution.
We note that the degree of overlap is a function of candidate pairs and the
overall likeliness is a function of individual candidates. (iii) The likeliness of the
individual regions, if provided by the extraction algorithm, influences the overall
solution proportionally to the degree of its overlap with neighboring regions. The
likeliness is specified in terms of a non-negative cost or a probability of a candi-
date representing an object of interest. Altogether, we look for a representative
subset of a group of possibly overlapping candidates that is optimal with respect
to the above mentioned requirements. An illustration for such a solution is given
in Fig. 1b.

To find an optimal solution we reduce the problem to a constrained binary
integer programming problem. The problem involves minimizing a linear objec-
tive function subject to linear inequality constraints. Both the objective function
and the constraints exploit structure of the graph.
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Extraction of non-overlapping objects, such as windows in facade images,
serves as a natural example of the task under consideration. We note that the
proposed method is not restricted to regularly shaped objects and allows a re-
gion to be a non-convex irregular image patch with one or more connectivity
components.

Our formulation allows a generalization where we view candidates as hy-
potheses assigned with likeliness and region overlap as a binary relation reflect-
ing the similarity of two hypotheses. We further view the degree of the overlap
as a similarity measure of two hypotheses or, in other words, a degree of mutual
support. In this view, the graphical representation encodes hypothesis similar-
ity structure. Further, our formulation exploits combination of both degree and
structure of hypothesis similarity and likeliness of individual hypotheses. In this
case, we present a solution with non-similar hypotheses which can be viewed as
a non-redundant representation. This generalization increases the applicability
of the proposed method.

2 Related Work

The transition from Fig. 1c to Fig. 1d suggests similarity of the task to the
formation of an image pyramid as proposed by [7][9]. This formation process
is controlled by selecting surviving and non-surviving vertices of a graph. In
this view, dark nodes in Fig. 1d would represent survivors possibly retained for
the next level of the hierarchy. An alternative approach in [6] shows the graph
decimation controlled by the image data. Our formulation may also be viewed
as related to graph contraction introduced in [2] for building irregular pyramids.

Our motivation, however, is to use the graphical representation to set up a
binary integer program that exploits the combination of the degree and structure
of candidate overlap together with the likeliness of the individual candidates. Our
formulation is used to select a subset of candidates. The selected subset is neither
represented as a graph nor as a hierarchy level for further hierarchy building.
In addition, as opposed to a graph theoretical approach, we use the graphical
representation to encode the structure of a problem that we formulate within
binary integer programming framework.

Our generalization is related to [8] where optimal feature groupings consistent
with constraints is searched. Our generalization further relates to [11] where a
set of hypotheses is generated from detected image features such as lines and a
selection process is then used to choose among the generated hypotheses and to
eliminate those without sufficient evidence.

Our approach is closely related to the selection of canonical subsets of im-
age regions [3]. Further, a similar and more general approach employing a fully
connected graph is presented in [4]. We are currently investigating similarities
of our approach and the methods presented in the two above works.
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3 Object Candidate Regions

We start with the result of a region extraction procedure. The result is a set of
candidate regions V . A candidate region, or simply a candidate, is a region that
we want to assign with an object category. Further, a result of object extraction
is also a non-negative likeliness f , a quality measure of extracted candidates.

We represent candidates as a list V of N elements:

V = {Vi}i∈D (1)

where Vi ⊂ I is a set of pixels in the image I associated with the ith extracted
candidate region. In Eq. (1) index set D = {1, 2, . . . , N} denotes indices of the
extracted candidates.

A likeliness f : V → R of candidates V is denoted as

f(Vi) = fi (2)

In other words, likeliness is a function that assigns every candidate Vi with the
likeliness value fi. The likeliness f may correspond to a criterion that has been
optimized during the object extraction process. In such case, we assume the
optimization to be formulated as minimization – that is, the smaller the value
fi is, the more we value the ith candidate. If the quality measure is specified in
terms of probabilities, we set the likeliness f to f(V ) = {1 − Pi}i∈D, where Pi

is the probability of the ith candidate region being correctly assigned with the
considered category. We set the likeliness f to f : V → 1 if no candidate quality
measure is given. There is no preference of one candidate over the other in this
case.

We conclude with several comments that will become aparent in the next
sections and that we wish to mention here for completeness and greater clarity.
Later, we scale the likeliness by the degree of overlap with neighboring candidates
and, hence, we require likeliness f to take on non-negative values. Further, we
will see that if no candidate quality measure is given, the choice of the constant
does not influence the result. Only the values relative to each other play a role
in the overall cost that is being minimized. Last, we note that fi = 0 implies
that the ith candidate does not add any cost to the overall criterion. In other
words, this only means that the candidate is more likely to be selected.

3.1 Candidate Region Model

We consider a graph
G = (V,E, f, w) (3)

where V is a finite set of candidates introduced in Eq. (1) and f is the function
introduced in Eq. (2). We recall that f associates every candidate Vi with the
likeliness value fi. The set E is a subset of the set of all unordered pairs {Vi, Vj}
of distinct candidates Vi, Vj . A pair {Vi, Vj} is an element of E if there is an
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overlap between the candidates Vi and Vj . Further, we introduce an overlap-
based weight function w : E → (0, 1], where

w({Vi, Vj}) =
|Vi ∩ Vj |
|Vi ∪ Vj |

(4)

|Vi| means the number of pixels of the candidate i. To conclude, our candidate
region model G is a weighted undirected graph with no multiple edges and no
loops. We maintain that both vertices V and edges E are respectively weighted
by likeliness f and overlap w.

4 Binary Programming Optimization

To find the optimal non-overlapping subset of extracted candidate regions we use
reduction to binary integer programming problem, see [12][10][5][1] for reference.
We solve an optimization problem of the following form:

min cT x
subject to Ax ≤ b (5)

The problem in Eq. (5) involves minimizing a linear objective function cT x
subject to linear inequality constraints Ax ≤ b. In Eq. (5), c is a real valued
vector, b is an integer valued vector, A is an integer valued matrix, and the
optimization variable x is a binary integer vector – that is, its entries can only
take on the values 0 or 1. We denote by x? the solution of the problem in Eq. (5).

4.1 Formalization of the Problem

Each element xi ∈ x of our solution x represents a candidate Vi being selected as
part of the solution or, in other words, being assigned with the considered object
category. If the candidate is selected, the element has value 1. If the candidate
is rejected or, equivalently, assigned with the background category, the element
has value 0.

In Eq. (1), we index the set V of candidates with the index set D. We consider
candidates in this order as we need x to be a vector:

x = [x1, . . . , xN ]T

Then x1, . . . , xN correspond to candidates V1, . . . , VN being or being not assigned
with the category of interest. In all, our vector x has N elements, since we have
N candidates to assign.

4.2 Measuring Overlap

We weight the likeliness of individual candidates based on overlap with other
candidates. The greater the overlap is, the more we value the candidate. The
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weight o′i of a candidate Vi is computed as a sum of overlaps with neighboring
candidates Vj :

o′i =
∑

Vj∈Ni

w({Vi, Vj}) (6)

where Ni denotes the set of neighbors of the candidate Vi. w refers to the weight
function in Eq. (4). We create a normalized weight vector o = (o1, . . . , oN )T ,
where oi = o′

i∑
j o′

j
. If overlap maximization was our only objective, this would be

a linear function oT x. Equivalently, we could minimize −oT x.

4.3 Objective Function

We wish to not only take into account the overlap of the overall solution with
the rest of the candidates but also its likeliness, recall requirements (ii) and (iii)
in Sec. 1. Hence, we multiply elements fi of the likeliness vector with respec-
tive elements oi of the normalized weight vector and scale thus the likeliness of
the individual candidates by the degree of its overlap with neighboring candi-
date regions. This represents an utility that is assigned to every candidate. Our
objective is to maximize the utility of the overall solution or, equivalently, min-
imize the negative utility. This is a linear objective function cT x of the problem
in Eq. (5) where c is a N × 1 vector with coefficients

ci = −fioi

This formulation favors the most likely solution of minimal size and maximal
neighborhood overlap.

4.4 Constraints

We demand that the solution found is consistent with all suggested object can-
didates, recall requirement (i) in Sec. 1.

Hence, the first set of constraints requires that every candidate Vi is either an
element of the solution V ? = {Vj |Vj ∈ V, j ∈ D,x?

j = 1, x?
j ∈ x?} or is adjacent

to a vertex in the solution V ?. See Fig. 1d for illustration. Every vertex Vi in
Fig. 1d is either part of solution denoted by dark nodes or is adjacent to these
nodes.

We build a matrix A1 and a vector b1 such that A1x ≤ b1 to capture these
linear constraints:

A1 = −(Ba + IN )
b1 = −[1, . . . , 1]T

Ba denotes the N × N adjacency matrix of the graph G and IN is the N × N
identity matrix. b1 is a N × 1 vector with elements equal −1. N denotes number
of vertices V .

We wish to find a subset of non-overlapping objects. Hence, the second set
of constraints specify that no pair of vertices in the solution V ? form an edge of
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E. We represent these linear constraints with a matrix A2 and a vector b2:

A2 = BT
i

b2 = [1, . . . , 1]T

where A2x ≤ b2. Bi denotes the N ×M incidence matrix of the graph G and b2

is a M × 1 vector with elements equal 1. M refers to number of edges E.
To represent the linear inequality constraints of the problem in Eq. (5) we

combine both sets of constraints A1, b1 and A2, b2 in the matrix A and the
vector b:

A =
(

A1

A2

)
, b =

(
b1

b2

)

4.5 Complexity

In our problem, we assign every of N candidates with object or background
category. The resulting complexity is thus O(2N ). Even though we face a hard
problem, we can still aim for a globally optimal solution if the problem that we
wish to solve is small.

We propose decreasing the size of the problem by first finding all connectivity
components of the graph G in Eq. (3) and then solving the optimization problem
in Eq. (5) separately for every individual component of the graph G. In exper-
iment shown in Fig. 5b, this approach produces 4 subproblems that are solved
separately. This illustrates that the number of objects present in the image may
still be large.

5 Experiments

5.1 Graph Component of Size 2

Let us first consider solution for graph components of size 1 and 2. Component
of size 1 represents trivial solution. We define symmetrical overlap. In this par-
ticular case, two overlapping candidates are equivalent in terms of weights oi

introduced in Sec. 4.2. It is the likeliness of individual candidates provided by
extraction algorithm that eventually favors one of the candidates. In case no
additional quality measure is provided, a candidate is selected at random.

5.2 Graph Component of Size Greater than 2

Let us now continue with the investigation of the case where three candidates
overlap. Not distinguishing between isomorphic graphs, we face two possible
situations. We discuss these two cases next. Afterwards, we present a situation
with more than three candidates.
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Case 1 In this case, three candidates form a graph with only two links as
can be seen in Fig. 2ac. If no likeliness of individual candidates is provided,
the method favors solution with greater neighborhood support or, equivalently,
smaller weight oi introduced in Sec. 4.2. For illustration see Fig. 2bd. This in-
evitably leads to an undesired outcome in the case shown in Fig. 2d. However,
we note that if correct candidate likeliness is given, correct answer in (a) will be
favored both by likeliness and strong neighborhood support. In case (c), correct
solution will be supported by likeliness and weakly contradicted by neighbor-
hood. Hence, correct likeliness will more likely outweigh weak neighborhood
contradiction in (c) and, as a result, the method will favor correct solutions in
both cases (a) and (c).

(a) (b) (c) (d)

Fig. 2. (a)(c) Test data created manually to illustrate a situation with undesired out-
come. No candidate likeliness is provided. (b)(d) Subset of extracted candidate regions
selected automatically by the proposed method. See text for details.

Case 2 Let us now turn our attention to the case, where three candidates make
up a triangle. Candidates in Fig. 3a have manually been created for illustration
purposes and form a graph of six components. Every component, except for bot-
tom right, illustrates an example of a triangle under consideration. No additional
likeliness of individual candidates is provided in this case. In every triangle, sin-
gle representative with greater neighborhood support or, equivalently, minimal
weight oi is favored during the optimization.

We emphasize, that it is not our objective to cover the area of the proposed
candidates maximally. Closer examination of the middle window in the top row
and the top right window in Fig. 3ab reveals that this is indeed not the case. The
candidates selected in this experiment represent a solution that is optimal with
respect to the requirements (i) and (ii) introduced in Sec. 1. Loosely speaking,
our formulation aims for the solution that is the most consistent with the rest
of the candidates.

To provide further insight, we point out that the candidate representing the
top left window in Fig. 3 contains fully the rest of the unselected candidates.
On the contrary, the solution found for the top right window is fully contained
in an unselected candidate. Further, the degree of overlap with the unselected
candidates varies as can be seen in the top row. In addition, the degree of overlap
between the unselected candidates is variable, see the left and middle column.
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Results in Fig. 3b represent candidates that have in the optimization process
been identified as having the greatest neighborhood support.

(a) (b)

Fig. 3. (a) Test data created manually where only candidate region spatial extent is
known, i.e., no additional quality measure is given. (b) Subset of extracted candidate
regions selected automatically by the proposed method.

Should two or all links in a candidate triangle graph be assigned with the
same weight, then the two or all vertices are equivalent. It is then the likeliness
that favors a particular candidate case. If no likeliness is given and multiple
nodes appear equivalent then a solution is picked at random.

Graph Component of Size Greater Than 3 Closer inspection of the bottom
right component in Fig. 3 reveals that there are 8 competing candidates. 2 of
these have an overlap with all other candidate regions. Candidate with greater
neighborhood support is selected.

5.3 Multiple Representatives

Experiment shown in Fig. 4 shows a situation where 14 candidates make up a
single candidate graph component. Again, data in Fig. 4a have manually been
created to illustrate that multiple candidates may be selected to represent single
connectivity component. We note that the situation in Fig. 4a corresponds to
the graph in Fig. 1c. Again, it is only candidate region spatial extent that is
provided. Subset of extracted candidates selected automatically by the proposed
method is shown in Fig. 4b. This result corresponds to the candidate graph in
Fig. 1d.

5.4 Application to Facade Window Extraction

In the last experiment we applied our approach to the problem of facade win-
dow extraction. We represent foreground objects as axis-aligned rectangles de-
scribed in terms of its symmetry, homogeneity and darkness, which yields a
3-dimensional appearance feature vector.

We adopt a supervised approach and learn the appearance model of the fore-
ground category from training data. We hand-annotated 160 facade windows
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(a) (b)

Fig. 4. (a) Test data created manually to illustrate that multiple candidates may be
selected to represent single connectivity component. This situation corresponds to the
graph in Fig. 1c. Again, it is only candidate region spatial extent that is known. (b)
Subset of extracted candidate regions selected automatically by the proposed method.
This situation corresponds to the graph in Fig. 1d.

Table 1. Facade window extraction. Confusion matrix of (a) independent regionwise
classifier and (b) the proposed method. Columns refer to the predicted positive (fore-
ground) or negative (background) category and rows refer to the actual categories.

Positive Negative

True Positive 100 8
True Negative 309 452

Positive Negative

True Positive 94 14
True Negative 5 756

(a) (b)

and randomly generated the same number of background objects. We model
the appearance of the foreground category as a single Gaussian and classify the
appearance feature vectors based on the probability density of the estimated nor-
mal distribution. We adopt a density threshold that yields the greatest accuracy
on the training data.

During the object extraction process we first use an iterative mean shift
based constrained optimization procedure to propose large number of regions
that are locally optimal with respect to the appearance model, i.e., to propose
large number of symmetrical non-homogeneous dark rectangles, see Fig. 5a. In
our experiments, we test our approach on 18 images of both single and mul-
tiple facade windows. In total 869 regions are proposed by the iterative mean
shift optimization procedure. These regions represent an input of the proposed
method.

We now compare two approaches to the classification of the proposed regions.
(a) We use an independent regionwise classifier or, in other words, the estimated
appearance model, to make category assignment. (b) We select an optimal non-
overlapping subset of the extracted objects or, equivalently, we select a subset
of the regions that have been classified as foreground. Results of the approaches
(a) and (b) are respectively given in Fig. 5bc. Both the object spatial extent and
its quality measure (probability density) are exploited in this case.

The confusion matrices for both methods are given in Tab. 1. Note that the
number of regions falsely classified as foreground by the independent regionwise
classifier is reduced by the the factor of 61.80 when the proposed method is
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employed. Several standard terms are further given in Tab. 2. We note that the
accuracy (AC) is improved by 53.98% and the precision (P) is improved by the
factor of 3.88.

Table 2. Proposed method compared with independent regionwise classifier in the case
of automatic extraction of facade windows. Comparison is given in terms of accuracy
(AC), true positive rate (TP), false positive rate (FP), true negative rate (TN), false
negative rate (FN) and precision (P).

AC (%) TP (%) FP (%) TN (%) FN (%) P (%)

classifier 63.52 92.59 40.60 59.40 7.41 24.45
our method 97.81 87.04 0.66 99.34 12.96 94.95

5.5 Computational Complexity

We conclude with comment on computational aspect. Es explained in Sec. 4.5, we
reduce computational complexity by solving binary integer programming prob-
lem in Eq. (5) separately for individual graph components. Solving the problem
for the bottom right component of 8 candidates presented in Fig. 4 took 0.48
seconds on Intel Pentium CPU, 3 GHz, 2 GB RAM and Matlab implementation.
Solving the problem for example presented in Fig. 4 involving assignment of 14
candidates in a single component took 0.50 seconds.

To solve the binary integer programming problem in Eq. (5) in the presented
experiments, we used the function bintprog from Matlab Optimization Toolbox
Version 3.1. A linear programming (LP)-based branch-and-bound algorithm is
used. The algorithm searches for an optimal solution by solving a series of LP-
relaxation problems, in which the binary integer requirement on the variables
is replaced by the weaker constraint 0 ≤ x ≤ 1. The algorithm searches for a
feasible solution, updates the best feasible point found as the search tree grows
and verifies that no better solution is possible by solving a series of LP problems.

6 Conclusion

We present a solution to the following discrete optimization problem. Given a
set of independent, possibly overlapping image regions and a non-negative like-
liness of the individual regions, we select an optimal non-overlapping subset
representing the original set. Regions are provided by a single or multiple object
extraction algorithms. We illustrate the validity and the relevance of the formu-
lation by applying the proposed method to the problem of window extraction.
Last, we generalize our formulation to the case where a set of hypotheses assigned
with likeliness is given together with a binary similarity relation and similarity
measure. This generalization increases the applicability of the proposed method.
In the future, we aim at a problem formulation with multiple objectives and
decreased computational complexity.



12 F. Korč, W. Förstner

(a) (b) (c)

Fig. 5. Automatic facade windows extraction. (a) Regions proposed by iterative mean
shift optimization procedure. (b) Result of independent regionwise classification. (c)
Optimal non-overlapping subset of extracted objects selected automatically by the
proposed method. Both the object spatial extent and quality measure are exploited.
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