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ABSTRACT 

To segment a image with strongly varying object sizes results generally in under-segmentation of small structures or 
over-segmentation of big ones, which consequences poor classification accuracies. A strategy to produce multiple 
segmentations of one image and classification with support vector machines (SVM) of this segmentation stack 
afterwards is shown. 

1. PROJECT PURPOSE 

Since several years the water management authorities of the European member states are implementing a framework for 
community action in the field of water policy, which have been passed as EU Water Framework Directive in 2000 [1]. 
The general aims of this framework are, among others, preventing and minimizing water pollution, supporting 
sustainable water usage and general environmental protection, and mitigating the effects of floods. At the beginning, 
member states must identify and analyze individual river basin and district. In this context, for example, the mapping of 
structure-ecological status of rivers is required. Finally they adopt management plans and programs of measures for 
each water body. 

Usually the structure-ecological mapping of the water body is done by field work. However, field work is time 
consuming and cost-intensive. Moreover, it depends on the expert knowledge and experience of the field analyst and 
results of different field campaigns are not necessarily comparable. Behind this fact the joint research project HYDRA, 
funded by the DLR/BMBF (FKZ 50EE0917), aims on the support of the required field work in context of the Water 
Framework Directive, using SAR and multispectral remote sensing data (e.g. TerraSAR-X and RapidEye). (Semi-) 
automated procedures will be developed that can be used for (pre-) mapping in structure-ecological surveys of river 
courses. Thus, the number of parameters, which have to be adjusted in field work, can be reduced. 

2. MAPPING STRATEGY 

Potential parameters, which are relevant for the water structure mapping as well as can be derived by remote sensing 
data, are among others: (i) river course and shore lines, (ii) river banks, (iii) surrounding land use / land cover and (iv) 
transversal structures. Whereas some parameters can be derived by simple standard image processing methods, others 
require the design of new image analysis methods or the adaption and extension of existing methods (Fig. 1). The 
delineation of wide rivers, for example, seems relatively simple and can be performed by object-based image analysis. 
In this context standard image segmentation techniques, e.g. region growing [2], and an adequate classification method, 
e.g. support vector machines (SVM) [3], [4], [5], can be used to generate the final result. However, it has been shown in 
different studies that the size of natural objects can have an impact on the classification accuracy and consequently, the 
detection of narrow rivers may be challenging. Segmentation algorithms mostly fail in separating very narrow objects 
and the use of alternative methods seems necessary. Methods based on Markov random fields [6] or mathematical 
morphology [7] may overcome this problem. Most transversal structures, such as bridges and dams, are linear elements, 
and can be perhaps detected by similar methods. However, neighborhood information between two separated river 
segments and a road help to merge the separated river parts and to define the transversal structure as bridge. 



The land cover that is surrounding the river is another important input information and several studies have been 
published in this context [8], [9], [10]. The presented approach is aiming on the multilevel-segmentation of SAR data. 
The main objectives of the paper are: (i) testing the influence of different segmentation levels on the classification 
accuracy and (ii) the benefit of multiply segmentation levels for the classification. Minor objectives are the profit of (i) 
multitemporal features and (ii) the fusion with optical data. The methodology is described explicit below. 

 

Figure 1: Mapping strategy of the project HYDRA 

 

3. STUDY AREA AND DATA PRE-PROCESSING 

The study area is located in the north-west of Freiburg i. Br., Baden-Württemberg, Germany, where the rivers Dreisam, 
Elz, and Alte Dreisam coalesce into the Leopoldskanal and the Alte Elz. This region provides rivers of several widths 
and thereby very useful for the study purpose (Fig. 2). For this area several TerraSAR-X (TSX) images are available. 
For this study three Stripmap dual polarized scenes (HH/HV, 2009/05/03, 2009/07/04 and 2009/08/05) with the same 
orbit and beam information are chosen. Thus the coherence between two images can be derived [11]. The images are 
co-registered and geo-coded to a 5 m x 5 m pixel spacing with GAMMA [12]. After that speckle suppression was 
applied with a Lee-Sigma filter [13] with a window size of 9 x 9.  

4. IMAGE ANALYSIS 
4.1 Segmentation Method 

In many remote sensing land cover classifications the accuracy is increased by integrating spatial information into the 
classification process. Many of these studies use object based approaches, which perform image segmentation before 
the image classification [14], [15]. However, it is difficult to generate one single segmentation level for all image 
objects. Inadequate segmentation can actually decrease the classification accuracy [16]. Beside the strategy to improve 
the segmentation accuracy [17], [18], there are studies, which use different levels of segmentation for the classification 
[19], even if it was not tested on high resolution SAR data until now. In this study three levels of segmentation are 
generated, where the segments of level 1 (L1) are super-objects for the segments of level 2 (L2) and level 2 for level 3 
(L3) as well (Fig. 3). L1 is generated to delineate large image objects, while L3 fits small objects. The segmentation is 
generated with the multiresolution segmentation method in eCognition [2], using an image stack, consisting of all TSX 
images. 



 

Figure 2: Study area (image composite: R: 2009/03/05 HH, G: 2009/03/05 HV, B: 2009/04/07 HH) 

 

 

Figure 3: Multilevel segmentation (L1: black, L2: red, L3: green, image composite: R: 2009/03/05 HH, G: 2009/03/05 
HV, B: 2009/04/07 HH) 



4.2 Classification Method 

In several studies it was shown that SVMs outperform conventional classifiers (e.g. maximum likelihood) in terms of 
accuracy [5], [20], so it is the method of choice in this study, using imageSVM, a freely available IDL/ENVI extension 
[21]. The classification is aiming on five main land cover classes (grassland, arable, settlement area, forest and water). 
These classes were chosen, because this information directly supports the mapping of the water structure [10]. The 
SVM is trained with 200 samples per class. A Gaussian RBF Kernel was used and the parameterization was done 
automatically by a grid search, testing different Kernel function parameters and regularization parameters [22]. Initially 
the six intensity images were classified at each segmentation level and at pixel level. The second classification based on 
the intensity images of all segmentation level (18 information layers). 

5. EXPERIMENTAL RESULTS 

The results clearly underline that the segmentation significantly improves the classification of SAR data. The result of 
the classification at pixel level is very noisy (Fig. 4) and the overall accuracy is far below the results at any tested 
segmentation level (Fig. 5). The classification results that are based on L1 and L2 do not show significant differences 
(~69-69.4%), while the accuracy is slightly decreased by the smallest level L3 (67.4%). The visual comparison 
confirms that the noise is significantly reduced by image segmentation. Level 2 performs best in the visual comparison 
of the three levels; anyhow large structures are better detected in L1 and small ones in L3. Consequently, the 
classification of all three levels seems adequate, as confirmed by the accuracy assessment. The combination of all levels 
outperfomed all single levels in terms of the overall accuracy and most class accuracies. (Fig. 5, Tab. 1). The visual 
assessment demonstrates good separation of larger objects (e.g. the grassland in the northern part of the study area) as 
well as of regions that are characterized by a relatively small objects and spatially high frequent changes of land cover, 
such as the grassland and arable field plots in the western part of the study site. 

 

Figure 4: Classification results (upper left: L1, upper middle: L2, upper right: L3, lower left: pixel level, lower middle: 
all levels, lower right: ground truth; green: grassland, yellow: arable crop, red: built-up area, dark green: forest, blue: 

water) 



 

Figure 5: Overall accuracies [%] using different levels of segmentation 

 

Table 1: Producer and user accuracies [%], using different levels of segmentation 

  Segmentation L1 Segmentation L2 Segmentation L3 
  Producer User Producer User Producer User 

Grassland 64.28 47.73 62.37 46.57 59 47.23 
Arable 68.93 90.44 69.24 90.67 68.54 91.89 

Built-Up 73.81 42.98 73.25 41.44 70.37 30.3 
Forest 88.1 54.3 84.99 54.57 82.14 46.07 
Water 88.12 50.83 86.44 49.26 77.09 78.14 

       
  Pixel level all Segmentlevels 

all Segmentlevels 
 + features 

  Producer User Producer User Producer User 
Grassland 38.34 40.06 64.88 51.2 63.3 47.92 

Arable 55.54 86.9 71.69 92.08 73.57 91.92 
Built-Up 46.92 16.3 79.63 36.46 81.45 55.31 
Forest 58.85 15.52 82.98 62.37 86.46 53.22 
Water 77.51 54.28 80.45 68.75 89.55 61.59 

 

6. CONCLUSIONS AND OUTLOOK 

The results clearly demonstrate the positive impact of image segmentation on the classification accuracy. Moreover, 
using the information of more than just one segmentation level improves the result of the classification. However, the 
definition of an adequate classification strategy is an ongoing process. The approach can be easily extended, for 
example, by including multitemporal features and multispectral images in the classification process. It has been shown 
that multitemporal information increases the classification accuracies [23]. Beside the intensities of the TSX data 
following information layers (each in HH and HV) are derived and incorporated into the classification: the mean 
coherence of the two coherence images between date 1 and date 2 and between date 2 and 3, the standard deviation, the 
temporal standard deviation of db Values [23] and the temporal mean. In addition the spatial standard deviation of the 
intensities, temporal mean intensities and coherences in each segment are computed. The use of the whole data set (22 
features) significantly improves the classification (Tab. 1). Moreover, the use of multispectral data can improve the 
classification result. [19], [24]. In this study, a single RapidEye image (2009/05/30) was included, increasing the 
classification accuracy up to 77%. 
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